박사

Reduction of Leakage Currents in High-k Dielectrics by Controlling Oxygen Vacancy = 산소 결함 조절을 통한 고유전율 박막의 누설 전류 개선 연구

Bo-Eun Park 2019년
논문상세정보
' Reduction of Leakage Currents in High-k Dielectrics by Controlling Oxygen Vacancy = 산소 결함 조절을 통한 고유전율 박막의 누설 전류 개선 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • Atomic layer deposition
  • Doping
  • Leakage current
  • Precursor
  • dielectric constant
  • dram
  • hfo2
  • high-k
  • oxygen vacancy
  • zro2
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
5,037 0

0.0%

' Reduction of Leakage Currents in High-k Dielectrics by Controlling Oxygen Vacancy = 산소 결함 조절을 통한 고유전율 박막의 누설 전류 개선 연구' 의 참고문헌

  • Zhu, J. et al. Dielectric properties of YSZ high-k thin films fabricated at low temperature by pulsed laser deposition. Mater. Lett. 57, 4297–4301 (2003).
  • Zhao, X. et al. Phonons and lattice dielectric properties of zirconia. Phys. Rev. B 65, 75105 (2002).
  • Zhao, X. et al. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65, 075105 (2002).
  • Zhao, C. et al. Crystallisation and Tetragonal-Monoclinic Transformation in ZrO2 and HfO2 Dielectric Thin Films. 213, 1285–1288 (2002).
  • Zhang, H. Z. H. et al. Effects of Ionic Doping on the Behaviors of Oxygen Vacancies in HfO2 and ZrO2: A First Principles Study. in 2009 International Conference on Simulation of Semiconductor Processes and Devices 0–3 (2009).
  • Zazpe, R. et al. Resistive switching dependence on atomic layer deposition parameters in HfO2-based memory devices. J. Mater. Chem. C 2, 3204–3211 (2014).
  • Yu, S. M. et al. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model. Appl. Phys. Lett. 99, 63507 (2011).
  • Yim, K. et al. Novel high-Κ dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater. 7, e190-6 (2015).
  • Yeh, T. et al. Leakage current behaviors of Al/ZrO2/Al and Al/YSZ/Al devices. Jpn. J. Appl. Phys. 54, 01AD01 (2015).
  • Yamasaki, S. et al. Gap-State Profiles of a-Si : H Deduced from Below-Gap Optical Absorption. Jpn. J. Appl. Phys. 21, L539–L541 (1982).
  • Wu, M. et al. High-κ dielectrics and advanced channel concepts for Si MOSFET. J. Mater. Sci. Mater. Electron. 19, 915–951 (2008).
  • Winokur, P. S. et al. Correlating the Radiation Response of MOS Capacitors and Transistors. IEEE Trans. Nucl. Sci. 31, 1453–1460 (1984).
  • Watanabe, H. et al. Role of nitrogen incorporation into Hf-based high-& gate dielectrics for termination of local current leakage paths. Japanese J. Appl. Physics, Part 2 Lett. 44, 1333–1336 (2005).
  • Wang, S. J. et al. Electrical properties of crystalline YSZ films on silicon as alternative gate dielectrics. Semicond. Sci. Technol. 16, L13–L16 (2001).
  • Ushakov, S. V et al. Effect of La and Y on crystallization temperatures of hafnia and zirconia. J. Mater. Res. 95616, 693–696 (2004).
  • Umezawa, N. et al. First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high- k dielectrics. Appl. Phys. Lett. 86, 143507 (2005).
  • Triyoso, D. et al. Impact of Deposition and Annealing Temperature on Material and Electrical Characteristics of ALD HfO2. J. Electrochem. Soc. 151, F220–F227 (2004).
  • Toriumi, A. et al. DOPED HfO2 FOR HIGHER-k DIELECTRICS. ECS Trans. 1, 185–197 (2006).
  • Tirmali, P. M. et al. Structural and electrical characteristics of RF-sputtered HfO2high-k based MOS capacitors. Solid. State. Electron. 62, 44–47 (2011).
  • Tien, T. C. et al. Analysis of weakly bonded oxygen in HfO2/SiO2/Si stacks by using HRBS and ARXPS. J. Mater. Sci. Mater. Electron. 21, 475–480 (2010).
  • Tappertzhofen, S. et al. Impact of the Counter-Electrode Material on Redox Processes in Resistive Switching Memories. ChemElectroChem 1, 1287–1292 (2014).
  • Takeuchi, H. et al. Observation of bulk HfO2 defects by spectroscopic ellipsometry. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 22, 1337–1341 (2004).
  • Sung, Y. M. et al. Crystallization characteristics of yttria-stabilized zirconia/hydroxyapatite composite nanopowder. J. Cryst. Growth 254, 411–417 (2003).
  • Stapper, G. et al. Ab initio study of structural and electronic properties of yttriastabilized cubic zirconia. Phys. Rev. B 59, 797–810 (1999).
  • Shri Prakash, B. et al. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review. Renew. Sustain. Energy Rev. 36, 149–179 (2014).
  • Shirazi, M. et al. Multiple proton diffusion and film densification in atomic layer deposition modeled by density functional theory. Chem. Mater. 25, 878–889 (2013).
  • Shin, D. et al. Thermodynamic modeling of the Hf-Si-O system. Calphad Comput. Coupling Phase Diagrams Thermochem. 30, 375–386 (2006).
  • Senzaki, Y. et al. Atomic layer deposition of hafnium oxide and hafnium silicate thin films using liquid precursors and ozone. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 22, 1175 (2004).
  • Sato, T. et al. Transformation of yttria partially stabilized zirconia by low temperature annealing in air. J. Mater. Sci. 20, 1466–1470 (1985).
  • Sasaki, T. et al. Effect of fluorine on interface characteristics in low-temperature CMIS process with HfO2 metal gate stacks. Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 44, 2252–2256 (2005).
  • STUBICAN, V. S. et al. Phase Equilibria and Ordering in the System ZrO2-Y2O3. J. Am. Ceram. Soc. 61, 17–21 (1978).
  • Rose, M. et al. Temperature dependence of the sticking coefficient in atomic layer deposition. Appl. Surf. Sci. 256, 3778–3782 (2010).
  • Roessler, T. et al. Electrical characterisation of HfYO MIM-structures deposited by ALD. Thin Solid Films 518, 4680–4683 (2010).
  • Robertson, J. High dielectric constant gate oxides for metal oxide Si transistors. Reports Prog. Phys. 69, 327–396 (2006).
  • Ritala, M. et al. Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy. Thin Solid Films 250, 72–80 (1994).
  • Renault, O. et al. Interface properties of ultra-thin HfO 2 films grown by atomic layer deposition on SiO 2 y Si. Thin Solid Films 428, 190–194 (2003).
  • Ray, S. K. et al. High-k gate oxide for silicon heterostructure MOSFET devices. J. Mater. Sci. Mater. Electron. 17, 689–710 (2006).
  • Rauwel, E. et al. Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 89, 101–104 (2006).
  • Platt, C. L. et al. Atomic layer deposition of HfO2: Growth initiation study on metallic underlayers. Thin Solid Films 518, 4081–4086 (2010).
  • Park, T. J. et al. Reduction of electrical defects in atomic layer deposited HfO2films by Al doping. Chem. Mater. 22, 4175–4184 (2010).
  • Park, S.-J. et al. In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices. Nanotechnology 24, 295202 (2013).
  • Park, H. et al. The effect of nanoscale nonuniformity of oxygen vacancy on electrical and reliability characteristics of HfO2MOSFET devices. IEEE Electron Device Lett. 29, 54–56 (2008).
  • Park, H. B. et al. Comparison of HfO2 films grown by atomic layer deposition using HfCl4 and H2O or O3 as the oxidant. J. Appl. Phys. 94, 3641–3647 (2003).
  • Park, B. E. et al. Effects of Cl-Based Ligand Structures on Atomic Layer Deposited HfO2. J. Phys. Chem. C 120, 5958–5967 (2016).
  • Paoli, E. A. et al. Oxygen evolution on well-characterized mass-selected Ru and RuO2nanoparticles. Chem. Sci. 6, 190–196 (2015).
  • Oh, I.-K. et al. Nucleation and Growth of the HfO2 Dielectric Layer for Graphene- Based Devices. Chem. Mater. 27, 5868–5877 (2015).
  • Oh, I.-K. et al. In situ surface cleaning on a Ge substrate using TMA and MgCp 2 for HfO 2 -based gate oxides. J. Mater. Chem. C 3, 4852–4858 (2015).
  • Oh, I.-K. et al. Comparative study of the growth characteristics and electrical properties of atomic-layer-deposited HfO 2 films obtained from metal halide and amide precursors. J. Mater. Chem. C 7367–7376 (2018).
  • Oh, I. et al. The effect of La2O3-incorporation in HfO2 dielectrics on Ge substrate by atomic layer deposition. Appl. Surf. Sci. 287, 349–354 (2013).
  • Niinist , J. et al. Atomic layer deposition of high-k oxides of the Group 4 metals for memory applications. Adv. Eng. Mater. 11, 223–234 (2009).
  • Musgrave, C. B. et al. Precursors for atomic layer deposition of high-k dielectrics. Futur. Fab Int. 18, 126–128 (2005).
  • Mao, L. F. et al. First-principles simulations of the leakage current in metal-oxidesemiconductor structures caused by oxygen vacancies in HfO2 high-K gate dielectric. Phys. Status Solidi Appl. Mater. Sci. 205, 199–203 (2008).
  • Maes, J. W. et al. Impact of Hf-precursor choice on scaling and performance of high-k gate dielectrics. ECS Trans. 11, 59–72 (2007).
  • Maeng, W. J. et al. Atomic layer deposition of CeO2/HfO2 gate dielectrics on Ge substrate. Appl. Surf. Sci. 321, 214–218 (2014).
  • Luo, X. et al. Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study. Phys. Rev. B - Condens. Matter Mater. Phys. 80, 1–13 (2009).
  • Lopez Gejo, F. et al. Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B - Condens. Matter Mater. Phys. 64, 1–10 (2001).
  • Liu, X. et al. ALD of Hafnium Oxide Thin Films from Tetrakis(ethylmethylamino)hafnium and Ozone. J. Electrochem. Soc. 152, G213 (2005).
  • Lee, Y. B. et al. Characterization of HfOxNy thin film formation by in-situ plasma enhanced atomic layer deposition using NH3 and N2 plasmas. Appl. Surf. Sci. 349, 757–762 (2015).
  • Lee, J. S. et al. Atomic layer deposition of Y2O3 and yttrium-doped HfO2 using a newly synthesized Y(iPrCp)2(N-iPr-amd) precursor for a high permittivity gate dielectric. Appl. Surf. Sci. 297, 16–21 (2014).
  • Kwon, H.-M. et al. Conduction Mechanism and Reliability Characteristics of a Metal–Insulator–Metal Capacitor with Single ZrO2 Layer. Jpn. J. Appl. Phys. 50, 04DD02 (2011).
  • Kukli, K. et al. Properties of Ta2O5-Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy. J. Electrochem. Soc. 144, 300–306 (1997).
  • Kukli, K. et al. Atomic layer deposition of hafnium dioxide thin films from hafnium tetrakis(dimethylamide) and water. Thin Solid Films 491, 328–338 (2005).
  • Kukli, B. K. et al. Atomic Layer Deposition of Hafnium Dioxide Films from Hafnium Tetrakis (ethylmethylamide) and Water. Chem. Soc. Rev. 199–204 (2002).
  • Knebel, S. et al. Conduction mechanisms and breakdown characteristics of Al2O3- doped ZrO2 high-k dielectrics for three-dimensional stacked metal-insulator-metal capacitors. IEEE Trans. Device Mater. Reliab. 14, 154–160 (2014).
  • Kim, W.-H. et al. Growth characteristics and electrical properties of La2O3 gate oxides grown by thermal and plasma-enhanced atomic layer deposition. Thin Solid Films 519, 362–366 (2010).
  • Kim, W.-H. H. et al. Significant enhancement of the dielectric constant through the doping of CeO 2 into HfO 2 by atomic layer deposition. J. Am. Ceram. Soc. 97, 1164–1169 (2014).
  • Kim, W. H. et al. Significant enhancement of the dielectric constant through the doping of CeO 2 into HfO 2 by atomic layer deposition. J. Am. Ceram. Soc. 97, 1164–1169 (2014).
  • Kim, S. K. et al. Future of dynamic random-access memory as main memory. MRS Bull. 43, 334–339 (2018).
  • Kim, S. K. et al. Capacitors with an equivalent oxide thickness of <0.5 nm for nanoscale electronic semiconductor memory. Adv. Funct. Mater. 20, 2989–3003 (2010).
  • Kim, M. K. et al. Growth characteristics and electrical properties of Ta2O 5 grown by thermal and O3-based atomic layer deposition on TiN substrates for metalinsulator- metal capacitor applications. Thin Solid Films 542, 71–75 (2013).
  • Kim, H. et al. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563–2580 (2009).
  • Kim, C. S. et al. Influence of the Oxygen Concentration of YSZ Gate Dielectric Layer on the Low Voltage Operating Pentacene Thin Film Transistor. Electrochem. Solid-State Lett. 9, G96 (2006).
  • Khen, N. et al. The Effects of Thermal Decomposition of Tetrakisethylmethylaminohafnium ( TEMAHf ) Precursors on HfO 2 Film Growth using Atomic Layer Deposition. 25, 56–60 (2016).
  • Jogi, I. et al. Atomic layer deposition of high capacitance density Ta2O5-ZrO2 based dielectrics for metal-insulator-metal structures. Microelectron. Eng. 87, 144–149 (2010).
  • Ji, S. et al. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition. Nanoscale Res. Lett. 8, 1–7 (2013).
  • Jeong, S. H. et al. Physical and electrical properties of ZrO2 and YSZ high-k gate dielectric thin films grown by RF magnetron sputtering. Thin Solid Films 475, 354–358 (2005).
  • International technology roadmap for semiconductors. (2013).
  • Hwang, Y. et al. An Overview and Future Challenge of High Density DRAM for 20nm and beyond. in 2012 International Conference on Solid State Devices and Materials 586–587 (2012).
  • Hu, H. et al. Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications. J. Appl. Phys. 94, 551–557 (2003).
  • Hori, C. E. et al. Thermal stability of oxygen storage properties in a mixed CeO2- ZrO2 system. Appl. Catal. B-Environmental 16, 105–117 (1998).
  • Hegde, R. I. et al. Microstructure Modified HfO 2 Using Zr Addition with Ta x C y Gate for Improved Device Performance and Reliability. IEEE Electron Devices Meet. 00, 8–11 (2005).
  • Hashimoto, S. et al. Formulation for XPS Spectral Change of oxides by Ar Ion Bombardment: Application of the Formulation to Ta2O5 system. Journal of Surface Analysis 13, 14–18 (2006).
  • Hackley, J. C. et al. Properties of atomic layer deposited HfO2 thin films. Thin Solid Films 517, 6576–6583 (2009).
  • Ha, J. H. et al. Fluorine incorporation at HfO2/SiO2interfaces in high- k metaloxide- semiconductor gate stacks: Local electronic structure. Appl. Phys. Lett. 90, 1–4 (2007).
  • Gorshkov, O. N. et al. Resistive switching in the Au/Zr/ZrO2-Y2O3/TiN/Ti memristive devices deposited by magnetron sputtering. J. Phys. Conf. Ser. 741, 012174 (2016).
  • Gorshkov, O. N. et al. Resistive switching in metal-insulator-metal structures based on germanium oxide and stabilized zirconia. Tech. Phys. Lett. 40, 101–103 (2014).
  • Gavartin, J. L. et al. Negative oxygen vacancies in HfO 2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 2004–2007 (2006).
  • Gavartin, J. L. et al. Ab initio modeling of structure and defects at the HfO2/Si interface. Microelectron. Eng. 80, 412–415 (2005).
  • G tsch, T. et al. From zirconia to yttria: Sampling the YSZ phase diagram using sputter-deposited thin films. AIP Adv. 6, 025119 (2016).
  • French, R. et al. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B 49, 5133–5142 (1994).
  • Frank, M. M. et al. Enhanced initial growth of atomic-layer-deposited metal oxides on hydrogen-terminated silicon. Appl. Phys. Lett. 83, 740–742 (2003).
  • Foster, A. S. et al. Vacancy and interstitial defects in hafnia. Phys. Rev. B - Condens. Matter Mater. Phys. 65, 1741171–17411713 (2002).
  • Ferrari, S. et al. Germanium diffusion during HfO2 growth on Ge by molecular beam epitaxy. Appl. Phys. Lett. 89, 87–90 (2006).
  • Ferrari, S. et al. Chlorine mobility during annealing in N2 in ZrO2 and HfO2 films grown by atomic layer deposition. J. Appl. Phys. 92, 7675 (2002).
  • Ferrand, J. et al. Tetragonal Zirconia Stabilization by Metal Addition for Metal- Insulator-Metal Capacitor Applications. ECS Trans. 58, 223–233 (2013).
  • Fedorenko, Y. et al. Atomic Layer Deposition of Hafnium Silicate from HfCl4, SiCl4, and H2O. Electrochem. Solid-State Lett. 10, H149 (2007).
  • Fabris, S. et al. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater. 50, 5171–5178 (2002).
  • Eichler, a. Tetragonal Y-doped zirconia: Structure and ion conductivity. Phys. Rev. B 64, 1–8 (2001).
  • Dutta, G. A first-principles study of enhanced dielectric responses in Ti and Ce doped HfO2. Appl. Phys. Lett. 94, 12907 (2009).
  • Dimoulas, A. et al. HfO2 high- κ gate dielectrics on Ge (100) by atomic oxygen beam deposition. Appl. Phys. Lett. 86, 1–3 (2005).
  • Delabie, A. et al. Atomic layer deposition of hafnium silicate gate dielectric layers. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 25, 1302 (2007).
  • Choi, Y. J. et al. Anion-controlled passivation effect of the atomic layer deposited ZnO films by F substitution to O-related defects on the electronic band structure for transparent contact layer of solar cell applications. Sol. Energy Mater. Sol. Cells 132, 403–409 (2015).
  • Choi, J. H. et al. Development of hafnium based high-k materials - A review. Mater. Sci. Eng. R Reports 72, 97–136 (2011).
  • Cho, H. et al. Abnormally enhanced dielectric constant in ZrO2/Ta2O5 multilaminate structures by metallic Ta formation. Mater. Lett. 154, 148–151 (2015).
  • Cho, H. J. et al. New TIT capacitor with ZrO2/Al2O3/ZrO2dielectrics for 60 nm and below DRAMs. Solid. State. Electron. 51, 1529–1533 (2007).
  • Cho, D. Y. et al. Role of oxygen vacancy in HfO2/SiO2/Si(100) interfaces. Appl. Phys. Lett. 88, 2–5 (2006).
  • Chin, A. et al. High Quality La203 and Al203 Gate Dielectrics with Equivalent Oxide Thickness 5-10A. Symp. A Q. J. Mod. Foreign Lit. 16–17 (2000).
  • Cheong, K. Y. et al. Current conduction mechanisms in atomic-layer-deposited HfO2 /nitrided SiO2 stacked gate on 4H silicon carbide. J. Appl. Phys. 103, 1–8 (2008).
  • Chen, W. et al. First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide. Appl. Phys. Lett. 89, 10–13 (2006).
  • Chen, S. et al. Influence of cerium-doping on the structural and electrical properties of hafnium oxide gate dielectric. J. Mater. Sci. Mater. Electron. 25, 749–753 (2014).
  • Chang, V. S. et al. MODELING AND ENGINEERING OF HAFNIUM SILICATE (HfSiO) GATE DIELECTRIC DEPOSITED BY NANOLAMINATED ATOMIC LAYER DEPOSITION (NL-ALD). ECS Trans. 1, 113–123 (2006).
  • CHEN, L. B. Yttria-stabilized zirconia thermal barrier coatings—a review. Surf. Rev. Lett. 13, 535 (2006).
  • Anslyn, E. V. et al. Modern Physical Organic Chemistry. (University Science, 2006).
  • Aarik, J. et al. Influence of substrate temperature on atomic layer growth and properties of HfO2 thin films. Thin Solid Films 340, 110–116 (1999).