박사

스트럿이 부착된 원통형 수중운동체의 가스 분사에 의한 저항 감소 영향 연구 = Effects of Gas Injection on Drag Reduction of Cylindrical Underwater Body with Strut

정철민 2018년
논문상세정보
' 스트럿이 부착된 원통형 수중운동체의 가스 분사에 의한 저항 감소 영향 연구 = Effects of Gas Injection on Drag Reduction of Cylindrical Underwater Body with Strut' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 가스분사
  • 기포 분사
  • 다상유동해석
  • 마찰저항 감소
  • 수중운동체
  • 스트럿 부착
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
18 0

0.0%

' 스트럿이 부착된 원통형 수중운동체의 가스 분사에 의한 저항 감소 영향 연구 = Effects of Gas Injection on Drag Reduction of Cylindrical Underwater Body with Strut' 의 참고문헌

  • Zhou, M., Li, J., Feng, C., Wu, C., Yuan, R., and Cai, L., 2010, “Bionic superhydrophobic and drag-reduction properties on ZnO-nanostructured functional surfaces”, Chemical Vapor Deposition, 16(1-3), pp.12-14.
  • Zhao, L.H., Marchioli, C., Andersson, H.I., 2012, " Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models.", Phys Fluids, Vol.24,021705
  • Zhao, L.H., Andersson, H.I., Gillissen, J. J. J., 2010, "Turbulence modulation and drag reduction by spherical particles.", Phys Fluids, Vol. 22, 081702
  • Yua, X., Wanga, Y., Huanga, C., Weia, Y., Fangb, X., Dua, T., Wua, X., 2015, “Experiment and simulation on air layer drag reduction of high-speed underwater axisymmetric projectile”, an Journal of Mechanics B/Fluids 52, pp.45–54
  • Watanabe, O., Masuko, M. and Shirose, Y., 1998, “Measurements of drag reduction by microbubbles using very long ship models”, Journal of the Society of Naval Architests of Japan, Vol. 183, p. 53-
  • Toms, A. B., 1948, “Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds number”, Proceedings 1st. International Congress on Rheology, 2, pp.135-141.
  • Song, D., Daniello, R. J., and Rothstein, J. P., 2014, “Drag reduction using superhydrophobic sanded Teflon surfaces”, Experiments in Fluids, 55(8), 1783.
  • Skudarnov, P.V. and Lin, C.X., 2006, “Drag reduction by gas injection into turbulent boundary layer: Density ratio effect”, International Journal of Heat and Fluid Flow, Vol. 27, pp. 436–444.
  • Savchenko, Y.N., Vlasenko, Y.D., Semenenko, V.N., 1999, “Experimental studies of highspeed cavitated flows”, Int. J. Fluid Mech. Res. 26 (3)
  • Savchenko, Y.N., Semenenko, V.N.,, 1998 “The gas absorption into supercavity from liquid-gas bubble mixture”, Proceedings of 3rd International Symposium on Cavitation, vol. 2, pp. 49–53.
  • Reichardt, H., 1945, “The laws of cavitation bubbles at axially symmetrical bodies in a flow”, Kaiser Wilhelm Institute f r Stromungsforschung.
  • Park, H., Sun, G., and Kim, C., 2014, “Superhydrophobic turbulent drag reduction as a function of surface grating parameters”, Journal of Fluid Mechanics, 747, pp.722-734.
  • Paik, B.G., Yim, G.T., Kim, K.Y., Kim, K.S., 2016, “The effects of microbubbles on skin friction in a turbulent boundary layer flow”, International Journal of Multiphase Flow 80, pp. 164-175.
  • Paik, B.G., Jung, C.M., Kim, S.B. and Kwon, L.U., 2016, "The primary report on water channel tests of a device using multi-phase flow", ADDR-413-160497.
  • Nguyen, V.T., Vu, D.T., Park, W.G., Jung, C.M., 2016, "Navier-Stokes solver for water entry bodies with moving Chimera grid method in 6DOF motions“, Computers & Fluids, Vol. 140., pp. 19-38
  • Narayanan, C., Lakehal, D., 2003, "Mechanism of particle deposition in a fully developed turbulent open channel flow.", Phys Fluids, Vol. 15, pp.763-775
  • Murai, Y., Fujii, H., Tasaka, Y., 2006, " Turbulent bubbly channel flow investigated by ultrasound velocity profiler.", J Fluid Sci Technol, Vol. 1, pp. 12-23
  • Murai, Y., 2014, “Frictional drag reduction by bubble injection”, Exp Fluids 55:1773.
  • Merkle, C.L. and Deutsch, S., 1989, “Microbubble drag reduction.” Frontiers in Experimental Fluid Mechanics, Vol. 46, pp. 291-335
  • McCormick, M.E. and Bhattacharya, R., 1973, “Drag reduction of a submersible hull by electrolysis“, Naval Engineering Journal, Vol. 85, pp. 11– 16.
  • Matveev, K.I., 2012, “Two-dimensional modeling of stepped planing hulls with open and pressurized air cavities.” Int. J. Nav. Archit. Ocean Eng. 4, pp.162–171. http://dx.doi.org/10.3744/JNAOE.2012.4.2.162.
  • Matveev, K.I., 2007, “Three-dimensional wave patterns in long air cavities on a horizontal plane.” Ocean Eng. 34, pp.1882–1891.
  • Makiharju, S. A., Perlin, M. and Ceccio, S. L., 2012, “On the energy economics of air lubrication drag reduction”, Ineter J Nav Archit Oc Engng 4: pp.412-422
  • M kiharju, S.A., Perlin, M., Ceccio, S.L., 2012, “On the energy economics of air lubrication drag reduction.” Int. J. Nav. Archit. Ocean Eng. 4, pp. 412– 422. http://dx.doi.org/10.1017/jfm.2012.588.
  • Lu, J., Fern ndez, A. and Tryggvason, G., 2005, “The effect of bubbles on the wall drag in a turbulent channel flow”, Physics of Fluids, Vol. 17, pp. 1–12.
  • Logvinovich, G. V., 1969, “Hydrodynamics of flows with free boundaries”, Naukova Dumka, Kiev, pp. 128.
  • Legner, H. H., 1984, “A simple model for gas bubble drag reduction”, Physics of Fluids, Vol. 27
  • Lee, I. and Park, H., 2013, “Low frictional marine anti-fouling paint toward the improvement of ship energy efficiency”, Prospectives of Industrial Chemistry, 16(5), pp.10-18.
  • Kunz, R.F., Boger, D.A., Stinebring, D.R., Chyczewski, T.S., Lindau, J.W., Gibeling, H.J., Venkateswaran, S., Govindan, T.R., 2000, “A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction”, Computers & Fluids, 29 (8), pp. 849-875
  • Kunz, R.F., Boger, D.A., Chyczewski, T.S., Stinebring, D.R., Gibeling, H.J., Govindan, T.R., 1999, “Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies”, ASME Paper FEDSM 99-7364
  • Kim, D.H., Park, W.G., and Jung, C.M., 2012, “Numerical simulation of cavitating flow past axisymmetric body”, International Journal of Naval Architecture and Ocean Engineering, Vol. 4, pp. 256-266
  • Kim, D.H., Park, W.G., Jung, C.M., 2012, “Numerical simulation of cavitating flow past axisymmetric body”, International Journal of Naval Architecture and Ocean Engineering, Vol. 4, Issue 3, pp. 256-266
  • Kato, H., Miura, K., Yamaguchi, H. and Miyanaga, M., 1998, “Experimental study on microbubble ejection method for frictional drag reduction”, Journal of Marine Science and Technology, Vol. 3, pp. 122-129.
  • Kanai, A. and Miyata, H., 2001, “Direct numerical simulation of wall turbulent flows with micro-bubbles”, International Journal for Numerical Methods in Fluids, Vol. 35 (5), pp.593–615.
  • Jung, C.M, Paik, B.G., Kim, K.Y., Jung, Y.R, 2018, “A study on drag reduction of cylindrical underwater body using sintered mesh”, Journal of the KIMST, Vol. 21, No. 2, pp. 195-203
  • Johansen ST, Wu J, Shyy W., 2004, “Filter-based unsteady RANS computations.” Int J Heat Fluid Fl. vol. 25, pp. 10-21.
  • Jin, M.S., Park, W.G., Jung, C.M., 2013, “Numerical analysis of cavitating flow past an axisymmetric cylinder with comparison to experiments”, Journal of Mechanical Science and Technology, Vol. 27, Issue 12, pp 3673–3681
  • Jin, M.S., Ha, C.T., Park, W.G., 2013 “Numerical study of ventilated cavitating flows with free surface effects”, Journal of Mechanical Science and Technology, Vol. 27, Issue 12, pp 3683–3691
  • Jiang, C.X., Li, S.L, Li, F.C., Li, W.Y., 2017, “Numerical study on axisymmetric ventilated supercavitation influenced by drag-reduction additives“, International Journal of Heat and Mass Transfer 115, pp.62–76
  • Jang, J., Choi, S.H., Ahn, S.M., Kim, B., Seo, J.S., 2014, “Experimental investigation of frictional drag reduction with air layer on the hull bottom of a ship”. Int. J. Nav. Archit. Ocean Eng. 6, pp.363-379. http://dx.doi.org/10.2478/IJNAOE-2013
  • Hou, Y. X., Somandepalli, V. S. R., and Mungal, M. G., 2008, “Streamwise development of turbulent boundary-layer drag reduction with polymer injection”, Journal of Fluid Mechanics, Vol. 601, pp. 443.
  • Hassan Y.A. and Gutierrez-Torres C.C., 2006, "Investigation of drag reduction mechanism by microbubble injection within a channel boundary layer using particle tracking velocimetry," Nuclear Engineering and Technology, Vol.38, pp.763-778.
  • Ferrante, A. and Elghobashi, S., 2004, “On the physical mechanisms of drag eduction in a spatially developing turbulent boundary layer laden with microbubbles”, Journal of Fluid Mechanics, Vol. 503, pp. 345–355.
  • Elbing, B.R., Winkel, E.S., Lay, K.a, Ceccio, S.L., Dowling, D.R. and Perlin, M., 2008, “Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction”, Journal of Fluid Mechanics, Vol. 612, pp. 201– 236.
  • Dong, H., Cheng, M., Zhang, Y., Wei, H., and Shi, F., 2013, “Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed”, Journal of Materials Chemistry A, 1(19), pp.5886-5891.
  • Dean, B., & Bhushan, B., 2010, “Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1929), pp.4775-4806.
  • Davenport, J., Hughes, R. N., Shorten, M. & Larsen, P.S., 2011, "Drag Reduction by Air Release Promotes Fast Ascent in Jumping Emperor Penguins-a Novel Hypothesis," Marine Ecology Progress Series, 430, pp.171-182.
  • Cucinotta, F., Guglielmino, E., Sfravara, F., 2017, “An experimental comparison between different artificial air cavity designs for a planing hull“ , Ocean Engineering 140, pp. 233–243
  • Butuzov, A. A., 1968, “Limiting parameters of an artificial cavity formed on the lower surface of a horizontal wall.” Fluid Dyn. 1, pp.116–118. http://dx.doi.org/10.1007/BF01013836.
  • Amromin, E., Kopriva, J., Arndt, E. A., Wosnik, M., “Hydrofoil drag reduction by partial cavitation”, Vol. 128, SEPTEMBER 2006, pp. 931-936
  • Ahmadzadehtalatapeh, M., Mousavi, M., 2015, “A review on the drag reduction methods of the ship hulls for improving the hydrodynamic performance”, International Journal of Maritime Technology, Vol. 4, pp.51-64