White,P., Breckenridge, R. S.(2014). Trade‐Offs, Limitations, and Promisesof Big Datain Social Science Research. Reviewof Policy Research, 31(4), 331-338.
Wasserman, S., Faust, K. (1994). Social Network Analysis : Methods and Applications . Cambridge university press.
Tsytsarau, M. and Palpanas, T. Survey on mining subjective data on the web. Da ta Mining and Knowledge Discovery,2012.
Tsai, F. S. (2011). A tag-topic model for blog mining. Expert Systems with Appli cations, 38(5), 5330-5335.
Steyvers, M., Griffiths, T. (2007). Probabilistic topic models. Handbook of latent se mantic analysis, 427(7), 424-440.
Singhal, Amit (2001). "Modern Information Retrieval: A Brief Overview". Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 24 (4), 35–43.
Sievert, C., Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, vis ualization, and interfaces (pp. 63-70).
Sarner, A., Sussin, J. (2012). Predicts 2013: Social CRM. Gartner Research.
Riff, D., Lacy, S., Fico, F. (2014). Analyzing media messages: Using quantitative c ontent analysis in research. Routledge.
Rehurek, R., Sojka, P. (2010). Software framework for topic modelling with large corpora. In In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks.
Models: \# twitter Trends Detection Topic Model Online. In COLING 1519-1534. Pan, Bing, Tanya MacLaurin, and John C. Crotts. (2007). "Travel blogs and t he implications for destination marketing." Journal of Travel Research, Vol. 46, no. 1, , pp: 35-45.
Medhat, W., Hassan, A., Korashy, H. (2014). Sentiment analysis algorithms and a pplications: A survey. Ain Shams Engineering Journal, 5 (4), 1093–1113.
McCallum, A. K. (2002). MALLET: Machine Learning for Language Toolkit. (UR L: http://mallet.cs.umass.edu).
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
Maynard, D., Funk, A. (2012). Automatic detection of political opinions in tweets. In The semantic web: ESWC 2011 workshops, 88-99.
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
Liu, L., Tang, L., Dong, W., Yao, S., Zhou, W. (2016). Anoverview of topic modeli ng and its current plications in bioinformatics. SpringerPlus, 5(1), 1608.
Liu, B. 2012. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167.
Lau, J. H., Collier, N., Baldwin, T. (2012). On-line trend analysis with topic model s:\# twitter trends detection topic model online. Proceedings of COLING 201 2, 1519-1534.
Laney, D. (2001). 3D data management: Controlling data volume, velocity and vari ety. META Group Research Note, 6 February.
Kozinets, R. V. (2010). Netnography - Doing Ethnography Research Online. Sage Publications.
Kambatla, K., Kollias, G., Kumar, V., Grama, A. (2014). Trends in Big Data analy tics.Journal of Parallel and Distributed Computing, 74(7), 2561-2573.
Jeong, D. H., Song, M. (2014). Time gap analysis by the topic model-based tempo raltechnique. Journal of informetrics, 8(3), 776-790.
Hofmann, T. (1999). Probabilistic latent semantic indexing, In Proceedings of the 2 2nd annual international ACM SIGIR conference on Research and developme nt in information retrieval, 50-57.
Hadley, W. (2016). httr: Tools for Working with URLs and HTTP. R package ver sion 1.1.0. https://CRAN.R-project.org/package=httr.
Gwinner, Kevin p., Dwayge D., Grember, Mary Jo Bitner (1998), “Relational Benef it in Scrvice Industries: The Customer's Perspective”, Journal of the Acade my of Marketing Science, 26(2), 101-114.
Griffiths, T. L., Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235.
Gartner, Inc. (2012).; Market Share: Mobile Communication Devices by Region and Country, 3Q11. Dispon vel em: http://www.gartner.com/it/page.jsp?id=1848514 Acessoem:31deMar ode2012.
Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., Harshman, R. A.(1990). Indexing by latent semantic analysis. JAsIs, 41(6), 391-407.
Daniel, B. (2015). Big data and analytics in higher education: opportunities and ch allenges. British Journal of Educational Technology, 46(5), 904-920.
Cuzzocrea, A. (2014, November). Privacy and security of Big Data: current challen ges and future research perspectives. In Proceedings of the First Internation al Workshopon Privacy and Secuirty of Big Data, 45-47. ACM.
Choi, Yonggil, Choi, Dongchoon, and Lee, Sungsu 2007. "The Effect of Compo nents of Interactivity on Satisfaction, Trust, Commitment and Loyalty in Online Community." Journal of the Korean Society for Quality Managem ent 35(4):123-139.
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., Lee, J. J. (2 015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4(1), 7.
Camiciottoli, B. C., Guercini, S., Ranfagni, S. (2012). The integration of netnog raphy and text mining for the representation of brand image in fashion blogs. In 11th International Congress “Marketing Trends”, Venice, January 20th-22nd.
Blei, D. M., Ng, A. Y., Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
Blei, D. M. 2012. Probabilistic topic models. Communications of the ACM, 55(4), 77-84.
Bettityna, G., Kurt, H. (2015). Package ‘topicmodels’ (Topic Models). Retrieved De cember 1, 2015, from https://cran.r-project.org/web/packages/topicmodels/topicmodels.pdf.
Bertino, E. (2013). Big data – opportunities and challenges. In Proceedings of the 2013 IEEE 37th Annual Computer Software and Applications Conference, 479-480.
Berry, M., Dumais, S. T., O’Brien, G. W. (1995). Using linear algebra for intellige nt information retrieval. SIAM Review, 37, 573–595. http://dx.doi.org/10.1137/1037127
Askool, S. S., Nakata, K. (2010). Scoping study to identify factors influencing the acceptance of social CRM. In Management of Innovation and Technology (I CMIT), 2010 IEEE International Conference on (pp. 1055-1060). IEEE.
Adri n-Mart nez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., Anton, G. (2016). Letter of intent for KM3NeT 2.0. Journal of Physic s G: Nuclear and Particle Physics, 43(8), 084001.