박사

Optical coherence microscopic imaging systems and their biomedical applications = 광 결맞음 영상 시스템의 개발 및 응용

김형진 2019년
논문상세정보
' Optical coherence microscopic imaging systems and their biomedical applications = 광 결맞음 영상 시스템의 개발 및 응용' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Digital holography
  • Optical coherence imaging system
  • Optical coherence tomography
  • Optical coherence tomography angiography
  • Wavefront control
  • Whole eye image
  • aberration correction
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
205 0

0.0%

' Optical coherence microscopic imaging systems and their biomedical applications = 광 결맞음 영상 시스템의 개발 및 응용' 의 참고문헌

  • Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler tomography," IEEE Journal of Selected Topics in Quantum Electronics 5, 1134–1142 (1999).
  • Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114–116 (2000).
  • Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380–4394 (2006).
  • Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652–10664 (2005).
  • Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, "Split-spectrum amplitude-decorrelation angiography with optical coherence tomography," Opt. Express 20, 4710–4725 (2012).
  • Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, "Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium," Phys. Rev. Lett. 107, 023902 (2011).
  • Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, "Optical imaging with the use of a scattering lens," IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).
  • Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, "Three-dimensional eye motion correction by Lissajous scan optical coherence tomography," Biomed. Opt. Express 8, 1783–1802 (2017).
  • Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, "Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning," Biomed. Opt. Express 9, 1111–1129 (2018).
  • W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, "High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s," Biomed. Opt. Express 5, 2963–2977 (2014).
  • W. Wei, J. Xu, U. Baran, S. Song, W. Qin, X. Qi, and R. K. Wang, "Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow," JBO 21, 036005 (2016).
  • W. Drexler and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography," Progress in Retinal and Eye Research 27, 45–88 (2008).
  • W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, "Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source," Opt. Lett. 38, 338–340 (2013).
  • V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle," Opt. Express 10, 397–404 (2002).
  • T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, "A review of optical coherence tomography angiography (OCTA)," International Journal of Retina and Vitreous 1, 5 (2015).
  • S. Yousefi, Z. Zhi, and R. K. Wang, "Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography," IEEE Transactions on Biomedical Engineering 58, 2316–2323 (2011).
  • S. Yousefi and R. K. Wang, "Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies," Phys. Med. Biol. 59, 6693 (2014).
  • S. Wang, M. Singh, A. L. Lopez, C. Wu, R. Raghunathan, A. Schill, J. Li, K. V. Larin, and I. V. Larina, "Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography," Opt. Lett. 40, 4791–4794 (2015).
  • S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, "Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate," Appl. Phys. Lett. 108, 191104 (2016).
  • S. R. Choi and U. S. Kim, "The correlation between Angle Kappa and ocular biometry in Koreans," Korean J Ophthalmol 27, (2013).
  • S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340–342 (1997).
  • S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, "Image transmission through an opaque material," Nature Communications 1, 81 (2010).
  • S. Ortiz, P. P rez-Merino, S. Dur n, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jim nez- Alfaro, and S. Marcos, "Full OCT anterior segment biometry: an application in cataract surgery," Biomed. Opt. Express 4, 387–396 (2013).
  • S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, "The role of fixational eye movements in visual perception," Nature Reviews Neuroscience 5, 229 (2004).
  • S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821–7840 (2006).
  • S. Makita, T. Fabritius, and Y. Yasuno, "Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography," Opt. Lett. 33, 836–838 (2008).
  • S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, "Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media," Phys. Rev. Lett. 104, 100601 (2010).
  • S. L. Owens, "Indocyanine green angiography.," Br. J. Ophthalmol. 80, 263–266 (1996).
  • S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822–4828 (2004).
  • S. Fan, L. Li, Q. Li, C. Dai, Q. Ren, S. Jiao, and C. Zhou, "Dual band dual focus optical coherence tomography for imaging the whole eye segment," Biomed. Opt. Express 6, 2481– 2493 (2015).
  • S. A. Mosquera, S. Verma, and C. McAlinden, "Centration axis in refractive surgery," Eye and Vision 2, 4 (2015).
  • R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. G tzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, "Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels," Opt. Lett. 33, 2967–2969 (2008).
  • R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889–894 (2003).
  • R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083–4097 (2007).
  • R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, "Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging," in Ophthalmic Technologies XVII (International Society for Optics and Photonics, 2007), Vol. 6426, p. 642607.
  • R. F. Steinert and D. Huang, Anterior Segment Optical Coherence Tomography (SLACK Incorporated, 2008).
  • R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, "Image Artifacts In Optical Coherence Tomography Angiography," Retina 35, 2163–2180 (2015).
  • R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, "Tracking optical coherence tomography," Opt. Lett. 29, 2139–2141 (2004).
  • R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116–3121 (2003).
  • Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, "Widefield imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking," JBO 20, 066008 (2015).
  • P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, "Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram," Biomed. Opt. Express 7, 2823–2836 (2016).
  • M. Ruggeri, S. R. Uhlhorn, C. D. Freitas, A. Ho, F. Manns, and J.-M. Parel, "Imaging and full86 length biometry of the eye during accommodation using spectral domain OCT with an optical switch," Biomed. Opt. Express 3, 1506–1520 (2012).
  • M. Pircher, B. Baumann, E. G tzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15, 16922–16932 (2007).
  • M. Moshirfar, R. N. Hoggan, and V. Muthappan, "Angle Kappa and its importance in refractive surgery," Oman Journal of Ophthalmology 6, 151 (2013).
  • M. L. Gabriele, G. Wollstein, H. Ishikawa, J. Xu, J. Kim, L. Kagemann, L. S. Folio, and J. S. Schuman, "Three dimensional optical coherence tomography imaging: Advantages and advances," Progress in Retinal and Eye Research 29, 556–579 (2010).
  • M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, "Transmission matrix of a scattering medium and its applications in biophotonics," Opt. Express, 23, 12648–12668 (2015).
  • M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, "Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging," Opt. Express 21, 19412–19436 (2013).
  • M. J. Booth, "Adaptive optics in microscopy," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 365, 2829–2843 (2007).
  • M. H. Frosz, M. Juhl, and M. H. Lang, Optical Coherence Tomography: System Design and Noise Analysis (Ris National Laboratory, 2001).
  • M. F. Kraus, J. J. Liu, J. Schottenhamml, C.-L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, "Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization," Biomed. Opt. Express 5, 2591–2613 (2014).
  • M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, "Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns," Biomed. Opt. Express 3, 1182–1199 (2012).
  • M. C. Dunne, G. P. Misson, E. K. White, and D. A. Barnes, "Peripheral astigmatic asymmetry and angle alpha," Ophthalmic Physiol Opt 13, (1993).
  • M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183–2189 (2003).
  • K. Zhang and J. U. Kang, "Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance," Biomed. Opt. Express 2, 764–770 (2011).
  • K. Zhang and J. U. Kang, "Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system," Opt. Express 18, 11772–11784 (2010).
  • K. Zhang and J. U. Kang, "Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT," Opt. Express 18, 23472–23487 (2010).
  • K. V. Avudainayagam and C. S. Avudainayagam, "Simple method to measure the visual axis of the human eye," Opt. Lett. 36, 1803–1805 (2011).
  • K. Park, T. D. Yang, H.-J. Kim, T. Kong, J. Lee, H. S. Choi, H. J. Chun, B.-M. Kim, and Y. Choi, "Inversion-free image recovery from strong aberration using a minimally sampled transmission matrix," Sci. Rep. (accepted in Dec. 2018).
  • J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, "Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle," Biomed. Opt. Express 6, 1534–1552 (2015).
  • J. Lezama, D. Mukherjee, R. P. McNabb, G. Sapiro, A. N. Kuo, and S. Farsiu, "Segmentation guided registration of wide field-of-view retinal optical coherence tomography volumes," Biomed. Opt. Express 7, 4827–4846 (2016).
  • J. H. Yeo, N. J. Moon, and J. K. Lee, "Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography," Korean J Ophthalmol (2017).
  • J. G. Fujimoto and W. Drexler, "Introduction to OCT," in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 3–64.
  • J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, "Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique," Opt. Express 17, 22190–22200 (2009).
  • J. F. de Boer, R. Leitgeb, and M. Wojtkowski, "Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]," Biomed. Opt. Express 8, 3248–3280 (2017).
  • J. Enfield, E. Jonathan, and M. Leahy, "In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)," Biomed. Opt. Express 2, 1184–1193 (2011).
  • J. A. Izatt, M. A. Choma, and A.-H. Dhalla, "Theory of Optical Coherence Tomography," in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 65–94.
  • I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, "Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers," Biomed. Opt. Express 3, 2733–2751 (2012).
  • I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, "Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid," Biomed. Opt. Express 7, 911–942 (2016).
  • H.-W. Jeong, S.-W. Lee, and B.-M. Kim, "Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging," Opt. Express 20, 19148–19159 (2012).
  • H.-J. Kim, P. U. Kim, M. G. Hyeon, Y. Choi, J. Kim, and B.-M. Kim, "High-resolution, dualdepth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging," Appl. Opt. 55, 7212–7217 (2016).
  • H.-J. Kim, M. Kim, M. G. Hyeon, Y. Choi, and B.-M. Kim, "Full ocular biometry through dualdepth whole-eye optical coherence tomography," Biomed. Opt. Express 9, 360–372 (2018).
  • H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, C. Cleveland, L. Booth, B. Potsaid, V. Jayaraman, A. E. Cable, H. Mashimo, R. Langer, G. Traverso, and J. G. Fujimoto, "Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter," Biomed. Opt. Express 7, 2927–2942 (2016).
  • H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, "Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography," Opt. Lett. 31, 927–929 (2006).
  • H. R. Novotny and D. L. Alvis, "A Method of Photographing Fluorescence in Circulating Blood in the Human Retina," Circulation 24, 82–86 (1961).
  • H. Kogelnik and T. Li, "Laser Beams and Resonators," Appl. Opt. 5, 1550–1567 (1966).
  • H. J. Shammas, S. Ortiz, M. C. Shammas, S. H. Kim, and C. Chong, "Biometry measurements using a new large-coherence–length swept-source optical coherence tomographer," Journal of Cataract & Refractive Surgery 42, 50–61 (2016).
  • H. Hashemi, M. Khabazkhoob, K. Yazdani, S. Mehravaran, E. Jafarzadehpur, and A. Fotouhi, "Distribution of Angle Kappa measurements with Orbscan II in a population-based survey," J Refract Surg 28, (2010).
  • H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, "Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography," Biomed. Opt. Express 2, 2175–2188 (2011).
  • H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, "Automated nonrigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography," Biomed. Opt. Express 4, 803–821 (2013).
  • H. Basmak, A. Sahin, N. Yildirim, T. D. Papakostas, and A. J. Kanellopoulos, "Measurement of angle kappa with synoptophore and Orbscan II in a normal population," J Refract Surg 23, (2007).
  • G. Liu, Y. Jia, A. D. Pechauer, R. Chandwani, and D. Huang, "Split-spectrum phase-gradient optical coherence tomography angiography," Biomed. Opt. Express 7, 2943–2954 (2016).
  • G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, "Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems," Opt. Express 19, 11429–11440 (2011).
  • E. N. Leith and J. Upatnieks, "Reconstructed Wavefronts and Communication Theory," J. Opt. Soc. Am. 52, 1123–1130 (1962).
  • E. Jonathan, J. Enfield, and M. J. Leahy, "Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images," Journal of Biophotonics 4, 583–587 (2011).
  • E. G. van Putten and A. P. Mosk, "The information age in optics: Measuring the transmission matrix," Physics 3, (2010).
  • E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994–7001 (1999).
  • D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, "Advanced scanning methods with tracking optical coherence tomography," Opt. Express 13, 7937–7947 (2005).
  • D. W. Wei, A. J. Deegan, and R. K. Wang, "Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration," JBO 22, 066013 (2017).
  • D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
  • D. Ferrara, "Image artifacts in optical coherence tomography angiography," Clinical & Experimental Ophthalmology 44, 367–368 (2016).
  • D. D. Duncan and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," JBO 6, 418–427 (2001).
  • C.-L. Chen and R. K. Wang, "Optical coherence tomography based angiography [Invited]," Biomed. Opt. Express 8, 1056–1082 (2017).
  • C. Y. Park, S. Y. Oh, and R. S. Chuck, "Measurement of angle kappa and centration in refractive surgery," Current Opinion in Ophthalmology 23, 269 (2012).
  • C. Liu, J. Yuen, and A. Torralba, "SIFT Flow: Dense Correspondence across Scenes and Its Applications," IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 978–994 (2011).
  • C. K.-S. Leung, "Diagnosing glaucoma progression with optical coherence tomography," Current Opinion in Ophthalmology 25, 104 (2014).
  • C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber– based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355–1357 (2000).
  • C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, "Optical coherence tomography for whole eye segment imaging," Opt. Express 20, 6109–6115 (2012).
  • C. Chen, W. Shi, and W. Gao, "Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo," JBO 20, 116009 (2015).
  • B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16, 15149–15169 (2008).
  • B. N. Hwang, M. H. Son, and I. G. Won, "Angle kappa measurement with slit lamp biomicroscope," Journal of the Korean Ophthalmological Society 43, 2005–2009 (2002).
  • B. K. P. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence 17, 185– 203 (1981).
  • B. Braaf, S. Donner, A. S. Nam, B. E. Bouma, and B. J. Vakoc, "Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina," Biomed. Opt. Express 9, 486–506 (2018).
  • B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, "Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO," Biomed. Opt. Express 4, 51–65 (2013).
  • B. Bouma, Handbook of optical coherence tomography (CRC Press, 2001).
  • B. Antony, M. D. Abr moff, L. Tang, W. D. Ramdas, J. R. Vingerling, N. M. Jansonius, K. Lee, Y. H. Kwon, M. Sonka, and M. K. Garvin, "Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images," Biomed. Opt. Express 2, 2403–2416 (2011).
  • A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, "Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival," Opt. Lett. 37, 1883–1885 (2012).
  • A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, "Methods and algorithms for optical coherence tomography-based angiography: a review and comparison," JBO 20, 100901 (2015).
  • A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, "Phase-resolved Doppler optical coherence tomography—limitations and improvements," Opt. Lett. 33, 1425– 1427 (2008).
  • A. S. Nam, I. Chico-Calero, and B. J. Vakoc, "Complex differential variance algorithm for optical coherence tomography angiography," Biomed. Opt. Express 5, 3822–3832 (2014).
  • A. Roorda, F. Romero-Borja, W. J. D. Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405–412 (2002).
  • A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, "Correction of distortions in optical coherence tomography imaging of the eye," Phys. Med. Biol. 49, 1277 (2004).
  • A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Optimized speckle variance OCT imaging of microvasculature," Opt. Lett. 35, 1257–1259 (2010).
  • A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Speckle variance detection of microvasculature using swept-source optical coherence tomography," Opt. Lett. 33, 1530–1532 (2008).
  • A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, "In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development," J. Opt. Soc. Am. A 25, 3134–3143 (2008).
  • A. Baghaie, Z. Yu, and R. M. D’Souza, "Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?," Medical Image Analysis 37, 129–145 (2017).