박사

Crystal growth, crystal structures and physical properties of K2NiF4-type 2D organic-inorganic perovskite materials

박가람 2019년
논문상세정보
' Crystal growth, crystal structures and physical properties of K2NiF4-type 2D organic-inorganic perovskite materials' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • K2NiF4 type perovskite
  • crystal growth
  • crystal structure
  • organic-inorganic hybrid materials
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
94 0

0.0%

' Crystal growth, crystal structures and physical properties of K2NiF4-type 2D organic-inorganic perovskite materials' 의 참고문헌

  • Zhou, Y., Zhu, K. Perovskite Solar Cells Shine in the “Valley of the Sun”. ACS Energy Lett 1, 64–67 (2016).
  • Zhang, W. et al. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142, https://doi.org/10.1038/ncomms7142 (2015).
  • Yuan, Z., Shu, Y., Xin, Y., Ma, B. Highly luminescent nanoscale quasi- 2D layered lead bromide perovskites with tunable emissions. Chem. Commun. 52, 3887–3890 (2016).
  • You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotech. 11, 75–81 (2016).
  • Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).
  • Yang, J., Siempeikamp, B. D., Liu, D., Kelly, T. L. Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in situ Techniques. ACS Nano 9, 1955– 1963 (2015).
  • Wu, J. et al. Generating new magnetic properties in organic-inorganic hybrids. J. Mater. Chem. C 5, 1782–1788 (2017).
  • Wiedwald, U. et al. Preparation and characterization of supported magnetic nanoparticles prepared by reverse micells. J. Nanotechnol. 1, 24–27 (2010).
  • W.D. Van Amstel, L.J. De Jongh, Magnetic measurements on (CH3NH3)2MnCl4, a quasi two-dimensional Heisenberg antiferromagnet, Solid State Comm. 11, 1423 (1972)
  • W. Depmeier, Inorganic-organic layered halide perovskites, with specific focus on PAMC, and its key and slot joint interlayers. Z. Kristallogr., 224,287 (2009)
  • Tole, B. T., van der Laan, G. “Branching ratio in x-ray absorption spectroscopy.” Phys. Rev. B 38, 3158–3171 (1988).
  • Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science https://doi. org/10.1126/science.aai9081 (2017).
  • Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D., Karunadasa, H. I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Mositure Stability. Angew. Chem. Int. Ed. 53, 11232– 12235 (2014).
  • S.-H. Park, I.-H. Oh, S. Park, Y. Park, J.H. Kim, Y.D. Huh, Canted antiferromagnetism and spin reorientation transition in layered inorganicorganic pervoskite (C6H5CH2CH2NH3)2MnCl4, Dalton Trans. 41, 1732 (2011)
  • S.-H. Park, C.E. Lee, Layered copper hydroxide n-alkylsulfonate salts: synthesis, characterization, and magnetic behaviors in relation to the basal spacing, J. Phys. Chem. B 109, 1118 (2005)
  • Research London 7, 257 (1954)
  • R.D. Willett, Structures of the antiferrodistortive layer perovskites bis(phenethylammonium) tetrahalocuprate(II), Halo = Cl, Br, Acta Cryst. C46, 565 (1990)
  • R.D. Willett, R.J. Wong, M. Numata, Magnetic susceptibility and EPR study of bis(βalaninium) tetrabromocuprate(II), Inorg. Chem. 22, 3189 (1983)
  • R.D. Willet, Crystal structure and optical properties of (CH3)2NH2CuCl3, J. Chem. Phys. 44, 39 (1966).
  • R.D. Willet, B. Twamley, W. Montfrooij, G.E. Granroth, S.E. Nagler, D.W. Hall, J. H. Park, B.C. Watson, M.W. Meisel, D.R. Talham, Dimethylammonium trichlorocuprate (II): structural transition, lowtemperature crystal structure, and unusual two-magnetic chain structure dictated by nonbonding Chloride-Chloride contacts. Inorg. Chem. 45, 7689 (2006)
  • Qiao, R., Chin, T., Harris, S. J., Yan, S., Yang, W. Spectroscopic fngerprints of valence and spin states in manganese oxides and fuorides. Curr. Appl. Phys. 13, 544–548 (2013).
  • Pradeesh, K., Baumberg, J. J., Prakash, G. V. In situ intercalation strategies for device-quality hybrid inorganic-organic selfassembled quantum wells. Appl. Phys. Lett. 95, 033309 (2009).
  • Polyakov, A. O. et al. Coexisting Ferromagnetic and Ferroelectric Order in a CuCl4-based Organic-Inorganic Hybrid. Chem. Mater. 24, 133–139 (2012).
  • Park, S.-H. et al. Canted antiferromagnetism and spin reorientation in layered inorganic-organic perovskite (C6H5CH2CH2NH3)2MnCl4. Dalton Trans. 41, 1237–1242 (2012).
  • Park, G. et al. Investigation of magnetic phase transition on the layered inorganic-organic hybrid perovskite (C6H5CH2CH2NH3)2 MnCl4 by single-crystal neutron diffraction. Physica B: Physics of Condensed Matter, https://doi.org/10.1016/j.physb.2017.11.004 (2017).
  • Nugroho, A. A. et al. Cross-type orbital ordering in the layered hybrid organic-inorganic compound (C6H5CH2CH2NH3)2CuCl4. Phys. Rev. B 94, 184404 (2016).
  • Nemrava, S. et al. Tree Oxidation States of Manganese in the Barium Hexaferrite BaFe12−xMnxO19. Inorg. Chem. 56, 3861–3866 (2017).
  • National Renewable Energy Research (NREL), Research Cell Efficiency Record Chart, Available at: https://www.nrel.gov/pv/assets/ images/efciency-chart.png (rev. 10-30-2017), Accessed: 20 December (2017).
  • N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966)
  • Mitzi, D. B. Tin-Film Deposition of Organic-Inorganic Hybrid Materials. Chem. Mater. 13, 3283–3298 (2001).
  • Mermin, N. D. & Wagner, H. Phys. Rev. Lett. 17, 1133–1136 (1966).
  • Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–297 (2014).
  • M.E. Lines, Magnetism in two dimensions J. Appl. Phys. 40, 1352 (1969)
  • Liu, Q. et al. Enhanced Stability of Perovskite Solar Cells with Low- Temperature Hydrothermally Grown SnO2 Electron Transport Layers. Adv. Func. Mater. 26, 6069–6075 (2016).
  • Ling, L. et al. Precisely Controlled Hydration Water for Performance Improvement of Organic-Inorganic Perovskite Solar Cells. Adv. Funct. Mater. 26, 5028–5034 (2016).
  • Lines, M. E. Magnetism in Two Dimensions. J. Appl. Phys. 40, 1352– 1358 (1969).
  • Liang, M. A., Jun, D., Xiao Cheng, Z. Two-Dimensional Single-Layer Organic-Inorganic Hybrid Perovskite Semiconductors. Adv. Energy Mater. 7, 1601731 (2017).
  • Leguy, A. M. A. et al. Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chem. Mater. 27, 3397–3407 (2015).
  • L.J. de Jongh, Magnetic Properties of Layered Transition Metal Compounds, Kluwer Academic Publishers, Dordrecht, (1990)
  • Kundys, B. et al. Multiferroicity and hydrogen-bond ordering in (C2H5NH3)2CuCl4 featuring dominant ferromagnetic interactions. Phys. Rev. B 81, 224434 (2010).
  • Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
  • Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).
  • Kagan, C. R., Mitzi, D. B., Dimitrakopoulos, C. D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field- Effect Transistors. Science 286, 945–947 (1999).
  • Jiang, Q. et al. Pseudohalide-Induced Moisture Tolerance in Perovskite CH3NH3Pb(SCN)2I Tin Films. Angew. Chem. Int. Ed. Engl. 54, 7617– 7620 (2015).
  • I.-H. Oh, J.E. Kim, J. Koo, J.M.S. Park, Refinement of cesium diaquatrichloromanganate (II), CsMnCl3⋅2(H2O) by neutron diffraction, Cl3CsH4MnO2, Z. Krist. NCS 229, 265 (2014)
  • I.-H. Oh, D. Kim, Y.D. Huh, Y. Park, J.M.S. Park, S.-H. Park, Bis(2- phenylethylammonium) tetrachloridocobaltate(II), Acta Cryst. E67, m522 (2011)
  • Hwang, K. et al. Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells. Adv. Mater. 27, 1241–1247 (2015).
  • Hwang, I., Jeong, I., Lee, J., Ko, M. J., Yong, K. Enhaning Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. ACS Appl. Mater. Interfaces 7, 17330–17336 (2015).
  • Hasbisreutinger, S. N., McMeekin, D. P., Snaith, H. J., Nicholas, R. J. Research Update: Strategies for improving the stability of perovskite solar cells. APL Mater 4, 091503 (2016).
  • Goodenough, J. Theory of the Role of Covalence in the Perovskite- Type Manganites [La, M(II)] MnO3. Phys. Rev. 100, 564–573 (1955).
  • G. Park, I.-H. Oh, J.M.S. Park, S.-H. Park, C.S. Hong, K.-S. Lee, Large-scale singlecrystal growth of (CH3)2NH2CuCl3 for neutron scattering experiments, J. Cryst. Growth 441, 46 (2016)
  • G. Heger, Habilitationsschrift, Karlsruhe, (1977)
  • G. Heger, E. Heinrich, B. Kanellakopulos, Investigation of a quasi twodimensional Heisenberg antiferromagnetic system. Non-deuterated and deuterated alkylammonium tetrachloromanganate, Solid State Comm. 12, 1157 (1973)
  • G. Heger, D. Mullen, K. Knorr, On the second-order phase transition in (CH3NH3)2MnCl4. A single-crystal neutron diffraction study at 404 and 293 K, Phys. Stat. Sol. A 31, 455 (1975)
  • Eperon, G. E. et al. Te Importance of Moisture in Hybrid Lead Halide Perovskite Tin Film Fabrication. ACS Nano 9, 9380–9393 (2015).
  • E.A. Turov, Zh. Eksperim. I Teor. Fiz. 42, 1582 (1962)
  • E.A. Turov, Izv. Akad. Nauk. SSSR, Ser. Fiz. 11, 1315 (1961)
  • E.A. Turov, Compt. Rend. 252, 3420. (1961)
  • E. Prince International Tables for Crystallography Volume C: Mathematical, physical and chemical tables (2006)
  • Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).
  • Dong, X. et al. Improvement of the humidity stability of organicinorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A3, 5360–5367 (2015).
  • D.B. Mitzi, A layered solution crystal growth technique and the crystal structure of (C6H5C2H4NH3)2PbCl4, J. Solid State Chem. 145, 694 (1999)
  • D. B.Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem.Soc., Dalton Trans. 1(2001)
  • D. B.Mitzi, Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials. Progress in Inorganic Chemistry. 48, 1(1999)
  • Conings, B. et al. The impact of precursor water content on solutionprocessed organometal halide perovskite films and solar cells. J. Mater. Chem. A 3, 19123–19128 (2015).
  • Coey, J. M. D., Venkatesan, M., Xu, H. Functional Metal Oxides-New Science and Novel Applications. (eds: Ogale, S. B. et al.) Ch.1 (Wiley- VCH, Weinheim, Germany, 2013).
  • Chen, Q. et al. Planar Heterojunction Perovskite Solar Cells via Vapor- Assisted Solution Process. J. Am. Chem. Soc. 136, 622–625 (2014).
  • Carlin, R. L. Magnetochemistry. Ch. 7, 195–198 (Springer-Verlag, Berlin Heidelberg, 1986)
  • Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T., Kanatzidis, M. G. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).
  • C. Bellitto, E.M. Bauer, G. Righini, Organic-inorganic hybrids: from magnetic perovskite metal(II) halides to multifunctional metal(II) phosphonates, Coord. Chem. Rev. 289–290, 123 (2015)
  • Burschka, J. et al. Sequential deposition as a route to highperformance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
  • Bhachu, D. S. et al. Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapor deposition. J. Mater. Chem. A 3, 9071–9073 (2015).
  • B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: structural versatility for functional materials design, Chem. Rev. 116, 4558 (2016)
  • B. Kundys, A. Lappas, M. Viret, V. Kapustianyk, V. Rudyk, S. Semak, Ch. Simon, and I. Bakaimi. Multiferroicity and hydrogen-bond ordering in (C2H5NH3)2CuCl4 featuring dominant ferromagnetic interactions. Phys. Rev. B 81, 224434 (2010)
  • Arkenbout, A. H. PhD Tesis, Organic-Inorganic Hybrids: A Route towards Soluble Magnetic Electronics. (University of Groningen, 2010).
  • Akhtar, N. et al. Self-Assembly of Ferromagnetic Organic-Inorganic Perovskite-Like Films. Small 10, 4912–4919 (2014).
  • Aguado, F. et al. Tree-dimensional magnetic ordering in the Rb2CuCl4 layer perovskite-structural correlations. J. Phys.: Condens. Matter 16, 1927–1938 (2014).
  • Adamson, A. W., Gast, A. P. Physical Chemistry of Surfaces. (Wiley- Interscience, Hoiboken, NJ, USA 1997).
  • A.S. Wills, A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh), Phys. B 276– 278, 680 (2000)
  • A.O. Polyakov, A.H. Arkenbout, J.B. Graeme, R. Blake, A. Meetsma, A. Caretta, P.H.M. van Loosdrecht, Th M. Palstra, Coexisting ferromagnetic and ferroelectric order in a CuCl4-based organic-inorganic hybrid, Chem. Mater. 24, 133 (2012)