박사

웹 어플리케이션에 대한 딥러닝 기반의 침입탐지시스템 설계 및 구현 = A design and implementation of deep learning-based intrusion detection system for web applications

장현철 2019년
논문상세정보
' 웹 어플리케이션에 대한 딥러닝 기반의 침입탐지시스템 설계 및 구현 = A design and implementation of deep learning-based intrusion detection system for web applications' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • ai
  • cnn
  • rnn
  • 딥 러닝
  • 심층 신경망
  • 인공지능
  • 정보보안
  • 침입탐지시스템
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
6,819 0

0.0%

' 웹 어플리케이션에 대한 딥러닝 기반의 침입탐지시스템 설계 및 구현 = A design and implementation of deep learning-based intrusion detection system for web applications' 의 참고문헌

  • 해커의 심리변인이 해킹행위에 미치는 영향에 관한 연구
    우형진 한 국언론학보, 48(3), 90-115 [2004]
  • 클래스 불균형 데이터에 적합한 기계 학습 기반 침입 탐지 시스템
    김종현 김현주 박기남 정윤경 현상원 정보보호학회논문지, 27(6), 1385-1395 [2017]
  • 윤준, & 윤정원. 안전한 웹 서비스를 위한 웹 어플리 케이션 공격 유형 및 대응 방안 분석
    박명수 이용호 정보보호학회지, 14(4), 1-9 [2004]
  • 웹 어플리케이션 특성 분석을 통한 공격 분류
    김한성 서정석 조상현 차성덕 정보과학회논문지: 정보통신, 30(1), 97-116 [2003]
  • 실시간 네트워크 트래픽 매니지먼트 시스템 구현
    용기택 이채우 전자공학회논문지-TC, 45(8), 106-113 [2008]
  • 빅데이터의 이해와 주요 이슈들
    조영임 한국지역정보화학회지, 16(3) [2013]
  • 빅 데이터와 통합보안 2.0
    김용민 최대수 정보과학회지, 30(6), 65-72 [2012]
  • 빅 데이터 기반의 네트워크 패킷 분석 모 델
    공종환 최보민 한명묵 Journal of Korean Institute of Intelligent Systems, 23(5), 392-399 [2013]
  • Zhang, H., & Chen, G. (2012, May). The Research of Face Recognition Based on PCA and K-Nearest Neighbor. In Photonics and Optoelectronics (SOPO), 2012 Symposium on(pp. 1-4). IEEE.
  • The Bro Project. (2014). The Bro Network Security Monitor. Retrieved from https://www.bro.org/sphinx/scripts/base/protocols/http/main.bro.html
  • The Bro Project. (2014). Monitoring HTTP Traffic with Bro. Retrieved from https://www.bro.org/sphinx/httpmonitor/index.html#introduction-to-the-http-log
  • The Bro Project. (2014). Bro Logging. Retrieved from https://www.bro.org/sphinx/logs/index.html
  • Team AI Korea. (2015). Recurrent Neural Network (RNN) Tutorial - Part 1. Retrieved from https://aikorea.org/blog/rnn-tutorial-1/
  • Skaruz, J., & Seredynski, F. (2007, March). Recurrent neural networks towards detection of SQL attacks. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International (pp.1-8). IEEE.
  • Senthilnayaki, B., Venkatalakshmi, K., & Kannan, A. (2015, March). Intrusion detection using optimal genetic feature selection and SVM based classifier. In Signal Processing, Communication and Networking (ICSCN), 2015 3rd International Conference on (pp. 1-4). IEEE.
  • Schulze, H. (2017). cybersecurity-trends-report-2017 Retrieved from https://www.cybersecurity-insiders.com/wp-content/uploads/2017/02/Cybersecurity-Trends-Report-2017.pdf
  • Sahu, S., & Mehtre, B. M. (2015, August). Network intrusion detection system using J48 Decision Tree. In Advances in Computing, Communications and Informatics (ICACCI), 2015 International Conference on (pp. 2023-2026). IEEE.
  • Open Web Application Security Project.(2001).OWASP Top 10-2017. Retrieved from https://www.owasp.org/images/b/bd/OWASP_Top_10-2017-ko.pdf.
  • Onik, A. R., Haq, N. F., & Mustahin, W. (2015, December). Cross-breed type Bayesian network based intrusion detection system (CBNIDS). In Computer and Information Technology (ICCIT), 2015 18th International Conference on (pp. 407-412). IEEE.
  • Noel, S., Wijesekera, D., & Youman, C. (2002). Modern intrusion detection, data mining, and degrees of attack guilt. In Applications of data mining in computer security (pp. 1-31). Springer, Boston, MA.
  • N a ta n E lu l, N a d a v A v ita l. ( 2 0 1 7 ). T h e S ta te o f W e b A p p lic a tio n V u ln e ra b ilitie s in 2 0 1 7 . R e tr ie v e d fro m https://www.imperva.com/blog/2017/12/the-state-of-web-application-vulnerabilities-in-2017
  • Moya, M. A. C. (2008). Analysis and evaluation of the snort and bro network intrusion detection systems. Intrusion Detection System, Universidad Pontificia Comillas, 80, 80.
  • Mehra, P. (2012). A brief study and comparison of snort and bro open source network intrusion detection systems. International Journal of Advanced Research in Computer and Communication Engineering, 1(6), 383-386.
  • Liao, H. J., Lin, C. H. R., Lin, Y. C., & Tung, K. Y. (2013). Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications, 36(1), 16-24.
  • Lee, H. S., Im, Y. H., Park, J. Y., & Park, D. H. (2003). Adaptive Intrusion Detection System Based on SVM and Clustering. Journal of Korean Institute of Intelligent Systems, 13(2), 237-242.
  • LCS 알고리즘을 이용한 자동 학습 집합 구축을 사 용한 트래픽 분류
    이용호 정진우 정보과학회논문지: 정보통신, 41(1), 1-12 [2014]
  • Komviriyavut, T., Sangkatsanee, P., Wattanapongsakorn, N., & Charnsripinyo, C. (2009, September). Network intrusion detection and classification with decision tree and rule based approaches. In Communications and Information Technology, 2009. ISCIT 2009. 9th International Symposium on (pp. 1046-1050). IEEE.
  • Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016, February). Long short term memory recurrent neural network classifier for intrusion detection. In Platform Technology and Service (PlatCon), 2016 International Conference on (pp. 1-5). IEEE.
  • Jyothsna, V. V. R. P. V., Prasad, V. R., & Prasad, K. M. (2011). A review of anomaly based intrusion detection systems. International Journal of Computer Applications, 28(7), 26-35.
  • Jongsuebsuk, P., Wattanapongsakorn, N., & Charnsripinyo, C. (2013, January). Network intrusion detection with Fuzzy Genetic Algorithm for unknown attacks. In Information Networking (ICOIN), 2013 International Conference on (pp. 1-5). IEEE.
  • Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., & Atkinson, R. (2017). Shallow and deep networks intrusion detection system: A taxonomy and survey. arXiv preprint arXiv:1701.02145.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
  • HTTP Message
    차재복 Retrieved from http://www.ktword.co.kr/abbr_view.php?m_temp1=4884&m_search=http+Message [2018]
  • Gupta, S. (2015, October). An effective model for anomaly IDS to improve the efficiency. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 190-194). IEEE.
  • Gao, N., Gao, L., Gao, Q., & Wang, H. (2014, November). An intrusion detection model based on deep belief networks. In Advanced Cloud and Big Data (CBD), 2014 Second International Conference on (pp.247-252). IEEE.
  • Fiore, U., Palmieri, F., Castiglione, A., & De Santis, A. (2013). Network anomaly detection with the restricted Boltzmann machine. Neurocomputing, 122, 13-23.
  • Deep Learning: 기계학습의 새로운 트랜드
    김인중 한국통신학회지 (정보와통신), 31(11), 52-57 [2014]
  • Debar, H., Dacier, M., & Wespi, A. (2000, July). A revised taxonomy for intrusion-detection systems. In Annales des t l communications (Vol. 55, No. 7-8, pp. 361-378). Springer-Verlag.
  • Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 15.
  • Canbay, Y., & Sagiroglu, S. (2015, December). A hybrid method for intrusion detection. In Machine Learning and Applications (ICMLA), 2015 IEEE 14th International Conference on (pp. 156-161). IEEE.
  • Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167.
  • Bode, M. A., Oluwadare, S. A., Alese, B. K., & Thompson, A. F. B. (2015, June). Risk analysis in cyber situation awareness using Bayesian approach. In Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), 2015 International Conference on (pp. 1-12). IEEE.
  • Axelsson, S. (2000). Intrusion detection systems: A survey and taxonomy (Vol. 99). Technical report.
  • Arnaldo, I., Cuesta-Infante, A., Arun, A., Lam, M., Bassias, C., & Veeramachaneni, K. (2017, June). Learning Representations for Log Data in Cybersecurity. In International Conference on Cyber Security Cryptography and Machine Learning (pp. 250-268). Springer, Cham.