박사

Development of sorbent and catalyst for application of Sorption Enhanced Water Gas Shift (SEWGS) process for Integrated Gasification Combined Cycle (IGCC) : 석탄가스화 복합발전에서 흡수촉진형 수성가스전환반응 적용을 위한 이산화탄소 흡수제 및 수성가스전환반응 촉매 개발

황병욱 2018년
논문상세정보
' Development of sorbent and catalyst for application of Sorption Enhanced Water Gas Shift (SEWGS) process for Integrated Gasification Combined Cycle (IGCC) : 석탄가스화 복합발전에서 흡수촉진형 수성가스전환반응 적용을 위한 이산화탄소 흡수제 및 수성가스전환반응 촉매 개발' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 화학공학과 관련공학
  • CO2 sorbent
  • catalyst
  • igcc
  • sewgs
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
94 0

0.0%

' Development of sorbent and catalyst for application of Sorption Enhanced Water Gas Shift (SEWGS) process for Integrated Gasification Combined Cycle (IGCC) : 석탄가스화 복합발전에서 흡수촉진형 수성가스전환반응 적용을 위한 이산화탄소 흡수제 및 수성가스전환반응 촉매 개발' 의 참고문헌

  • Z. Li, M. Flytzani-Stephanopoulos, Cu−Cr−O and Cu−Ce−O regenerable oxide sorbents for hot gas desulfurization, Industrial & Engineering Chemistry Research, 36 (1997) 187-196.
  • Y.C. Park, S.-H. Jo, H.-J. Ryu, J.-H. Moon, C.-K. Yi, Y. Yoon, J.-I. Baek, Simultaneous removal of H2S and COS using Zn-based solid sorbents in the bench-scale continuous hot gas desulfurization system integrated with a coal gasifier, Korean Journal of Chemical Engineering, 29 (2012) 1812-1816.
  • Y. Ohtsuka, N. Tsubouchi, T. Kikuchi, H. Hashimoto, Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas, Powder Technology, 190 (2009) 340-347.
  • X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Novel Polyethylenimine- Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture, Energy Fuels 16 (2002) 1463–1469.
  • X. Querol, N. Moreno, J.t. Uma a, A. Alastuey, E. Hern ndez, A. Lopez-Soler, F. Plana, Synthesis of zeolites from coal fly ash: an overview, International Journal of coal geology, 50 (2002) 413-423.
  • W.R. Alesi, M. Gray, J.R. Kitchin, CO2 adsorption on supported molecular amidine systems on activated carbon, ChemSusChem, 3 (2010) 948-956.
  • W.J. Ward III, System for selective removal of hydrogen sulfide from a mixture of gases, Google Patents, 1979.
  • V. Subramanian, E.S. Gnanakumar, D.-W. Jeong, W.-B. Han, C.S. Gopinath, H.-S. Roh, A rationally designed CuFe2O4 mesoporous Al2O3 composite towards stable performance of high temperature water–gas shift reaction, Chemical Communications, 49 (2013) 11257-11259.
  • T. Ohashi, K. Nakagawa, Effect of potassium carbonate additive on CO2 absorption in lithium zirconate powder, MRS Online Proceedings Library Archive, 547 (1998).
  • T. Harada, T.A. Hatton, Colloidal nanoclusters of MgO coated with alkali metal nitrates/nitrites for rapid, high capacity CO2 capture at moderate temperature, Chemistry of Materials, 27 (2015) 8153-8161.
  • T. Harada, T.A. Hatton, Colloidal Nanoclusters of MgO Coated with Alkali Metal Nitrates/Nitrites for Rapid, High Capacity CO2 Capture at Moderate Temperature, Chem. Mater., 27 (2015) 8153-8161.
  • T. Harada, F. Simeon, E.Z. Hamad, T.A. Hatton, Alkali metal nitrate-promoted high-capacity MgO adsorbents for regenerable CO2 capture at moderate temperatures, Chemistry of Materials, 27 (2015) 1943-1949.
  • S.Y. Jung, S.C. Lee, H.K. Jun, J.C. Kim, A Study of the Zn-based Desulfurization Sorbents for H2S Removal in the IGCC, Catalysis Surveys from Asia, 17 (2013) 85-102.
  • S.K. Gangwal, R.P. Gupta, Bench-scale testing of fluidized-bed sorbents, ZT-4, Research Triangle Inst., Research Triangle Park, NC (United States), 1995.
  • S.C. Lee, S.H. Cha, Y.M. Kwon, M.G. Park, B.W. Hwang, Y.K. Park, H.M. Seo, J.C. Kim, Effects of alkali-metal carbonates and nitrates on the CO2 sorption and regeneration of MgO-based sorbents at intermediate temperatures, Korean Journal of Chemical Engineering, 33 (2016) 3448-3455.
  • S.C. Lee, B.Y. Choi, S.J. Lee, S.Y. Jung, C.K. Ryu, J.C. Kim, CO2 absorption and regeneration using Na and K based sorbents, Studies in Surface Science and Catalysis, Elsevier2004, pp. 527-530.
  • S.C. Lee, B.Y. Choi, C.K. Ryu, Y.S. Ahn, T.J. Lee, J.C. Kim, The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents, Korean Journal of Chemical Engineering, 23 (2006) 374-379.
  • S. Gangwal, R. Gupta, Fluidized-bed sorbents, Research Triangle Inst., Research Triangle Park, NC (United States), 1994.
  • R.V. Siriwardane, M.-S. Shen, E.P. Fisher, J.A. Poston, Adsorption of CO2 on molecular sieves and activated carbon, Energy & Fuels, 15 (2001) 279-284.
  • R.V. Siriwardane, D.C. Cicero, Durable zinc-oxide-containing regenerable desulfurization sorbents for both low-and high-temperature applications, Proceedings of AI Ch. E spring national meeting. High temperature gas cleaning (gases and particles), session, TF004, 2000.
  • R.V. Siriwardane, C. Robinson, M. Shen, T. Simonyi, Novel Regenerable Sodium-Based Sorbents for CO2 Capture at Warm Gas Temperatures, Energy & Fuels, 21 (2007) 2088- 2097.
  • R.T. Figueiredo, M.S. Santos, H.M. Andrade, J.L. Fierro, Effect of alkali cations on the CuZnOAl2O3 low temperature water gas-shift catalyst, Catalysis today, 172 (2011) 166-170.
  • R.N. Kust, J.D. Burke, Thermal decomposition in alkali metal nitrate melts, Inorganic and Nuclear Chemistry Letters, 6 (1970) 333-335.
  • R.E. Ayala, V. Venkataramani, J. Abbasian, A. Hill, Advanced low-temperature sorbents, General Electric Co., Schenectady, NY (United States). Corporate Research and Development Center, 1995.
  • R.B. Slimane, J. Abbasian, Copper-based sorbents for coal gas desulfurization at moderate temperatures, Industrial & Engineering Chemistry Research, 39 (2000) 1338-1344.
  • R. Knight, R. Carty, R. Duthie, P. Pechtl, The Magsorb process for bulk separation of carbon dioxide, Institute of Gas Technology, Chicago, IL (United States), 1992.
  • R. Hern ndez-Huesca, L. Dı́az, G. Aguilar-Armenta, Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites, Separation and Purification Technology, 15 (1999) 163-173.
  • R. Gupta, B. Turk, M. Lesemann, RTI/Eastman warm syngas clean-up technology: Integration with carbon capture, Gasification technologies conference, 2009.
  • P.A. Kharecha, J.E. Hansen, Implications of “peak oil” for atmospheric CO2 and climate, Global Biogeochemical Cycles, 22 (2008).
  • P. Jadhav, R. Chatti, R. Biniwale, N. Labhsetwar, S. Devotta, S. Rayalu, Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures, Energy & Fuels, 21 (2007) 3555-3559.
  • P. Courty, A. Deschamps, S. Franckowiak, A. Sugier, Process for purifying a gas containing hydrogen sulfide and contact masses usable therefor, Google Patents, 1978.
  • P. Cargill, G. DeJonghe, T. Howsley, B. Lawson, L. Leighton, M. Woodward, Pinon pine IGCC project, Final Technical Report, DE-FC21-92MC293092001.
  • N.K. Park, Y.K. Jung, B.S. Kim, S.O. Ryu, R.J. Kim, K.S. Kim, Behavior of Zinc based Sorbents for Hot Gas Desulfurization, Theories and Applications of Chem. Eng., 2002, Vol. 8, No. 2
  • N.-K. Park, D.-H. Lee, J.-D. Lee, W.C. Chang, S.-O. Ryu, T.-J. Lee, Effects of reduction of metal oxide sorbents on reactivity and physical properties during hot gas desulphurization in IGCC, Fuel, 84 (2005) 2158-2164.
  • M.Z. Jacobson, Review of solutions to global warming, air pollution, and energy security, Energy & Environmental Science, 2 (2009) 148-173.
  • M.M. Maroto-Valer, Z. Lu, Y. Zhang, Z. Tang, Sorbents for CO2 capture from high carbon fly ashes, Waste Management, 28 (2008) 2320-2328.
  • M.D. Rutkowski, M.G. Klett, R. Zaharchuk, Assessment of hot gas contaminant control, Parsons Power Group, Inc., Reading, PA (United States), 1996.
  • M. Zhu, I.E. Wachs, Iron-based catalysts for the high-temperature water– gas shift (HT-WGS) reaction: A review, ACS Catalysis, 6 (2015) 722-732.
  • M. Woods, S. Gangwal, K. Jothimurugesan, D.P. Harrison, Reaction between hydrogen sulfide and zinc oxide-titanium oxide sorbents. 1. Single-pellet kinetic studies, Industrial & Engineering Chemistry Research, 29 (1990) 1160-1167.
  • M. Spencer, The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water–gas shift reaction, Topics in Catalysis, 8 (1999) 259.
  • M. Meinshausen, N. Meinshausen, W. Hare, S.C. Raper, K. Frieler, R. Knutti, D.J. Frame, M.R. Allen, Greenhouse-gas emission targets for limiting global warming to 2 oC, Nature, 458 (2009) 1158.
  • M. Maro o, J. S nchez, E. Ruiz, Hydrogen-rich gas production from oxygen pressurized gasification of biomass using a Fe–Cr water gas shift catalyst, international journal of hydrogen energy, 35 (2010) 37-45.
  • M. Hornick, B. Gardner, Warm Gas Cleanup and CCS Demonstration at Tampa Electric’s Polk Power Station, Gasification technologies conference, San Francisco, CA, USA, 2011.
  • M. Heuchel, G. Davies, E. Buss, N. Seaton, Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: simulation and experiment, Langmuir, 15 (1999) 8695-8705.
  • M. Hepworth, Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992-September 1993, Minnesota Univ., Minneapolis, MN (United States), 1993.
  • M. Gray, J. Hoffman, D. Hreha, D. Fauth, S. Hedges, K. Champagne, H. Pennline, Parametric study of solid amine sorbents for the capture of carbon dioxide†, Energy & Fuels, 23 (2009) 4840-4844.
  • M. Gin s, N. Amadeo, M. Laborde, C. Apesteguia, Activity and structure-sensitivity of the water-gas shift reaction over CuZnAl mixed oxide catalysts, Applied Catalysis A: General, 131 (1995) 283-296.
  • L. Lloyd, D. Ridler, M. Twigg, The water as shift reaction, Catalyst handbook, 2 (1996) 283-338.
  • K.-C. Kim, Y.C. Park, S.-H. Jo, C.-K. Yi, The effect of CO2 or steam partial pressure in the regeneration of solid sorbents on the CO2 capture efficiency in the two-interconnected bubbling fluidized-beds system, Korean Journal of Chemical Engineering, 28 (2011) 1986-1989.
  • K. Watanabe, T. Miyao, K. Higashiyama, H. Yamashita, M. Watanabe, Preparation of a mesoporous ceria–zirconia supported Ni–Fe catalyst for the high temperature water–gas shift reaction, Catalysis Communications, 12 (2011) 976-979.
  • K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Commission on colloid and surface chemistry including catalysis, Pure Appl. Chem, 57 (1985) 603-619.
  • K. Nishida, I. Atake, D. Li, T. Shishido, Y. Oumi, T. Sano, K. Takehira, Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water–gas shift reaction: catalyst preparation by adopting “memory effect” of hydrotalcite, Applied Catalysis A: General, 337 (2008) 48-57.
  • K. Maeda, CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae, Fuel and Energy Abstracts, Elsevier, 1996, pp. 217.
  • K. Jothimurugesan, S.K. Gangwal, Regeneration of zinc titanate H2S sorbents, Industrial & Engineering Chemistry Research, 37 (1998) 1929-1933.
  • K. Berlier, M. Frere, Adsorption of CO2 on activated carbon: simultaneous determination of integral heat and isotherm of adsorption, Journal of Chemical & Engineering Data, 41 (1996) 1144-1148.
  • J.J. Weers, Suppression of the evolution of hydrogen sulfide gases, Google Patents, 1991.
  • J.C. Stephens, Coupling CO2 Capture and Storage with Coal Gasification: Defining" Sequestration-Ready" IGCC, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University2005.
  • J.-P. Shen, C. Song, Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells, Catalysis Today, 77 (2002) 89-98.
  • J.-G. Yu, C.Y. Jimmy, B. Cheng, S. Hark, K. Iu, The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders, Journal of Solid State Chemistry, 174 (2003) 372-380.
  • J. Yu, G. Wang, B. Cheng, M. Zhou, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Applied Catalysis B: Environmental, 69 (2007) 171-180.
  • J. Yu, C.Y. Jimmy, W. Ho, M.K.P. Leung, B. Cheng, G. Zhang, X. Zhao, Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania, Applied Catalysis A: General, 255 (2003) 309-320.
  • J. Longwell, E. Rubin, J. Wilson, Coal: energy for the future, Progress in Energy and Combustion Science, 21 (1995) 269-360.
  • J. Lin, D. Fridley, H. Lu, L. Price, N. Zhou, Near-term trends in China's coal consumption, (2018).
  • J. Ladebeck, J. Wagner, Catalyst development for water–gas shift, Handbook of fuel cells, (2010).
  • J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, Global warming in the twenty-first century: An alternative scenario, Proceedings of the National Academy of Sciences, 97 (2000) 9875-9880.
  • J. Gonzalez, M. Gonzalez, M. Laborde, N. Moreno, Effect of temperature and reduction on the activity of high temperature water gas shift catalysts, Applied catalysis, 20 (1986) 3-13.
  • J. Edmonds, J. Reiley, Global energy-Assessing the future, (1985).
  • J. An, N.L. Rosi, Tuning MOF CO2 adsorption properties via cation exchange, Journal of the American Chemical Society, 132 (2010) 5578-5579.
  • J. Abbasian, R.B. Slimane, A regenerable copper-based sorbent for H2S removal from coal gases, Industrial & engineering chemistry research, 37 (1998) 2775-2782.
  • IEA, Coal 2017, (2017).
  • I.M. Smith, CO2 reduction: prospects for coal, IEA Coal Research1999.
  • I. Atake, K. Nishida, D. Li, T. Shishido, Y. Oumi, T. Sano, K. Takehira, Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water-gas shift reaction, Journal of Molecular Catalysis A: Chemical, 275 (2007) 130-138.
  • H. Von Blottnitz, M.A. Curran, A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective, Journal of cleaner production, 15 (2007) 607-619.
  • H. Uchida, N. Isogai, M. Oba, T. Hasegawa, The zinc oxide copper catalyst for carbon monoxide-shift conversion. I. The dependency of the catalytic activity on the chemical composition of the catalyst, Bulletin of the Chemical Society of Japan, 40 (1967) 1981-1986.
  • H. Ryu, J. Park, D. Lee, J. Park, D. Bae, CO Conversion Characteristics of WGS Catalysts for SEWGS System, Transactions of the Korean hydrogen and new energy society, 26 (2015) 96-104.
  • H. Lu, Y. Lu, M. Rostam-Abadi, CO2 sorbents for a sorption-enhanced water–gas-shift process in IGCC plants: A thermodynamic analysis and process simulation study, International Journal of Hydrogen Energy, 38 (2013) 6663-6672.
  • H. Feng, S. Wu, S. Huang, Y. Wu, J. Gao, Regenerable magnesium-based sorbent for high-pressure and moderate-temperature CO2 capture: Physicochemical structures and capture performances, Fuel, 159 (2015) 559-569.
  • H. Bohlbro, M. J rgensen, Catalysts for conversion of carbon monoxide, Chem Eng World, 5 (1970) 46-49.
  • H. Bohlbro, An investigation on the kinetics of the conversion of carbon monoxide with water vapour over iron oxide based catalysts: A contribution from The Haldor Tops e Research Laboratory: Vedb k, Gjellerup1969.
  • G.A. Olah, A. Goeppert, G.S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, The Journal of organic chemistry, 74 (2008) 487-498.
  • G. Sengupta, D. Das, M. Kundu, S. Dutta, S. Roy, R. Sahay, K. Mishra, S. Ketchik, Study of copper-zinc oxide catalysts, characterisation of the coprecipitate and mixed oxide, Applied catalysis, 55 (1989) 165-180.
  • G. Petrini, F. Montino, A. Bossi, F. Garbassi, Preparation and Characterization of Very Active Cu/ZnO and Cu/ZnO/Al2O3 LTS Catalysts using a Single Phase Cu-Zn Precursor Compound, Studies in Surface Science and Catalysis, (1983) 735-746.
  • G. Marland, T. Boden, R. Andres, A. Brenkert, C. Johnston, Global, regional, and national fossil fuel CO2 emissions, Trends: A compendium of data on global change, (2000) 37.
  • G. Focht, P. Ranade, D. Harrison, High-temperature desulfurization using zinc ferrite: regeneration kinetics and multicycle testing, Chemical Engineering Science, 44 (1989) 2919-2926.
  • G. Focht, P. Ranade, D. Harrison, High-temperature desulfurization using zinc ferrite: reduction and sulfidation kinetics, Chemical Engineering Science, 43 (1988) 3005-3013.
  • G. Chinchen, M. Spencer, Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide, Catalysis Today, 10 (1991) 293-301.
  • G. Bergeret, P. Gallezot, G. Ertl, H. Kn zinger, J. Weitkamp, Handbook of heterogeneous catalysis, VCH, Weinheim, 2 (1997) 439.
  • F. Zhang, M. Srinivasan, Self-assembled molecular films of aminosilanes and their immobilization capacities, Langmuir, 20 (2004) 2309-2314.
  • F. Su, C. Lu, W. Cnen, H. Bai, J.F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Science of the total environment, 407 (2009) 3017-3023.
  • F. Paniccia, P.G. Zambonin, Interaction of gases with ionic melts. Solubility of carbon dioxide and ammonia in molten alkali-metal nitrates, J. Chem. Soc., Faraday Trans. 1, 69 (1973) 2019-2025.
  • E. Sada, S. Katoh, H. Yoshii, I. Takemoto, N. Shiomi, Solubility of carbon dioxide in molten alkali halides and nitrates and their binary mixtures, J. Chem. Eng. Data, 26 (1981) 279-281.
  • E. Kuijpers, R. Tjepkema, W. Van der Wal, C. Mesters, S. Spronck, J. Geus, Structure-sensitivity of the water-gas shift reaction over highly active Cu/SiO2 catalysts, Applied Catalysis, 25 (1986) 139-147.
  • E. Kuijpers, R. Tjepkema, J. Geus, Elimination of the water gas shift reaction by direct processing of CO/H2/H2O over Ni/SiO2 catalysts, Journal of molecular catalysis, 25 (1984) 241-251.
  • D.S. Newsome, The water-gas shift reaction, Catalysis Reviews Science and Engineering, 21 (1980) 275-318.
  • D.D. Do, Adsorption analysis: equilibria and kinetics, Imperial college press London1998.
  • D.C. Cicero, METC hot gas desulfurization program overview, US DOE Morgantown Energy Technology Center, WV (United States), 1994.
  • D.-W. Lee, M.S. Lee, J.Y. Lee, S. Kim, H.-J. Eom, D.J. Moon, K.-Y. Lee, The review of Cr-free Fe-based catalysts for high-temperature water-gas shift reactions, Catalysis Today, 210 (2013) 2-9.
  • D.-W. Jeong, W.-J. Jang, J.-O. Shim, W.-B. Han, H.-S. Roh, U.H. Jung, W.L. Yoon, Low-temperature water–gas shift reaction over supported Cu catalysts, Renewable Energy, 65 (2014) 102-107.
  • D.-W. Jeong, H.S. Potdar, J.-O. Shim, W.-J. Jang, H.-S. Roh, H2 production from a single stage water–gas shift reaction over Pt/CeO2, Pt/ZrO2, and Pt/Ce(1-x)Zr(x)O2 catalysts, international journal of hydrogen energy, 38 (2013) 4502-4507.
  • D. Pearce, The role of carbon taxes in adjusting to global warming, The economic journal, 101 (1991) 938-948.
  • C.K. Lee, S. Ashtekar, L.F. Gladden, P.J. Barrie, Adsorption and desorption kinetics of hydrocarbons in FCC catalysts studied using a tapered element oscillating microbalance (TEOM). Part 1: experimental measurements, Chemical engineering science, 59 (2004) 1131-1138.
  • C. Rhodes, B. Peter Williams, F. King, G.J. Hutchings, Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst, Catalysis Communications, 3 (2002) 381-384.
  • C. Ratnasamy, J.P. Wagner, Water gas shift catalysis, Catalysis Reviews, 51 (2009) 325-440.
  • C. Descamps, C. Bouallou, M. Kanniche, Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal, Energy, 33 (2008) 874-881.
  • B.W. Hwang, J.H. Lim, H.J. Chae, H.-J. Ryu, D. Lee, J.B. Lee, H. Kim, S.C. Lee, J.C. Kim, CO2 capture and regeneration properties of MgO-based sorbents promoted with alkali metal nitrates at high pressure for the sorption enhanced water gas shift process, Process Safety and Environmental Protection, 116 (2018) 219-227.
  • B.G. Miller, Coal energy systems, Elsevier 2004.
  • B.-K. Na, K.-K. Koo, H.-M. Eum, H. Lee, H.K. Song, CO2 recovery from flue gas by PSA process using activated carbon, Korean Journal of Chemical Engineering, 18 (2001) 220-227.
  • B. Wang, A.P. C t , H. Furukawa, M. O’Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs, Nature, 453 (2008) 207.
  • B. Dou, C. Wang, H. Chen, Y. Song, B. Xie, Y. Xu, C. Tan, Research progress of hot gas filtration, desulphurization and HCl removal in coal-derived fuel gas: a review, Chemical Engineering Research and Design, 90 (2012) 1901-1917.
  • A.K. Sadhukhan, P. Gupta, R.K. Saha, Characterization of porous structure of coal char from a single devolatilized coal particle: Coal combustion in a fluidized bed, Fuel Processing Technology, 90 (2009) 692-700.
  • A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications–a review, Energy, 35 (2010) 2610-2628.
  • A.-T. Vu, Y. Park, P.R. Jeon, C.-H. Lee, Mesoporous MgO sorbent promoted with KNO3 for CO2 capture at intermediate temperatures, Chemical Engineering Journal 258 (2014) 254-264.
  • A. Silaban, D. Harrison, High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO (s) and CO2 (g), Chemical Engineering Communications, 137 (1995) 177-190.
  • A. Padurean, C.-C. Cormos, P. Agachi, Pre-combustion carbon dioxide capture by gas–liquid absorption for Integrated Gasification Combined Cycle power plants, 2012.
  • A. Hassanzadeh, J. Abbasian, Regenerable MgO-based sorbents for high-temperature CO2 removal from syngas: 1. Sorbent development, evaluation, and reaction modeling, Fuel, 89 (2010) 1287-1297.
  • A. Demessence, D.M. D’Alessandro, M.L. Foo, J.R. Long, Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine, Journal of the American Chemical Society, 131 (2009) 8784-8786.
  • A. Burnham, J. Han, C.E. Clark, M. Wang, J.B. Dunn, I. Palou-Rivera, Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum, Environmental science & technology, 46 (2011) 619-627.
  • A. Akyurtlu, Mixed metal oxide sorbents, Desulfurization of Hot Coal Gas, Springer1998, pp. 297-313.