박사

그래핀, MoS₂, ReSe₂의 물리화학적 특성에 대한 분광학 연구 = Spectroscopic investigation on physicochemical properties of graphene, MoS₂ and ReSe₂

안광현 2018년
논문상세정보
' 그래핀, MoS₂, ReSe₂의 물리화학적 특성에 대한 분광학 연구 = Spectroscopic investigation on physicochemical properties of graphene, MoS₂ and ReSe₂' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 2d materials
  • ReSe₂
  • graphene
  • mos₂
  • raman
  • spectroscopy
  • tmds
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
408 0

0.0%

' 그래핀, MoS₂, ReSe₂의 물리화학적 특성에 대한 분광학 연구 = Spectroscopic investigation on physicochemical properties of graphene, MoS₂ and ReSe₂' 의 참고문헌

  • Zhao, W. J.; Tan, P. H.; Zhang, J.; Liu, J. A., Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid. Physical Review B 2010, 82 (24).
  • Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H., Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Research 2015, 8 (11), 3651-3661.
  • Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C., Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons. Nano Letters 2012, 12 (2), 617-621.
  • Yoon, D.; Son, Y. W.; Cheong, H., Strain-Dependent Splitting of the Double- Resonance Raman Scattering Band in Graphene. Physical Review Letters 2011, 106 (15).
  • Yoon, D.; Moon, H.; Son, Y.-W.; Choi, J. S.; Park, B. H.; Cha, Y. H.; Kim, Y. D.; Cheong, H., Interference effect on Raman spectrum of graphene on SiO2/Si. Physical Review B 2009, 80 (12).
  • Yan, J.; Zhang, Y. B.; Kim, P.; Pinczuk, A., Electric field effect tuning of electron-phonon coupling in graphene. Physical Review Letters 2007, 98 (16).
  • Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J., Raman Spectra of Monolayer, Few-Layer, and Bulk ReSe2: An Anisotropic Layered Semiconductor. Acs Nano 2014, 8 (11), 11154-11164.
  • Wieting, T. J.; Verble, J. L., Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal MoS2. Physical Review B 1971, 3 (12), 4286-4292.
  • Wakabayashi, K.; Pierre, C.; Dikin, D. A.; Ruoff, R. S.; Ramanathan, T.; Brinson, L. C.; Torkelson, J. M., Polymer-graphite nanocomposites: Effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 2008, 41 (6), 1905-1908.
  • Tsoukleri, G., Parthenios, J., Papagelis, K., Jalil, R., Ferrari, A. C., Geim, A. K., Novoselov, K. S., Galiotis, C., Subjecting a Graphene Monolayer to Tension and Compression. Small 2009, 5 (21), 2397-2402.
  • Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano letters. 2010;10(4):1271-1275.
  • Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y.-J.; Liu, H.; Kim, P.; Flynn, G. W.; Brus, L. E., Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate. Nano Letters 2010, 10 (12), 4944-4951.
  • Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nature Nanotechnology 2011, 6 (3), 147-150.
  • Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F., Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials 2007, 6 (3), 198-201.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666.
  • Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X., Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. ACS Nano 2008, 2 (11), 2301-2305.
  • Ni, Z. H.; Wang, Y. Y.; Yu, T.; You, Y. M.; Shen, Z. X., Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Physical Review B 2008, 77 (23).
  • Myhre, C. E. L.; Christensen, D. H.; Nicolaisen, F. M.; Nielsen, C. J., Spectroscopic study of aqueous H2SO4 at different temperatures and compositions: Variations in dissociation and optical properties. Journal of Physical Chemistry A 2003, 107 (12), 1979-1991.
  • Metzger, C.; R mi, S.; Liu, M.; Kusminskiy, S. V.; Castro Neto, A. H.; Swan, A. K.; Goldberg, B. B., Biaxial Strain in Graphene Adhered to Shallow Depressions. Nano Letters 2009, 10 (1), 6-10.
  • Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A., Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48 (5), 1592-1597.
  • Lorchat, E.; Froehlicher, G.; Berciaud, S., Splitting of Interlayer Shear Modes and Photon Energy Dependent Anisotropic Raman Response in N-Layer ReSe2 and ReS2. Acs Nano 2016, 10 (2), 2752-2760.
  • Liu, Y.; Nan, H.; Wu, X.; Pan, W.; Wang, W.; Bai, J.; Zhao, W.; Sun, L.; Wang, X.; Ni, Z., Layer-by-Layer Thinning of MoS2 by Plasma. ACS Nano 2013, 7 (5), 4202- 4209.
  • Liu, L.; Ryu, S.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W., Graphene Oxidation: Thickness- Dependent Etching and Strong Chemical Doping. Nano Letters 2008, 8 (7), 1965- 1970.
  • Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S., Optical separation of mechanical strain from charge doping in graphene. Nature Communications 2012, 3, 1024.
  • Lee, D.; Ahn, G.; Ryu, S., Two-Dimensional Water Diffusion at a Graphene– Silica Interface. Journal of the American Chemical Society 2014, 136 (18), 6634- 6642.
  • Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4 (5), 2695-2700.
  • Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E., C60: Buckminsterfullerene. Nature 1985, 318, 162.
  • Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710.
  • Kang, B.; Kim, Y.; Cho, J. H.; Lee, C., Ambipolar transport based on CVD51 synthesized ReSe2. 2d Materials 2017, 4 (2).
  • Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354, 56.
  • Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J., Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 2009, 106 (18), 7304-7308.
  • Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6 (3), 183-191.
  • Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G., Raman and resonance Raman investigation of ${\mathrm{MoS}}_{2}$ nanoparticles. Physical Review B 1999, 60 (4), 2883-2892.
  • Ferrari, A. C.; Basko, D. M., Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology 2013, 8 (4), 235- 246.
  • Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications 2007, 143 (1-2), 47-57.
  • Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 2006, 97 (18), 187401.
  • Eda, G.; Fanchini, G.; Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology 2008, 3 (5), 270-274.
  • Du, H.; Kim, T.; Shin, S.; Kim, D.; Kim, H.; Sung, J. H.; Lee, M. J.; Seo, D. H.; Lee, S. W.; Jo, M. H.; Seo, S., Schottky barrier contrasts in single and bi-layer graphene contacts for MoS2 field-effect transistors. Applied Physics Letters 2015, 107 (23).
  • Ding, F.; Ji, H. X.; Chen, Y. H.; Herklotz, A.; Dorr, K.; Mei, Y. F.; Rastelli, A.; Schmidt, O. G., Stretchable Graphene: A Close Look at Fundamental Parameters through Biaxial Straining. Nano Letters 2010, 10 (9), 3453-3458.
  • Dimiev, A. M.; Ceriotti, G.; Behabtu, N.; Zakhidov, D.; Pasquali, M.; Saito, R.; Tour, J. M., Direct Real-Time Monitoring of Stage Transitions in Graphite Intercalation Compounds. ACS Nano 2013, 7 (3), 2773-2780.
  • DasA; PisanaS; ChakrabortyB; PiscanecS; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nano 2008, 3 (4), 210-215.
  • Corn, R. M.; Higgins, D. A., Optical second harmonic generation as a probe of surface chemistry. Chemical Reviews 1994, 94 (1), 107-125.
  • Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano 2008, 3 (4), 206-209.
  • Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of Modern Physics 2009, 81 (1), 109-162.
  • Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A., Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor. Nano Letters 2012, 12 (6), 3187-3192.
  • Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C., Raman fingerprint of charged impurities in graphene. Applied Physics Letters 2007, 91 (23).
  • Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. C., Rayleigh imaging of graphene and graphene layers. Nano Letters 2007, 7 (9), 2711-2717.
  • Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N., Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Letters 2007, 7 (9), 2645-2649.
  • Boyd, R. W., Nonlinear Optics third edition (ACADEMIC PRESS). 2008.
  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008, 146 (9-10), 351-355.
  • Basko, D. M.; Piscanec, S.; Ferrari, A. C., Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Physical Review B 2009, 80 (16).