박사

Application of persulfate with hydrodynamic cavitation in the advanced oxidation process

Jongbok Choi 2019년
논문상세정보
' Application of persulfate with hydrodynamic cavitation in the advanced oxidation process' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • ferrous ions
  • hydrodynamic cavitation
  • ozone
  • persulfate
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
32 0

0.0%

' Application of persulfate with hydrodynamic cavitation in the advanced oxidation process' 의 참고문헌

  • Šarc, A., Stepišnik-Perdih, T., Petkovšek, M., & Dular, M. (2017). The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrasonics sonochemistry, 34, 51-59.
  • Zrinyi, N., & Pham, A. L.T. (2017). Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution. Water Research, 120, 43-51.
  • Zhu, C., Fang, G., Dionysiou, D. D., Liu, C., Gao, J., Qin, W., & Zhou, D. (2016). Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study. Journal of Hazardous Materials, 316, 232-241.
  • Zhao, L., Ma, K., Yang, Z., 2015. Changes of water hydrogen bond network with different externalities. International Journal of Molecular Sciences 16, 8454-8489.
  • Zhao, J., Zhang, Y., Quan, X., & Chen, S. (2010). Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separation and Purification Technology, 71(3), 302-307.
  • Zhang, X., Wang, X., Le, L., Ma, A., & Lin, S. (2015). Electrochemical growth of octahedral Fe3O4 with high activity and stability toward the oxygen reduction reaction. Journal of Materials Chemistry A, 3(38), 19273-19276.
  • Zhang, T., Chen, Y., Wang, Y., Le Roux, J., Yang, Y., & Crou , J.-P. (2014). Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environmental Science & Technology, 48(10), 5868-5875.
  • Zhang, M., Chen, X., Zhou, H., Murugananthan, M., & Zhang, Y. (2015). Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. Chemical Engineering Journal, 264, 39-47.
  • Zhang, B.-T., Zhang, Y., Teng, Y., & Fan, M. (2015). Sulfate Radical and Its Application in Decontamination Technologies. Critical Reviews in Environmental Science and Technology, 45(16), 1756-1800.
  • Yu, X.Y., Bao, Z.C., Barker, J.R., 2009. Free radical reactions involving Cl•, Cl2-•, and SO4-• in the 248 nm photolysis of aqueous solutions containing S2O8 2- and Cl, The Journal of Physical Chemistry A 108, 295–308
  • Yu, J.G., Zhao, X.H., Yang, H., Chen, X.H., Yang, Q., Yu, L.Y., Jiang, J.H., Chen, X.Q., 2014. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Science of the Total Environment 482-483, 241-251.
  • Yirsaw, B. D., Megharaj, M., Chen, Z., & Naidu, R. (2016). Environmental application and ecological significance of nano-zero valent iron. Journal of Environmental Sciences, 44, 88-98.
  • Yang, Y., Jiang, J., Lu, X., Ma, J., Liu, Y., 2015. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process. Environmental Science & Technology 49 (12), 7330-7339.
  • Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W., Shan, L., 2009. A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave activated persulfate oxidation, Journal of Environmental Sciences 21, 1175–1180.
  • Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W., & Shan, L. (2009). A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. Journal of Environmental Sciences, 21(9), 1175-1180.
  • Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., & Niu, R. (2010). Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials, 179(1-3), 552-558.
  • Yang, Q., Zhong, Y., Zhong, H., Li, X., Du, W., Li, X., . . . Zeng, G. (2015). A novel pretreatment process of mature landfill leachate with ultrasonic activated persulfate: Optimization using integrated Taguchi method and response surface methodology. Process Safety and Environmental Protection, 98, 268-275.
  • Yan, Y., Thorpe, R., & Pandit, A. (1988). Cavitation noise and its suppression by air in orifice flow. Paper presented at the Symposium on Flow-Induced Noise, Chicago, Ill.
  • Yan, Y., & Thorpe, R. B. (1990). Flow regime transitions due to cavitation in the flow through an orifice. International Journal of Multiphase Flow, 16(6), 1023-1045.
  • Yan, N., Liu, F., Huang, W.Y., 2013. Interaction of oxidants in siderite catalyzed hydrogen peroxide and persulfate system using trichloroethylene as a target contaminant. Chemical Engineering Journal 219, 149-154.
  • Xiong, X.M., Sun, B., Zhang, J., Gao, N.Y., Shen, J.M., Li, J.L., Guan, X.H., 2014. Activating persulfate by Fe-O coupling with weak magnetic field: performance and mechanism. Water Research 62, 53-62.
  • Xiao, Y., Zhang, L., Zhang, W., Lim, K.-Y., Webster, R. D., & Lim, T.-T. (2016). Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes. Water Research, 102, 629-639.
  • Wei, Z., Villamena, F.A., Weavers, L.K., 2017. Kinetics and mechanism of ultrasonic activation of persulfate: An in situ EPR spin trapping study, Environmental Science and Technology 51, 3410–3417
  • Wei, Z., Villamena, F. A., & Weavers, L. K. (2017). Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study. Environmental Science & Technology, 51(6), 3410-3417.
  • Wei, X., Gao, N., Li, C., Deng, Y., Zhou, S., & Li, L. (2016). Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water. Chemical Engineering Journal, 285, 660-670. 2015.08.120
  • Weber, R. J., & Reisman, D. J. (2012). Rare earth elements: A review of production, processing, recycling, and associated environmental issues. US EPA Region.
  • Wardman, P. (1989). Reduction potentials of one‐electron couples involving free radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 18(4), 1637-1755.
  • Warade, A., Gaikwad, R., Sapkal, R., & Sapkal, V. (2016). Review on Wastewater Treatment by Hydrodynamic Cavitation. Journal of Environmental Science, Toxicology and Food Technology, 10(12), 5.
  • Wang, Y., Hong, C.S., 2000. TiO2 mediated photomineralization of 2-chlorobiphenyl: the role of O2, Water Research. 34, 2791–2797
  • Vichare, N. P., Gogate, P. R., & Pandit, A. B. (2000). Optimization of hydrodynamic cavitation using a model reaction. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 23(8), 683-690.
  • Venkatachalapathy, B., Ramamurthy, P., 1996. Reactions of nitrate radical with amino acids in acidic aqueous medium: a flash photolysis investigation, Journal of Photochemistry and PhotobiologyA 93, 1–5.
  • Vandenberg, L.N., Hauser, R., Marcus, M., Olea, N., Welshons, W.V., 2007. Human exposure to bisphenol A (BPA), Reproductive Toxicology 24, 139–177
  • Tullis, J. P., & Govindarajan, R. (1973). Cavitation and size scale effects for orifices. Journal of the Hydraulics Division, 99(3), 417-430.
  • Tsitonaki, A., Petri, B., Crimi, M., Mosbaek, H., Siegrist, R.L., Bjerg, P.L., 2010. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review, Critical Reviews in Environmental Science and Technology. 40, 55–91.
  • Tsitonaki, A., Petri, B., Crimi, M., Mosb k, H., Siegrist, R. L., & Bjerg, P. L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Critical Reviews in Environmental Science and Technology, 40(1), 55-91.
  • Tran, N. H., Reinhard, M., & Gin, K. Y.-H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182-207.
  • Tong, S., Shi, R., Zhang, H., Ma, C., 2010. Catalytic performance of Fe3O4-CoO/Al2O3 catalyst in ozonation of 2-(2,4-dichlorophenoxy)propionic acid, nitrobenzene and oxalic acid in water. Journal of Environmental Sciences 22, 1623-1628.
  • Thakur, D.B., Tiggelaar, R.M., Weber, Y., Gardeniers, J.G.E., Lefferts, L., Seshan, K., 2011. Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors. Part II: Catalytic reduction of bromate contaminants in aqueous phase. Applied Catalysis B: Environmental 102, 243-250.
  • Teodosiu, C., Gilca, A.-F., Barjoveanu, G., & Fiore, S. (2018). Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. Journal of Cleaner Production, 197, 1210-1221.
  • Tao, Y., Cai, J., Huai, X., Liu, B., Cuo, Z., 2016. Application of hydrodynamic cavitation to wastewater treatment. Chemical & Engineering Technology 39 (8), 1363-1376.
  • Taniguchi, H., & Madden, K. P. (1999). An in situ radiolysis time-resolved ESR study of the kinetics of spin trapping by 5, 5-dimethyl-1-pyrroline-N-oxide. Journal of the American Chemical Society, 121(50), 11875-11879.
  • Sun, H.Q., Kwan, C., Suvorova, A., Ang, H.M., Tade, M.O., Wang, S.B., 2014. Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Applied Catalysis B: Environmental 154, 134-141.
  • Sun, H., Kwan, C., Suvorova, A., Ang, H. M., Tad , M. O., & Wang, S. (2014). Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Applied Catalysis B: Environmental, 154, 134-141.
  • Sun, C., Zhou, R., Jianan, E., Sun, J., Su, Y., & Ren, H. (2016). Ascorbic acid-coated Fe3O4 nanoparticles as a novel heterogeneous catalyst of persulfate for improving the degradation of 2, 4-dichlorophenol. RSC Advances, 6(13), 10633-10640.
  • Sui, M., Sheng, L., Lu, K., Tian, F., 2010. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity. Applied Catalysis B: Environmental 96, 94-100.
  • Staples, C.A., Dorn, P.B., Klecka, G.M., O’Block, S.T., Harris, L.R., 1998. A Review of the Environmental Fate, Effects, and Exposures of Bisphenol A, Chemosphere. 36, 2149-2173.
  • Standard, A. (1984). Measurement of fluid flow in pipes using orifice, nozzle and venturi. In ASME MFC-3M (pp. 1-56): United Engineering Center 345 East 47th Street, New York.
  • Soubh, A., Mokhtarani, N., 2016. The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. RSC Advances 6, 76113-76122.
  • Soubh, A., & Mokhtarani, N. (2016). The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. RSC Advances, 6(80), 76113-76122.
  • Son, Y., Lim, M., Ashokkumar, M., Khim, J., 2011. Geometric optimization of sonoreactors for the enhancement of sonochemical activity. Journal of Physical Chemistry C 115, 4096-4103.
  • Snyder, S. A., Adham, S., Redding, A. M., Cannon, F. S., DeCarolis, J., Oppenheimer, J, & Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202(1), 156-181.
  • Sivakumar, M., & Pandit, A. B. (2002). Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrasonics sonochemistry, 9(3), 123-131.
  • Shirgaonkar, I., & Pandit, A. (1997). Degradation of aqueous solution of potassium iodide and sodium cyanide in the presence of carbon tetrachloride. Ultrasonics sonochemistry, 4(3), 245-253.
  • Shanghai Tianli Chemical Co. Ltd., Sodium Persulfate 99% min, https://www.alibaba.com/product-detail/Sodium-Persulfate-99 min_60313285957.html?spm=a2700.7724857.main07.81.41993352srEcNi, 2017 (accessed 3 December 2017).
  • Shahidi, D., Roy, R., Azzouz, A., 2015. Advances in catalytic oxidation of organic pollutants prospects for thorough mineralization by natural clay catalysts. Applied Catalysis B: Environmental 174, 277-292.
  • Shah, Y.T., Pandit, A.B., Moholkar, V.S., 1999. Cavitation Reaction Engineering. Kluwer Academic/Plenum Publishers, New York.
  • Senthil Kumar, P., Siva Kumar, M., & Pandit, A. B. (2000). Experimental quantification of chemical effects of hydrodynamic cavitation. Chemical Engineering Science, 55(9), 1633-1639.
  • Sehested, K., Getoff, N., Schworer, F., Markovic, V., Nielsen, O., 1971. Pulse radiolysis of oxalic acid and oxalates. Journal of Physical Chemistry 75, 749-755.
  • Salian, S., Doshi, T., Vanage, G., 2009. Perinatal exposure of rats to bisphenol A affects the fertility of male offspring, Life Sciences 85, 742–752.
  • Sahiner, N., Ozay, H., Ozay, O., Aktas, N., 2010. New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General 385, 201-207.
  • Saharan, V. K., Badve, M. P., & Pandit, A. B. (2011). Degradation of Reactive Red 120 dye using hydrodynamic cavitation. Chemical Engineering Journal, 178, 100-107.
  • Rykowska, I., Wasiak, W., 2006. Properties, threats, and methods of analysis of bisphenol A and its derivatives, Acta Chromatographica 16, 7–27
  • Rush, J. D., & Bielski, B. H. (1985). Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2-with iron (II)/iron (III) ions. The reactivity of HO2/O2-with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. The Journal of Physical Chemistry, 89(23), 5062-5066.
  • Rodriguez, S., Santos, A., Romero, A., & Vicente, F. (2012). Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate. Chemical Engineering Journal, 213, 225-234.
  • Rodriguez, S., Santos, A., & Romero, A. (2017). Oxidation of priority and emerging pollutants with persulfate activated by iron: Effect of iron valence and particle size. Chemical Engineering Journal, 318, 197-205.
  • Rastogi, A., Al-Abed, S. R., & Dionysiou, D. D. (2009). Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental, 85(3), 171-179.
  • Rao, Y., Qu, L., Yang, H., & Chu, W. (2014). Degradation of carbamazepine by Fe (II)-activated persulfate process. Journal of Hazardous Materials, 268, 23-32.
  • Rakovsky, S., Anachkov, M., Belitskii, M., Zaikov, G., 2016. Kinetics and mechanism of the ozone reaction with alcohols, ketones, ethers and hydroxybenzenes. Chemistry & Chemical Technology 10 (4), 531-551.
  • Rajoriya, S., Carpenter, J., Saharan, V.K., Pandit, A., 2016. Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio refractory pollutants. Reviews in Chemical Engineering 32 (4), 379-411.
  • Qian, Y., Guo, X., Zhang, Y., Peng, Y., Sun, P., Huang, C.-H., . . . Crittenden, J. C. (2015). Perfluorooctanoic acid degradation using UV–persulfate process: modeling of the degradation and chlorate formation. Environmental Science & Technology, 50(2), 772-781.
  • Pulicharla, R., Drouinaud, R., Brar, S. K., Drogui, P., Proulx, F., Verma, M., & Surampalli, R. Y. (2018). Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. Chemosphere, 207, 543-551.
  • Pradhan, A.A., Gogate, P.R., 2010. Removal of p-nitrophenol using hydrodynamic cavitation and Fenton chemistry at pilot scale operation, Chemicla Engineering Journal 156, 77–82.
  • Poyatos, J.M., Mu io, M.M., Almecija, M.C., Torres, J.C., Hontoria, E., Osorio, F., 2010. Advanced oxidation processes for wastewater treatment: State of the art. Water, Air, and Soil Pollution 205, 187-204.
  • Perry III, A., Babanova, S., Matanovic, I., Neumman, A., Serov, A., Artyushkova, K., Atanasso, P., 2016. Evaluation of Pt alloys as electrocatalysts for oxalic acid oxidation: A combined experimental and computational study. Journal of the Electrochemical Society 163, H787-H795.
  • Peller, J., Wiest, O., Kamat, P., 2001. Sonolysis of 2,4-dichlorophenoxyacetic acid in aqueous solutions. Evidence for •OH-radical-mediated degradation. Journal of Physical Chemistry A 105, 3176-3181.
  • Paul, J., Naik, D.B., Bhardwaj, Y.K., Varshney, L., 2014. Studies on oxidative radiolysis of ibuprofen in presence of potassium persulfate. Radiation Physics and Chemistry 100, 38-44.
  • Patil, P.N., Gogate, P.R., 2012. Degradation of methyl parathion using hydrodynamic cavitation: effect ofoperating parameters and intensification using additives, Seperation and Purification Technology 95, 172–179
  • Olmez-Hanci, T., Arslan-Alaton, I., Bora Genc, B., 2013. Bisphenol A treatment by the hot persulfate process: Oxidation products and acute toxicity, Journal of Hazardous Materials 263, 283–290.
  • Olmez-Hanci, T., Arslan-Alaton, I., & Genc, B. (2013). Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity. Journal of Hazardous Materials, 263, 283-290.
  • Oh, W.-D., Dong, Z., Ronn, G., & Lim, T.-T. (2017). Surface–active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: Performance, mechanism and quantification of sulfate radical. Journal of Hazardous Materials, 325, 71-81.
  • Oh, W.-D., Dong, Z., & Lim, T.-T. (2017). Hierarchically-structured Co–CuBi2O4 and Cu–CuBi2O4 for sulfanilamide removal via peroxymonosulfate activation. Catalysis Today, 280, 2-7.
  • Oh, S.-Y., Kim, H.-W., Park, J.-M., Park, H.-S., & Yoon, C. (2009). Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. Journal of Hazardous Materials, 168(1), 346-351.
  • Oh, S.-Y., Kang, S.-G., & Chiu, P. C. (2010). Degradation of 2, 4-dinitrotoluene by persulfate activated with zero-valent iron. Science of the Total Environment, 408(16), 3464-3468.
  • Nfodzo, P., & Choi, H. (2011). Sulfate radicals destroy pharmaceuticals and personal care products. Environmental Engineering Science, 28(8), 605-609.
  • Neta, P., Madhavan, V., Zemel, H., & Fessenden, R. W. (1977). Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. Journal of the American Chemical Society, 99(1), 163-164.
  • Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions for inorganic radicals in aqueous solution, Journal of Physical and Chemical Reference Data 17, 1027-1247
  • Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution, 234, 190-213.
  • Naffrechoux, E., Chanoux, S., Petrier, C., Suptil, J., 2000. Sonochemical and photochemical oxidation of organic matter. Ultrasonics Sonochemistry 7, 255-259.
  • Moussavi, G., Mahmoudi, M., 2009. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chemical Engineering Journal 152, 1-7.
  • Monteagudo, J. M., Dur n, A., Gonz lez, R., & Exp sito, A. J. (2015). In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Applied Catalysis B: Environmental, 176-177, 120-129.
  • Molkenthin, M., Tugba, T., Olmez-Hanci, Jekel, M.R., Arslan-Alaton, I., 2013. Photo-Fenton-like treatment of BPA: Effect of UV light source and water matrix on toxicity and transformation products, Water Research. 47, 5052–5064
  • Minisci, F., Citterio, A., Giordano, C., 1983. Electron-transfer processes: Peroxydisulfate, a useful and versatile reagent in organic chemistry. Accounts of Chemical Research 16, 27-32.
  • Minisci, F., Citterio, A., Giordano, C., 1983. Electron-transfer processes: Peroxydisulfate, a useful and versatile reagent in organic chemistry, Acc. Chem. Res. 16, 27–32.
  • Matzek, L. W., & Carter, K. E. (2016). Activated persulfate for organic chemical degradation: A review. Chemosphere, 151, 178-188.
  • Mano, T., Nishimoto, S., Kameshima, Y., Miyake, M., 2015. Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation. Chemical Engineering Journal 264, 221-229.
  • Long, A., Lei, Y., & Zhang, H. (2014). Degradation of toluene by a selective ferrous ion activated persulfate oxidation process. Industrial & Engineering Chemistry Research, 53(3), 1033-1039.
  • Liu, H., Bruton, T. A., Doyle, F. M., & Sedlak, D. L. (2014). In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe (III)-and Mn (IV)-containing oxides and aquifer materials. Environmental Science & Technology, 48(17), 10330-10336.
  • Litter, M., 2005. Introduction to photochemical advanced oxidation processes for water treatment. In: Boule, P., Bahnemann, D.W., Robertson, P.K.J. (Eds.), Environmental Photochemistry Part II. Springer, Berlin, pp. 325-366.
  • Lin, Y.T., Liang, C., Chen, J.H., 2011. Feasibility study of ultraviolet activated persulfate oxidation of phenol, Chemosphere. 82, 1168–1172.
  • Lin, C.-C., & Chen, Y.-H. (2018). Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions. Separation and Purification Technology, 194, 388-395.
  • Liao, G., Zhu, D., Li, C., Lan, B., Li, L., 2016. Degradation of oxalic acid and bisphenol A by photocatlytic ozonation with g-C3N4 nanosheet under simulated solar irradiation. Ozone: Science & Engineering 38 (4), 312-317.
  • Liang, C., Huang, C.-F., & Chen, Y.-J. (2008). Potential for activated persulfate degradation of BTEX contamination. Water Research, 42(15), 4091-4100.
  • Liang, C., Bruell, C.J., 2008. Thermally activated persulfate oxidation of trichloroethylene: Experimental investigation of reaction orders. Industrial & Engineering Chemistry Research 47, 2912-2918.
  • Liang, C., & Guo, Y.-y. (2010). Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environmental Science & Technology, 44(21), 8203-8208.
  • Li, R., Jin, X., Megharaj, M., Naidu, R., & Chen, Z. (2015). Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264, 587-594.
  • Lee, Y.C., Lo, S.L., Kuo, J., Huang, C.P., 2013. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. Journal of Hazard Materials 261, 463-469.
  • Lee, Y.-C., Lo, S.-L., Kuo, J., & Huang, C.-P. (2013). Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. Journal of Hazardous Materials, 261, 463-469.
  • Laat, J., Gallard, H., Ancelin, S., & Legube, B. (1999). Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe (III)/UV, Fe (III)/H2O2/UV and Fe (II) or Fe (III)/H2O2. Chemosphere, 39(15), 2693-2706.
  • Kolthoff, I., & Miller, I. (1951). The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. Journal of the American Chemical Society, 73(7), 3055-3059.
  • Klaning, U. K., Sehested, K., & Appelman, E. H. (1991). Laser flash photolysis and pulse radiolysis of aqueous solutions of the fluoroxysulfate ion, SO4F. Inorganic Chemistry, 30(18), 3582-3584.
  • Kang, Y.-G., Yoon, H., Lee, W., Kim, E.-j., & Chang, Y.-S. (2018). Comparative study of peroxide oxidants activated by nZVI: Removal of 1,4-Dioxane and arsenic(III) in contaminated waters. Chemical Engineering Journal, 334, 2511-2519.
  • Kanakaraju, D., Glass, B. D., & Oelgem ller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189-207.
  • Kalkandelen, C., Ozbek, B., Ergul, N.M., Akyol, S., Moukbil, Y., Oktar, F.N., Ekren, N., Kilic, O., Kilic, B. Gunduz, O., 2017. Effect of temperature, viscosity and surface tension on gelatin structures produced by modified 3D printer. Materials Science and Engineering 293, 1-5.
  • Joshi, R.K., Gogate, P.R., 2012. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies, Ultrasonics Sonochemistry 19, 532–539.
  • Johnson, R. L., Tratnyek, P. G., & Johnson, R. O. B. (2008). Persulfate persistence under thermal activation conditions. Environmental Science & Technology, 42(24), 9350-9356.
  • Jiang, P.-Y., Katsumura, Y., Nagaishi, R., Domae, M., Ishikawa, K., Ishigure, K., & Yoshida, Y. (1992). Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals. Journal of the Chemical Society, Faraday Transactions, 88(12), 1653-1658.
  • Ji, Y., Ferronato, C., Salvador, A., Yang, X., & Chovelon, J.-M. (2014). Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Science of the Total Environment, 472, 800-808.
  • Ji, Y., Dong, C., Kong, D., Lu, J., & Zhou, Q. (2015). Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chemical Engineering Journal, 263, 45-54.
  • Jeirani, Z., Soltan, J., 2016. Ozonation of oxalic acid with an effective catalyst based on mesoporous MCM-41 supported manganese and cerium oxides. Journal ofWater Process Engineering 12, 127-134.
  • Jayson, G. G., Parsons, B. J., & Swallow, A. J. (1973). Oxidation of ferrous ions by perhydroxyl radicals. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69, 236-242.
  • Iliev, V., Tomov, D., Rakovsky, S., Eliyas, A., Puma, G.L., 2010. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatlysts under UV and visible irradiation. Journal of Molecular Catalysis A: Chemical 327, 51-57.
  • Ike, I. A., Linden, K. G., Orbell, J. D., & Duke, M. (2018). Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal, 338, 651-669.
  • Hussain, I., Zhang, Y., Huang, S., & Du, X. (2012). Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chemical Engineering Journal, 203, 269-276.
  • Hussain, I., Zhang, Y., & Huang, S. (2014). Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. RSC Advances, 4(7), 3502-3511.
  • Hussain, I., Li, M., Zhang, Y., Huang, S., Hayat, W., Li, Y., . . . Liu, G. (2017). Efficient oxidation of arsenic in aqueous solution using zero valent iron- activated persulfate process. Journal of Environmental Chemical Engineering, 5(4), 3983- 3990.
  • Hussain, H., Green, I. R., & Ahmed, I. (2013). Journey describing applications of oxone in synthetic chemistry. Chemical reviews, 113(5), 3329-3371.
  • Hurst, C. (2010). China's rare earth elements industry: what can the West learn? Retrieved from
  • Herrmann, J. M., Guillard, C., & Pichat, P. (1993). Heterogeneous photocatalysis : an emerging technology for water treatment. Catalysis Today, 17(1), 7-20.
  • Herrmann, H. (2007). On the photolysis of simple anions and neutral molecules as sources of O−/OH, SOx− and Cl in aqueous solution. Physical Chemistry Chemical Physics, 9(30), 3935-3964.
  • Harrison, S., & Pandit, A. (1992). The disruption of microbial cells by hydrodynamic cavitation. Paper presented at the 9th Int Biotechnology Symp.
  • Hao, F.F., Guo, L.L., Wang, A.Q., Leng, Y.Q., Li, H.L., 2014. Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant. Ultrasonics Sonochemistry 21, 554-558.
  • Gutierrez, M., Henglein, A., & Dohrmann, J. K. (1987). Hydrogen atom reactions in the sonolysis of aqueous solutions. Journal of Physical Chemistry, 91(27), 6687-6690.
  • Gogate, P.R., Wilhelm, A.M., Pandit, A.B., 2003. Some aspects of the design of sonochemical reactors. Ultrasonics Sonochemistry 10, 325-330.
  • Gogate, P.R., Sutkar, V.S., Pandit, A.B., 2011. Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems, Chemical Engineering Journal 166, 1066-1082.
  • Gogate, P. R., & Pandit, A. B. (2005). A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrasonics sonochemistry, 12(1-2), 21-27.
  • Gogate, P. R., & Pandit, A. B. (2001). Hydrodynamic cavitation reactors: a state of the art review. Reviews in chemical engineering, 17(1), 1-85.
  • Gogate, P. R., & Pandit, A. B. (2000). Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE journal, 46(8), 1641-1649.
  • Gogate, P. R. (2002). Cavitation: an auxiliary technique in wastewater treatment schemes. Advances in Environmental Research, 6(3), 335-358.
  • Goel, M., Hongqiang, H., Mujumdar, A.S., Ray, M.B., 2004. Sonochemical decomposition of volatile and non-volatile organic compounds—A comparative study. Water Research 38, 4247-4261.
  • Ghauch, A., Tuqan, A.M., 2012. Oxidation of bisoprolol in heated persulfate/H2O systems: kinetics and products, Chemical Engineering Journal 183, 162–171.
  • Ghauch, A., Ayoub, G., & Naim, S. (2013). Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chemical Engineering Journal, 228, 1168-1181.
  • Gao, Y.-q., Gao, N.-y., Deng, Y., Yang, Y.-q., & Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 195, 248-253.
  • Gancarz, T., Moser, Z., Gasior, W., Pstrus, J., Henein, H., 2011. A comparison of surface tension, viscosity, and density of Sn and Sn-Ag alloys using different measurement techniques. International Journal of Thermophysics 32, 12010-1233.
  • Fukahori, S., Ichiura, H., Kitaoka, T., Tanaka, H., 2003. Cpturing of bispheonol A photodecomposition intermediates by composite TiO2-zeolite sheets, Applied Catalysis B: Environmental 46, 453-462
  • Frontistis, Z., Mestres, E.M., Konstantinou, I., Mantzavinos, D., 2016. Removal of cibacron black commercial dye with heat- or iron-activated persulfate: statistical evaluation of key operating parameters on decolorization and degradation by-products, Desalination and Water Treatment 57, 2616–2625.
  • Frontistis, Z., Hapeshi, E., Fatta-Kassinos, D., & Mantzavinos, D. (2015). Ultraviolet-activated persulfate oxidation of methyl orange: a comparison between artificial neural networks and factorial design for process modelling. Photochemical & Photobiological Sciences, 14(3), 528-535.
  • Franc, J.P., Michel, J.M., 2005. Fundamentals of Cavitation, Fluid Mechanics and its Applications, Vol. 76. Springer Science + Business Media, Dordrecht.
  • Finkelstein, E., Rosen, G. M., & Rauckman, E. J. (1980). Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. Journal of the American Chemical Society, 102(15), 4994-4999.
  • Exner, M., Herrmann, H., Zellner, R., 1992. Laser-based studies of reactions of the nitrateradical in aqueous solution, Berichte der Bunsengesellschaft f r physikalische Chemie 96, 470–477.
  • Eberson, L. (1982). Electron-transfer reactions in organic chemistry. In Advances in physical organic chemistry (Vol. 18, pp. 79-185): Elsevier.
  • Du, F., Li, J., Li, X., Zhang, Z., 2011. Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid. Ultrasonics Sonochemistry, 18, 389-393.
  • Drzewicz, P., Perez-Estrada, L., Alpatova, A., Martin, J. W., & Gamal El-Din, M. (2012). Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water. Environmental Science & Technology, 46(16), 8984-8991.
  • Draganic, Z., Draganic, I., Kosanic, M., 1966. Radiolysis of oxalate alkaline solutions in the presence of oxygen. Journal of Physical Chemistry 70, 1418-1425.
  • Draganic, Z., Draganic, I., Dosanic, M., 1964. Radiation chemistry of oxalate solutions in the presence of oxygen over a wide range of acidities. Journal of Physical Chemistry 68, 2085-2092.
  • Department of Chemistry, Florida State University, 1999. Activation Energy. https://www.chem.fsu.edu/chemlab/chm1046course/activation.html. Last Accessed 13 January 2017.
  • Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., Zhou, S., 2014. Zero-valent iron / persulate (Fe0/PS) oxidation acetaminophen in water, International Journal of Environmental Science and Technology 11, 881–890.
  • Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., & Zhou, S. (2014). Zero-valent iron/persulfate (Fe0/PS) oxidation acetaminophen in water. International Journal of Environmental Science and Technology, 11(4), 881-890.
  • Deblonde, T., Cossu-Leguille, C., & Hartemann, P. (2011). Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health, 214(6), 442-448.
  • Darsinou, B., Frontistis, Z., Antonopoulou, M., Konstantinou, I., & Mantzavinos, D. (2015). Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature. Chemical Engineering Journal, 280, 623-633.
  • Cui, M., Jang, M., Lee, S., Khim, J., 2012. Sonochemical oxidation of cyanide using potassium peroxydisulfate as an oxidizing agent. Japanese Journal of Applied Physics 51, 07GD13.
  • Cui, M., Jang, M., Lee, S., & Khim, J. (2012). Sonochemical oxidation of cyanide using potassium peroxydisulfate as an oxidizing agent. Japanese Journal of Applied Physics, 51(7S), 07GD13.
  • Cui, M., Jang, M., Kang, K., Kim, D., Snyder, S. A., & Khim, J. (2016). A novel sequential process for remediating rare-earth wastewater. Chemosphere, 144, 2081-2090.
  • Cui, M., Jang, M., Cho, S., Khim, J., 2011. Enhancement in mineralization of a number of natural refractory organic compounds by the combined process of sonolysis and ozonolysis (US/O3). Ultrasonics Sonochemistry 18, 773-780.
  • Cui, M., Choi, J., Lee, Y., Ma, J., Kim, D., Choi, J., Jang, M., Khim, J., Significant enhancement of bromate removal in drinking water: Implications for the mechanism of sonocatalytic reduction, Chemical Engineering Journal 317, 404–412
  • Criquet, J., Leitner, N.K.V., 2015. Reaction pathway of the degradation of the phydroxybenzoic acid by sulfate radical generated by ionizing radiations. Radiation Physics and Chemistry 106, 307-314.
  • Choi, J., Cui, M., Lee, Y., Kim, J., Son, Y., Khim, J., 2018. Hydrodynamic cavitation and activated persulfate oxidation for degradation of bisphenol A: Kinetics and mechanism. Chemical Engineering Journal 338, 323-332.
  • Chitose, N., Katsumura, Y., Domae, M., Zuo, Z., & Murakami, T. (1999). Radiolysis of aqueous solutions with pulsed helium ion beams—2. Yield of SO4− formed by scavenging hydrated electron as a function of S2O82− concentration. Radiation Physics and Chemistry, 54(4), 385-391.
  • Chen, X., Oh, W.-D., & Lim, T.-T. (2018). Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms. Chemical Engineering Journal, 354, 941-976.
  • Chen, S., Xiong, P., Zhan, W., & Xiong, L. (2018). Degradation of ethylthionocarbamate by pyrite-activated persulfate. Minerals Engineering, 122, 38-43.
  • Chawla, O. P., Fewenden, R.W., 1975. Electron spin resonance and pulse radiolysis studies of some reactions of SO4-l,2, The Journal of Physical Chemistry 79, 2693–2700.
  • Chakinala, A.G., Gogate, P.R., Burgess, A.E., Bremner, D.H., 2008. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process, Ultrasonics Sonochemistry 15, 49–54.
  • Calafat, A .M., Kuklenyik, Z., Reidy, J.A., Caudill, S.P., Ekong, J., Needham, L.L., 2005. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population, Environmental Health Perspectives 113, 391–395.
  • Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O- in aqueous solution. Journal of Physical and Chemical Reference Data 17 (2), 513-886.
  • Bustos, Y.A., Vaca, M., Lopez, R., Torres, L.G., 2010. Disinfection of a wastewater flow treated by advanced primary treatment using O3, UV and O3/UV combinations. Journal of Environmental Science and Health, Part A 45, 1715-1719.
  • Buettner, G. R. (1993). "The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate." Archives of biochemistry and biophysics 300(2): 535-543.
  • Bremner, D.H., Carlo, S.D., Chakinala, A.G., Cravotto, G., 2008. Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process, Ultrasonics Sonochemistry 15, 416–419.
  • Brauner, N., Shacham, M., 1997. Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants. Chemical Engineering and Processing 36, 243-249.
  • Brandt, C., & Van Eldik, R. (1995). Transition metal-catalyzed oxidation of sulfur (IV) oxides. Atmospheric-relevant processes and mechanisms. Chemical reviews, 95(1), 119-190.
  • Brainer, J.E.N., Sales, D.C.S., Medeiros, E.B.M., Lima Filho, N.M., Abreu, C.A.M., 2014. Wet oxidation of glycerol into fine organic acids: Catalyst selection and kinetic evaluation. Brazilian Journal of Chemical Engineering 31, 913-923.
  • Bolton, J.R., Bircger, K.G., Tumas, W., Tolman, C.A., 2001. Figure-of merit for the technical development and application of advanced oxidation technologies for both electric and solar-derived systems. Pure and Applied Chemistry 73, 627-637.
  • Bolton, J.R., Bircger, K.G., Tumas, W., Tolman, C.A., 2001. Figure-of merit for the technical development and application of advanced oxidation technologies for both electric and solar-derived systems, Pure Appl. Chem. 73, 627–637.
  • Boczkaj, G., Fernandes, A., 2017. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal 320, 608-633.
  • Betsche, T., Fretzdorff, B., 2005. Biodegradation of oxalic acid from spinach using cereal radicles. Journal of Agricultural and Food Chemistry 53, 9751-9758.
  • Beltran, F. J., Rivas, F. J., Montero-de-Espinosa, R., 2003. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts. 2. Heterogeneous catalytic ozonation, Industrial and Engineering Chemistry Research 42, 3218–3224
  • Baylar, A., Aydin, M. C., Unsal, M., & Ozkan, F. (2009). Numerical modeling of venturi flows for determining air injection rates using FLUENT V6. 2. Mathematical and Computational Applications, 14(2), 97-108.
  • Basheer, A. A. (2018). New generation nano-adsorbents for the removal of emerging contaminants in water. Journal of Molecular Liquids, 261, 583-593.
  • Ayoub, G., & Ghauch, A. (2014). Assessment of bimetallic and trimetallic iron-based systems for persulfate activation: application to sulfamethoxazole degradation. Chemical Engineering Journal, 256, 280-292.
  • Antonopoulou, M., Giannakas, A., Deligiannakis, Y., Konstantinou, I., 2013. Kinetic and mechanistic investigation of photocatalytic degradation of the N,N-diethyl-m-toluamide. Chemical Engineering Journal 231, 314-325.
  • Antoniou, M.G., dela Cruz, A.A., Dionysiou, D.D., 2010. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e- transfer mechanisms. Applied Catalysis B: Environmental 96, 290-298.
  • Anipsitakis, G. P., & Dionysiou, D. D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38(13), 3705-3712.
  • Amr, S. S. A., Aziz, H. A., & Adlan, M. N. (2013). Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste management, 33(6), 1434-1441.
  • Alaton, I.A., Balcioglu, I.A., Bahnemann, D.W., 2002. Advanced oxidation of a reactive dyebath effluent: Comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research 36, 1143-1154.
  • Al-Shamsi, M. A., & Thomson, N. R. (2013). Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Industrial & Engineering Chemistry Research, 52(38), 13564-13571.
  • Aksu, Z., 2002. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel ions onto Chlorella vulgaris. Process Biochemistry 38, 89-99.
  • Akiho, H., Ito, S., Matsuda, H., & Yoshioka, T. (2013). Elucidation of the Mechanism of Reaction between S2O82–, Selenite and Mn2+ in Aqueous Solution and Limestone-Gypsum FGD Liquor. Environmental Science & Technology, 47(19), 11311-11317.
  • Ahmed, M. M., & Chiron, S. (2014). Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater. Water Research, 48, 229-236.
  • Abu, A.S., Abdul, A.H., Nordin, A.M., 2013. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process, Waste Management 33, 1434-1441.
  • Abu Amr, S.S., Aziz, H.A., Adlan, M.N., Bashir, M.J.K., 2013. Pretreatment of stabilized leachate using ozone/persulfate oxidation process. Chemical Engineering Journal 221, 492-499.