박사

휘발성 디메틸 디설파이드가 식물 발달 및 식물 병원균에 미치는 영향

Tyagi, Swati 2018년
' 휘발성 디메틸 디설파이드가 식물 발달 및 식물 병원균에 미치는 영향' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Arabidospsis thaliana
  • Auxin signaling
  • DMDS
  • Pseudomonas syringae pv. tomato DC3000
  • RNA-seq
  • Scelotinia minor
  • dimethyl disulfide (DMDS)
  • ergosterol
  • growth promotion
  • induced systemic resistance
  • root system architecture
  • sa
  • salicylic acid (SA)
  • sclerotia
  • tomato
  • transcriptional analysis
  • voc
  • vocs
  • volatile organic compound (VOC)
  • 독성
  • 막 손상 기작
  • 뿌리 시스템 구조
  • 에르고스테롤
  • 운동성
  • 이황화메틸 (DMDS)
  • 전사체
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
602 0

0.0%

' 휘발성 디메틸 디설파이드가 식물 발달 및 식물 병원균에 미치는 영향' 의 참고문헌

  • van Loon, L.C., Bakker, P.A.H.M., Pieterse, C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453- 483.
  • de Ridder-Duine, A.S., Smant, W., van der Wal, A., van Veen, J.A., de Boer, W. 2006. Evaluation of a simple, non-alkaline extraction protocol to quantify soil ergosterol. Pedobiologia, 50(4), 293-300.
  • de Oliveira Pereira, F., Mendes, J.M., de Oliveira Lima, E. 2013. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Medical Mycology, 51(5), 507-13.
  • Zou, C.-S., Mo, M.-H., Gu, Y.-Q., Zhou, J.-P., Zhang, K.-Q. 2007. Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry, 39(9), 2371-2379.
  • Zimmerli, L., M traux, J.-P., Mauch-Mani, B. 2001. β-Aminobutyric Acid-Induced protection of arabidopsis against the necrotrophic Fungus Botrytis cinerea. Plant Physiology, 126(2), 517-523.
  • Zhou, J.Y., Li, X., Zheng, J.Y., Dai, C.C. 2016. Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea. Plant Physiology and Biochemistry, 101, 132-140.
  • Zhang, Z., Bian, L., Sun, X., Luo, Z., Xin, Z., Luo, F., Chen, Z. 2015. Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Pest Managment Science, 71(1), 96-104.
  • Zhang, X., Xue, J., G.A. 2009. Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathology, 59(2),382-391.
  • Zhang, S.Q., Klessig, D.F. 2001. MAPK cascades in plant defense signaling. Trends in Plant Science, 6(11), 520-527.
  • Zhang, J., Tian, H., Sun, H., Wang, X. 2016. Antifungal activity of trans-2-hexenal against Penicillium cyclopium by a membrane damage mechanism: antifungal activity of tran-2-hexenal against Penicillium cyclopium. Journal of food biochemistry, 41(2), e12289
  • Zhang, H.M., Sun, Y., Xie, X.T., Kim, M.S., Dowd, S.E., Pare, P.W. 2009. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant Journal, 58(4), 568-577.
  • Zhang, H., Kim, M.S., Sun, Y., Dowd, S.E., Shi, H.Z., Pare, P.W. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 21(6), 737-744.
  • Zhang, H., Kim, M.S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M.A., Ryu, C.M., Allen, R., Melo, I.S., Pare, P.W. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226(4), 839-51.
  • Zeller, S.L., Brandl, H., Schmid, B. 2007. Host-plant selectivity of rhizobacteria in a crop/weed model system. Plos One, 2(9), e846.
  • Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I., Pieterse, C.M.J. 2013. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiology, 162(1), 304-318.
  • Zamioudis, C., Korteland, J., Van Pelt, J.A., van Hamersveld, M., Dombrowski, N., Bai, Y., Hanson, J., Van Verk, M.C., Ling, H.Q., Schulze-Lefert, P., Pieterse, C.M.J. 2015. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant Journal, 84(2), 309- 322.
  • Yunus, F.-u.-N., Iqbal, M., Jabeen, K., Kanwal, Z., Rashid, F. 2016. Antagonistic activity of Pseudomonas fluorescens against fungal plant pathogen Aspergillus niger. Science Letteres, 4(1), 66-70.
  • Yung, P.Y., Grasso, L.L., Mohidin, A.F., Acerbi, E., Hinks, J., Seviour, T., Marsili, E., Lauro, F.M. 2016. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Scientific Reports, 6, 19899.
  • Yuan, G.L., Li, H.J., Yang, W.C. 2017. The integration of Gbeta and MAPK signaling cascade in zygote development. Scintific Reports, 7(1), 8732.
  • Yu, X., Lund, S.P., Scott, R.A., Greenwald, J.W., Records, A.H., Nettleton, D., Lindow, S.E., Gross, D.C., Beattie, G.A. 2013. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proceedings of the National Academy of Sciences of the United States of America,, 110(5), E425-34.
  • Youfu, Z., Roger, T., L., B.C., Andreas, S., Yang, H.S., A., H.G. 2003. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. The Plant Journal, 36(4), 485-499.
  • Ye, W., Won, D., Zhang, X. 2014. A preliminary ventilation rate determination methods study for residential buildings and offices based on VOC emission database. Building and Environment, 79, 168-180.
  • Yang, Y.X., Ahammed, G.J., Wu, C.J., Fan, S.Y., Zhou, Y.H. 2015. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Current Protein and Peptide Science, 16(5), 450-461.
  • Xu, J., Zhang, S. 2015. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science, 20(1), 56-64.
  • Xie, X., Zhang, H., Pare, P.W. 2009. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signaling and Behavior, 4(10), 948-53.
  • Xie, S.S., Wu, H.J., Zang, H.Y., Wu, L.M., Zhu, Q.Q., Gao, X.W. 2014. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Molecular Plant Microbe Interacttions, 27(7), 655-63.
  • Xie, S., Zang, H., Wu, H., Rajer, F.U., Gao, X. 2016. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae: Antibacterial activity of Bacillus VOCs. Molecular plant pathology, 19(1),49-58.
  • Wu, L., Wu, H., Chen, L., Xie, S., Zang, H., Borriss, R., Gao, X. 2014. Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Appllied Environmental Microbiology, 80(24), 7512-20.
  • Wouters, P.C., Bos, A.P., Ueckert, J. 2001. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appllied Environmental Microbiology, 67(7), 3092-101.
  • Wickramasuriya, A.M., Dunwell, J.M. 2015. Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics, 16, 301.
  • Wheatley, R.E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek, 81(1-4), 357- 364.
  • Werner, S., Polle, A., Brinkmann, N. 2016. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Applied Microbiology and Biotechnology, 100(20), 8651-8665.
  • Wenke, K., Wanke, D., Kilian, J., Berendzen, K., Harter, K., Piechulla, B. 2012. Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function. Plant Journal, 70(3), 445-459.
  • Wenke, K., Piechulla, B. 2013. The effects of volatile metabolites from rhizobacteria on Arabidopsis thaliana. in: Bacteria in Agrobiology: Crop Productivity, (Eds.) Maheshwari DK, Saraf M, A. A., Springer Berlin Heidelberg. Berlin, Heidelberg, pp. 379-400.
  • Wen, L. 2013. Cell Death in Plant Immune Response to Necrotrophs. Journal of Plant Biochemistry and Physiology, 6(1).
  • Weise, T., Kai, M., Piechulla, B. 2013. Bacterial ammonia causes significant plant growth inhibition. Plos One, 8(5).
  • Weikl, F., Ghirardo, A., Schnitzler, J.P., Pritsch, K. 2016. Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: Effects of age, nutrient availability, and co-cultivation. Scientific Reports, 26(6), 22152.
  • Weijers, D., Wagner, D. 2016. Transcriptional Responses to the Auxin Hormone. Annual Review in Plant Biology, 67, 539-74.
  • Weber, F.J., de Bont, J.A. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochimica et Biophysica Acta, 1286(3), 225-45.
  • Wasternack, C., Hause, B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111(6), 1021-1058.
  • Wasternack, C. 2007. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100(4), 681-697.
  • Wang, J., Chen, L., Tian, X., Gao, L., Niu, X., Shi, M., Zhang, W. 2013. Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels. Journal Proteomic Research, 12(11), 5302-5312.
  • Wang, C., Zhang, J., Chen, H., Fan, Y., Shi, Z. 2010. Antifungal activity of eugenol against Botrytis cinerea. Tropical Plant Pathology, 35, 137-143.
  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong XN. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology 17(20): 1784-1790.
  • Wan, M., Li, G., Zhang, J., Jiang, D., Huang, H.C. 2008. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biological Control, 46(3), 552-559.
  • Voisard, C., Keel, C., Haas, D., D fago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. The EMBO Journal, 8(2), 351-358.
  • Vo, U.U., Morris, M.P. 2014. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds. Journal of Air Waste Management Association, 64(6), 661-669.
  • Vespermann, A., Kai, M., Piechulla, B. (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appllied Environmental Microbiology, 73(17), 5639-5641.
  • Velazquez-Becerra, C., Macias-Rodriguez, L.I., Lopez-Bucio, J., Altamirano- Hernandez, J., Flores-Cortez, I., Valencia-Cantero, E. 2011. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant and Soil, 339(1-2), 329-340.
  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Boyce, A.N. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-A Review. Molecules, 21(5), E573.
  • Vaishnav, A., Kumari, S., Jain, S., Varma, A., Choudhary, D.K. 2015. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. Journal of Appllied Microbiology, 119(2), 539-51.
  • Ulloa-Benitez, A., Medina-Romero, Y.M., Sanchez-Fernandez, R.E., Lappe- Oliveras, P., Roque-Flores, G., Lisci, G.D., Suarez, T.H., Macias-Rubalcava, M.L. 2016. Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). Journal of Applied Microbiology, 121(2), 380-400.
  • Tyc, O., de Jager, V.C.L., van den Berg, M., Gerards, S., Janssens, T.K.S., Zaagman, N., Kai, M., Svatos, A., Zweers, H., Hordijk, C., Besselink, H., de Boer, W., Garbeva, P. 2017. Exploring bacterial interspecific interactions for discovery of novel antimicrobial compounds. Microbial Biotechnology, 10(4), 910-925.
  • Truong, D.-H., Delory, B.M., Brostaux, Y., Heuskin, S., Delaplace, P., Francis, F., Lognay, G. (2014) Plutella xylostella (L.) infestations at varying temperatures induce the emission of specific volatile blends by Arabidopsis thaliana (L.) Heynh. Plant Signaling and Behavior, 9(11), e973816.
  • Ton, J., Mauch-Mani, B. 2004. Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant Journal, 38(1), 119-30.
  • Teale, W.D., Paponov, I.A., Palme, K. (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 7(11), 847-859.
  • Tahir, H.A.S., Gu, Q., Wu, H., Raza, W., Safdar, A., Huang, Z., Rajer, F.U., Gao, X. 2017c. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biology, 17(1), 133.
  • Tahir, H.A.S., Gu, Q., Wu, H., Raza, W., Safdar, A., Huang, Z., Rajer, F.U., Gao, X. 2017b. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biology, 17(1), 133.
  • Tahir, H.A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M.V., Gao, X. 2017b. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171.
  • Tahir, H.A., Gu, Q., Wu, H., Niu, Y., Huo, R., Gao, X. 2017a. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Scientific Reports, 7, 40481.
  • Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T.S., Sandberg, G., Bhalerao, R., Ljung, K., Bennett, M.J. (2007) Ethylene upregulates auxin biosynthesis in arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell, 19(7), 2186-2196.
  • Swarup, R., Parry, G., Graham, N., Allen, T., Bennett, M. (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Molecular Biology, 49(3-4), 411-426.
  • Sukumar, P., Legue, V., Vayssieres, A., Martin, F., Tuskan, G.A., Kalluri, U.C. 2013. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environment, 36(5), 909-19.
  • Su, Z.Z., Mao, L.J., Li, N., Feng, X.X., Yuan, Z.L., Wang, L.W., Lin, F.C., Zhang, C.L. 2013. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLOS One, 8(4), e61332.
  • Strobel, G.A., Dirkse, E., Sears, J., Markworth, C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147(11), 2943-50.
  • Strobel, G. 2006. Harnessing endophytes for industrial microbiology. Current Opinion in Microbiology, 9(3), 240-244.
  • Stepanova, A.N., Yun, J., Likhacheva, A.V., Alonso, J.M. (2007) Multilevel interactions between ethylene and auxin in arabidopsis roots. Plant Cell, 19(7), 2169-2185.
  • Steinebrunner, F., Twele, R., Francke, W., Leuchtmann, A., Schiestl, F.P. 2008. Role of odour compounds in the attraction of gamete vectors in endophytic Epichloe fungi. New Phytologist, 178(2), 401-11.
  • Spoel, S.H., Dong, X.N. 2008. Making sense of hormone crosstalk during plant immune responses. Cell Host and Microbe, 3(6), 348-351.
  • Splivallo, R., Fischer, U., Gobel, C., Feussner, I., Karlovsky, P. 2009. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiology, 150(4), 2018-2029.
  • Spinelli, F., Noferini, M., Vanneste, J.L., Costa, G. 2010. Potentials of the electronic nose for the diagnosis of bacterial and fungal diseases in fruit trees. EPPO Bulletin, 40, 59-67.
  • Spinelli, F., Cellini, A., Vanneste, J.L., Rodriguez-Estrada, M.T., Costa, G., Savioli, S., Harren, F.J.M., Cristescu, S.M. 2012. Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees-Structure and Function, 26(1), 141-152.
  • Spaepen, S., Vanderleyden, J., Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425- 448.
  • Spaepen, S., Vanderleyden, J., Remans, R. (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Review, 31(4), 425-448.
  • Song, G.C., Ryu, C.M. 2013. Two volatile organic compounds trigger plant selfdefense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. International Journal of Molecular Sciences, 14(5), 9803-9819.
  • Soleimani, M., Shamsbakhsh, M., Taghavi, M., Kazemi, S. 2005. Biological control of stem and root-rot of wheat caused by Biopolaris spp by using antagonistic bacteria, Fluorescent Pseudomonas and Bacillus spp. Journal of Biological Science, 5(3), 347-353.
  • Shikano, I., Rosa, C., Tan, C.W., Felton, G.W. 2017. Tritrophic Interactions: Microbe-mediated plant effects on insect herbivores. Annual Review of Phytopathology, 55, 313-331.
  • Shi, Y., Niu, K., Huang, B., Liu, W., Ma, H. 2017. Transcriptional responses of creeping bentgrass to 2,3-butanediol, a bacterial volatile compound (bvc) analogue. Molecules, 22(8).
  • Shi, C.L., Park, H.B., Lee, J.S., Ryu, S., Ryu, C.M. (2010) Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90-166 is through both auxindependent and -independent signaling pathways. Moleulules and Cells, 29(3), 251-258.
  • Shatalin, K., Gusarov, I., Avetissova, E., Shatalina, Y., McQuade, L.E., Lippard, S.J., Nudler, E. 2008. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 105(3), 1009-1013.
  • Sharifi, R., Ryu, C.M. 2016. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Frontiers in Microbiology, 7, 196.
  • Sharaf, E.F., Farrag, A.A. 2004. Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici. Polish Journal of Microbiology, 53(2), 111-6.
  • Shaharoona, B., Imran, M., Arshad, M., Khalid, A. 2011. Manipulation of ethylene synthesis in roots through bacterial acc deaminase for improving nodulation in legumes. Critical Reviews in Plant Sciences, 30(3), 279-291.
  • Schulz-Bohm, K., Geisen, S., Wubs, E.R.J., Song, C.X., de Boer, W., Garbeva, P. 2017. The prey's scent - Volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME Journal, 11(3), 817- 820.
  • Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671.
  • Schmidt, R., de Jager, V., Zuhlke, D., Wolff, C., Bernhardt, J., Cankar, K., Beekwilder, J., van Ijcken, W., Sleutels, F., de Boer, W., Riedel, K., Garbeva, P. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Scientific Reports, 7(1), 862.
  • Schmidt, R., Etalo, D.W., de Jager, V., Gerards, S., Zweers, H., de Boer, W., Garbeva, P. 2015. Microbial small talk: Volatiles in fungal-bacterial interactions. Frontiers in Microbiology, 6, 1495.
  • Sasaki, Y., Oguchi, H., Kobayashi, T., Kusama, S., Sugiura, R., Moriya, K., Hirata, T., Yukioka, Y., Takaya, N., Yajima, S., Ito, S., Okada, K., Ohsawa, K., Ikeda, H., Takano, H., Ueda, K., Shoun, H. 2016. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling. Scientific Reports, 6, 222038.
  • Santoro, M.V., Zygadlo, J., Giordano, W., Banchio, E. 2011. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiology and Biochemistry, 49(10), 1177-1182.
  • Sanchez-Lopez, A.M., Bahaji, A., De Diego, N., Baslam, M., Li, J., Munoz, F.J., Almagro, G., Garcia-Gomez, P., Ameztoy, K., Ricarte-Bermejo, A., Novak, O., Humplik, J.F., Spichal, L., Dolezal, K., Ciordia, S., Mena, M.C., Navajas, R., Baroja-Fernandez, E., Pozueta-Romero, J. 2016a. Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomeraseindependent mechanisms. Plant Physiology, 172(3), 1989-2001.
  • Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Wei, H.X., Pare, P.W., Kloepper, J.W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4927-4932.
  • Ryu, C.-M., Hu, C.-H., Locy, R.D., Kloepper, J.W. (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil, 268(1), 285-292.
  • Ryu, C.-M., Farag, M.A., Hu, C.-H., Reddy, M.S., Wei, H.-X., Par , P.W., Kloepper, J.W. (2003) Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932.
  • Ryu, C.-M., Farag, M.A., Hu, C.-H., Reddy, M.S., Kloepper, J.W., Par , P.W. 2004a. Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. Plant Physiology, 134(3), 1017-1026.
  • Ryan, R.P., Dow, J.M. 2008. Diffusible signals and interspecies communication in bacteria. Microbiology, 154(7), 1845-58.
  • Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J., Benkova, E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell, 19(7), 2197-2212.
  • Rutherford, B.J., Dahl, R.H., Price, R.E., Szmidt, H.L., Benke, P.I., Mukhopadhyay, A., Keasling, J.D. 2010. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appllied Environmental Microbiology, 76(6), 1935-45.
  • Rushton, P., Somssich, I., Ringler, P., Shen, Q. 2010. WRKY transcription factors. Trends in Plant Science, 15, 247-58.
  • Rudrappa, T., Biedrzycki, M.L., Kunjeti, S.G., Donofrio, N.M., Czymmek, K.J., Pare, P.W., Bais, H.P. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative and Integrative Biology, 3(2), 130-8.
  • Rous, C.J., Fishman, M., Filiatrault, M.J. 2016. Interactions among rsm ncrnas and rsm rna-binding proteins in the plant pathogen Pseudomonas syringae DC3000. The FASEB Journal, 30(1_supplement), 1054.1-1054.1.
  • Rojas-Sol s, D., Zetter-Salm n, E., Contreras-P rez, M., Rocha-Granados, M.d.C., Mac as-Rodr guez, L., Santoyo, G. 2018. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and Agricultural Biotechnology, 13, 46-52.
  • Rodriguez, R.J., Low, C., Bottema, C.D., Parks, L.W. 1985. Multiple functions for sterols in Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 837(3), 336-43.
  • Robert-Seilaniantz, A., Grant, M., Jones, J.D.G. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, Vol 49, 49, 317-343.
  • Rijavec T, A., L. 2016. Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 18(7), 1785.
  • Reyes, L.H., Almario, M.P., Kao, K.C. 2011. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One, 6(3), e17678.
  • Raza, W., Ling, N., Yang, L., Huang, Q., Shen, Q. 2016b. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Scintific Reports, 6, 24856.
  • Raza, W., Ling, N., Yang, L., Huang, Q., Shen, Q. 2016b. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Scientific Reports, 6, 24856.
  • Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q., Shen, Q. 2016a. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiological Research,, 192, 103-113.
  • Raya-Gonzalez, J., Velazquez-Becerra, C., Barrera-Ortiz, S., Lopez-Bucio, J., Valencia-Cantero, E. 2017. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana. Protoplasma, 254(3), 1399-1410.
  • Rath, M., Mitchell, T.R., Gold, S.E. 2018. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiological Research, 208, 76-84.
  • Rasooli, I., Razzaghi-Abyaneh, M. 2004. Inhibitory effects of Thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control, 15(6), 479-483.
  • Rasmann, S., Bennett, A., Biere, A., Karley, A., Guerrieri, E. 2017. Root symbionts: Powerful drivers of plant above- and belowground indirect defenses. Insect Science, 24(6), 947-960.
  • Ramos, J.L., Duque, E., Gallegos, M.T., Godoy, P., Ramos-Gonzalez, M.I., Rojas, A., Teran, W., Segura, A. 2002. Mechanisms of solvent tolerance in gramnegative bacteria. Annual Reviewof Microbiology, 56, 743-768.
  • Rajer, F.U., Wu, H., Xie, Y., Xie, S., Raza, W., Tahir, H.A.S., Gao, X. 2017. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology, 163(4), 523-530.
  • Rajalingam, N., Lee, Y.H. 2018. Effects of green light on the gene expression and virulence of the plant pathogen Pseudomonas cichorii JBC1. European Journal of Plant Pathology, 150(1), 223-236.
  • Quigley, J.C.L., Corsi, R. 1995. Emissions of VOCs from a municipal sewer. Journal of the Air and Waste Management Association, 45(5), 395-403.
  • Punja, Z.K., Utkhede, R.S. 2003. Using fungi and yeasts to manage vegetable crop diseases. Trends in Biotechnology, 21(9), 400-7.
  • Popova, A., Koksharova, O., A. Lipasova, V., V Zaitseva, J., A. Katkova- Zhukotskaya, O., Eremina, S., Mironov, A., Chernin, L., A Khmel, I. (2014) Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. BioMed Research international,(11)12574.
  • Pog ny, M., Harrach, B.D., Hafez, Y.M., Barna, B., Kir ly, Z., P ldi, E. 2006. Role of reactive oxygen species in abiotic and biotic stresses in plants. Acta Phytopathologica et Entomologica Hungarica, 41(1-2), 23-35.
  • Pitts, R.J., Cernac, A., Estelle, M. (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant Journal, 16(5), 553-560.
  • Pini, C.V., Bernal, P., Godoy, P., Ramos, J.L., Segura, A. 2009. Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT-T1E. Microbial Biotechnology, 2(2), 253-261.
  • Ping, L., Boland, W. 2004. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends in Plant Science, 9(6), 263-6.
  • Pieterse, C.M.J., van Wees, S.C.M., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, N., Weisbeek, P.J., van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10(9), 1571-1580.
  • Piechulla, B., Lemfack, M.C., Kai, M. 2017. Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environment, 40(10), 2042-2067.
  • Piechulla, B., Degenhardt, J. 2014. The emerging importance of microbial volatile organic compounds. Plant Cell and Environment, 37(4), 811-812.
  • Picard, F., Loubiere, P., Girbal, L., Cocaign-Bousquet, M. 2013. The significance of translation regulation in the stress response. BMC Genomics, 14, 588.
  • Paul, D., Park, K.S. 2013. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors, 13(10), 13969-13977.
  • Park, Y.S., Dutta, S., Ann, M., Raaijmakers, J.M., Park, K. 2015. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and Biophysical Research Communications, 461(2), 361-365.
  • Park, S.H., Bao, Z., Butcher, B.G., D'Amico, K., Xu, Y., Stodghill, P., Schneider, D.J., Cartinhour, S., Filiatrault, M.J. 2014. Analysis of the small RNA spf in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. Microbiology, 160(5), 941-953.
  • Park, C.H., Kim, T.W., Son, S.H., Hwang, J.Y., Lee, S.C., Chang, S.C., Kim, S.H., Kim, S.W., Kim, S.K. 2010. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry, 71(4), 380-387.
  • OuYang, Q., Tao, N., Zhang, M. 2018. A damaged oxidative phosphorylation mechanism is involved in the antifungal activity of citral against Penicillium digitatum. Frontiers in Microbiology, 9(239).
  • Ossowicki, A., Jafra, S., Garbeva, P. 2017. The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. Plos One, 12(3), e0174362..
  • Ortiz-Castro, R., Diaz-Perez, C., Martinez-Trujillo, M., del Rio, R.E., Campos- Garcia, J., Lopez-Bucio, J. 2011. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 7253-7258.
  • Ortiz-Castro, R., Contreras-Cornejo, H.A., Macias-Rodriguez, L., Lopez-Bucio, J. 2009. The role of microbial signals in plant growth and development. Plant Signaling and Behavior, 4(8), 701-712.
  • O'Donnell, P.J., Schmelz, E.A., Moussatche, P., Lund, S.T., Jones, J.B., Klee, H.J. 2003. Susceptible to intolerance - a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant Journal, 33(2), 245-257.
  • Noselli, S., Perrimon, N. 2000. Signal transduction. Are there close encounters between signaling pathways? Science, 290, 68-9.
  • Nogales, J., Vargas, P., Farias, G.A., Olmedilla, A., Sanju n, J., Gallegos, M.-T. 2015. FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas syringae pv. tomato DC3000. Applied and Environmental Microbiology, 81(21), 7533-7545.
  • Nikaido, H., Takatsuka, Y. 2009. Mechanisms of RND multidrug efflux pumps. Biochimica Biophysica Acta, 1794(5), 769-881.
  • Nie, P.P., Li, X., Wang, S.N., Guo, J.H., Zhao, H.W., Niu, D.D. 2017. Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates pamptriggered immunity in Arabidopsis. Frontiers in Plant Science, 28(8), 238.
  • Naznin, H.A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., Hyakumachi, M. 2014. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLOS One, 9(1), e86882.
  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772): 436-439.
  • Nagayama, K., Fujita, K., Takashima, Y., Ardin, A.C., Ooshima, T., Matsumoto- Nakano, M. 2014. Role of ABC transporter proteins in stress responses of Streptococcus mutans. Oral Health Dental Management, 13(2), 359-65.
  • Nafisi, M., Fimognari, L., Sakuragi, Y. 2015. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. Phytochemistry, 112, 63-71.
  • Muller, A., Faubert, P., Hagen, M., Castell, W.Z., Polle, A., Schnitzler, J.P., Rosenkranz, M. 2013. Volatile profiles of fungi- chemotyping of species and ecological functions. Fungal Genetics and Biology, 54, 25-33.
  • Molina-Favero, C., Creus, C.M., Simontacchi, M., Puntarulo, S., Lamattina, L. 2008. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Molecular Plant-Microbe Interactions, 21(7), 1001-1009.
  • Miyamoto, K., Murakami, T., Kakumyan, P., Keller, N.P., Matsui, K. 2014. Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJournal, 2, e395.
  • Mirabella, R., Rauwerda, H., Allmann, S., Scala, A., Spyropoulou, E.A., de Vries, M., Boersma, M.R., Breit, T.M., Haring, M.A., Schuurink, R.C. 2015. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. Plant Journal, 83(6), 1082-1096.
  • Minerdi, D., Bossi, S., Maffei, M.E., Gullino, M.L., Garibaldi, A. 2011. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiology Ecology, 76(2), 342-351.
  • Minerdi, D., Bossi, S., Gullino, M.L., Garibaldi, A. 2009. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environmental Microbiology, 11(4), 844-854.
  • Mercier, J., Jim nez, J.I. 2004. Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biology and Technology, 31(1), 1-8.
  • Menzel, L.P., Chowdhury, H.M., Masso-Silva, J.A., Ruddick, W., Falkovsky, K., Vorona, R., Malsbary, A., Cherabuddi, K., Ryan, L.K., DiFranco, K.M., Brice, D.C., Costanzo, M.J., Weaver, D., Freeman, K.B., Scott, R.W., Diamond, G. 2017. Potent in vitro and in vivo antifungal activity of a small molecule host defense peptide mimic through a membrane-active mechanism. Scientific Reports, 7(1), 4353.
  • Meng, X.Z., Zhang, S.Q. 2013. MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology, 51, 245-266.
  • Meldau, D.G., Meldau, S., Hoang, L.H., Underberg, S., Wunsche, H., Baldwin, I.T. 2013. Dimethyl Disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell, 25(7), 2731-2747.
  • McSteen, P., Zhao, Y. 2008. Plant hormones and signaling: Common themes and new developments. Developmental Cell, 14(4), 467-473.
  • McDowell, J.M., Dangl, J.L. 2000. Signal transduction in the plant immune response. Trends in Biochemical Sciences, 25(2), 79-82.
  • McDonnell, G., Denver Russell, A. 1999. Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiological Review. 12(1), 147-179.
  • Mauch-Mani, B., Baccelli, I., Luna, E., Flors, V. 2017. Defense Priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68(68), 485-512.
  • Martinez-Medina, A., Van Wees, S.C.M., Pieterse, C.M.J. 2017. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell and Environment, 40(11), 2691-2705.
  • Markakis, M.N., De Cnodder, T., Lewandowski, M., Simon, D., Boron, A., Balcerowicz, D., Doubbo, T., Taconnat, L., Renou, J.-P., H fte, H., Verbelen, J.-P., Vissenberg, K. (2012) Identification of genes involved in the ACCmediated control of root cell elongation in Arabidopsis thaliana. BMC Plant Biology, 12(1), 208.
  • Mantelin, S., Desbrosses, G., Larcher, M., Tranbarger, T.J., Cleyet-Marel, J.C., Touraine, B. 2006. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta, 223(3), 591-603.
  • Malinverni, J.C., Silhavy, T.J. 2009. An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 8009-8014.
  • Maffei, M.E., Gertsch, J., Appendino, G. 2011. Plant volatiles: Production, function and pharmacology. Natural Product Reports, 28(8), 1359-1380.
  • Macias-Rubalcava, M.L., Hernandez-Bautista, B.E., Oropeza, F., Duarte, G., Gonzalez, M.C., Glenn, A.E., Hanlin, R.T., Anaya, A.L. 2010. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. Journal of Chemical Ecology, 36(10), 1122-1131.
  • Lyons, R., Stiller, J., Powell, J., Rusu, A., Manners, J.M., Kazan, K. 2015. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLOS One, 10(4), e0121902.
  • Lynch, J.M. and Whipps, J.M. (1990) Substrate flow in the rhizosphere. Plant and Soil, 129(1), 1-10.
  • Luo, J., Li, Z., Wang, J., Weng, Q., Chen, S., Hu, M. 2016. Antifungal activity of isoliquiritin and its inhibitory effect against Peronophythora litchi Chen through a membrane damage mechanism. Molecules, 21(2), 237.
  • Luo, C.X., Schnabel, G. 2008. The Cytochrome P450 lanosterol 14 -demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Applied Enviornmental microbiology, 74(2), 359-366.
  • Lugtenberg B, Rozen DE, F., K. 2017. Wars between microbes on roots and fruits. F1000Res, 6, 343.
  • Lopez-Bucio, J., Millan-Godinez, M., Mendez-Bravo, A., Morquecho-Contreras, A., Ramirez-Chavez, E., Molina-Torres, J., Perez-Torres, A., Higuchi, M., Kakimoto, T., Herrera-Estrella, L. 2007. Cytokinin receptors are involved in alkamide regulation of root and shoot development in arabidopsis. Plant Physiology, 145(4), 1703-1713.
  • Lopez-Bucio, J., Campos-Cuevas, J.C., Hernandez-Calderon, E., Velasquez-Becerra, C., Farias-Rodriguez, R., Macias-Rodriguez, L.I., Valencia-Cantero, E. (2007) Bacillus megaterium rhizobacteria promote growth and alter rootsystem architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Moleular Plant Microbe Interaction, 20(2), 207-217.
  • Lo Cantore, P., Giorgio, A., Iacobellis, N.S. 2015. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii. Frontiers in Microbiology, 6(6),1082.
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408.
  • Liu, W.-w., Mu, W., Zhu, B.-y., Du, Y.-c., Liu, F. 2008. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agricultural Sciences in China, 7(9), 1104-1114.
  • Lisjak M, Teklic T, Wilson ID, e.a. 2013. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ, 36, 1607-16.
  • Li, X., Sun, Z., Shao, S., Zhang, S., Ahammed, G.J., Zhang, G., Jiang, Y., Zhou, J., Xia, X., Zhou, Y., Yu, J., Shi, K. 2015. Tomato- Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata. Journal of Experimental Botany, 66(1), 307-316.
  • Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., Hsiang, T. 2010. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biology and Technology, 58(2), 157-165.
  • Li, H., Gong, H., Qi, Y., Li, J., Ji, X., Sun, J., Tian, R., Bao, H., Song, X., Chen, Q., Liu, G. 2017. In vitro and in vivo antifungal activities and mechanism of heteropolytungstates against Candida species. Scientific Reports, 7(1), 16942.
  • Lewis, D.R., Negi, S., Sukumar, P., Muday, G.K. (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development, 138(16), 3485-3495.
  • Leocata, S., Pirruccio, G., Medico, E., Myrta, A., Greco, N. 2014. Dimethyl disulfide (dmds): a new soil fumigant to control root-knot nematodes, meloidogyne spp., in protected crops in sicily, italy. International Society for Horticultural Science (ISHS), Leuven, Belgium. pp. 415-420.
  • Leng, Y.Q., Zhong, S.B. 2015. The role of mitogen-activated protein (map) kinase signaling components in the fungal development, stress response and virulence of the fungal cereal pathogen Bipolaris sorokiniana. Plos One, 10(5), e0128291.
  • Lemke, J.J., Sanchez-Vazquez, P., Burgos, H.L., Hedberg, G., Ross, W., Gourse, R.L. 2011. Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5712-5717.
  • Lemfack, M.C., Nickel, J., Dunkel, M., Preissner, R., Piechulla, B. 2014. mVOC: a database of microbial volatiles. Nucleic Acids Res, 42(Database issue), D744- 748.
  • Lemfack, M.C., Gohlke, B.O., Toguem, S.M.T., Preissner, S., Piechulla, B., Preissner, R. 2018. mVOC 2.0: a database of microbial volatiles. Nucleic Acids Research, 46(D1), D1261-D1265.
  • Lee, S., Hung, R., Yap, M., Bennett, J.W. 2015. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Archives of Microbiology, 197(5), 723-727.
  • Lee, B., Farag, M.A., Park, H.B., Kloepper, J.W., Lee, S.H., Ryu, C.M. 2012. Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a c13 volatile produced by Paenibacillus polymyxa. Plos One, 7(11), e48744.
  • Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M.J., Garrido, T., Richter, P., Tamayo, J., Donoso, R. 2016. Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front Microbiol, 7, 1838.
  • Lazazzara, V., Perazzolli, M., Pertot, I., Biasioli, F., Puopolo, G., Cappellin, L. 2017. Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains. Microbiol Res, 201, 52-62.
  • Lavenus, J., Goh, T., Guyomarc'h, S., Hill, K., Lucas, M., Voss, U., Kenobi, K., Wilson, M.H., Farcot, E., Hagen, G., Guilfoyle, T.J., Fukaki, H., Laplaze, L., Bennett, M.J. 2015. Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. Plant Cell, 27(5), 1368-1388.
  • Laluk, K., Mengiste, T. 2010. Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book, 8, e0136.
  • Laluk, K., Luo, H., Chai, M., Dhawan, R., Lai, Z., Mengiste, T. 2011. Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell, 23(8), 2831-2849.
  • L toff , S., Audrain, B., Bernier, S.P., Delepierre, M., Ghigo, J.-M. 2014. Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH. mBio, 5(1), e00944-13 .
  • L pez-Gresa, M.P., Lis n, P., Campos, L., Rodrigo, I., Rambla, J.L., Granell, A., Conejero, V., Bell s, J.M. 2017. A non-targeted metabolomics approach unravels the vocs associated with the tomato immune response against Pseudomonas syringae. Frontiers in Plant Science, 8, 1188.
  • Kwon, Y.S., Ryu, C.M., Lee, S., Park, H.B., Han, K.S., Lee, J.H., Lee, K., Chung, W.S., Jeong, M.J., Kim, H.K., Bae, D.W. 2010. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta, 232(6), 1355- 1370.
  • Kurz, M., Burch, A.Y., Seip, B., Lindow, S.E., Gross, H. 2010. Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance. Applied and Environmental Microbiology, 76(16), 5452-5462.
  • Kuhn, H., Lorek, J., Kwaaitaal, M., Consonni, C., Becker, K., Micali, C., van Themaat, E.V., Bednarek, P., Raaymakers, T.M., Appiano, M., Bai, Y.L., Meldau, D., Baum, S., Conrath, U., Feussner, I., Panstruga, R. 2017. Key components of different plant defense pathways are dispensable for powdery mildew resistance of the Arabidopsis mlo2 mlo6 mlo12 triple mutant. Frontiers in Plant Science, 8, 1006.
  • Kremer, R.J., Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology, 43(3), 182- 186.
  • Kottb, M., Gigolashvili, T., Gro kinsky, D., Piechulla, B. 2015. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Frontires in Microbiology, 6(995).
  • Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., Kogel, K.-H. 2013. Hostinduced gene silencing of cytochrome P450 lanosterol C14α-demethylase– encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences, 110(48), 19324-19329.
  • Kishimoto, K., Matsui, K., Ozawa, R.e.a. 2007. Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. Journal of Genetics and Plant Pathology, 73(1), 35-37.
  • Kim, K.S., Lee, S., Ryu, C.M. 2013. Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance. Nature Communications, 4, 1809.
  • Khalid, A., Akhtar, M.J., Mahmood, M.H., Arshad, M. 2006. Effect of substratedependent microbial ethylene production on plant growth. Microbiology, 75(2), 231-236.
  • Kazan, K., Manners, J.M. 2009. Linking development to defense: auxin in plantpathogen interactions. Trends in Plant Science, 14(7), 373-382.
  • Karamanoli, K., Menkissoglu-Spiroudi, U., Bosabalidis, A.M., Vokou, D., Constantinidou, H.I.A. 2005. Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology, 15(2), 59-67.
  • Kandel, S.L., Firrincieli, A., Joubert, P.M., Okubara, P.A., Leston, N.D., McGeorge, K.M., Mugnozza, G.S., Harfouche, A., Kim, S.H., Doty, S.L. 2017. An in vitro study of bio-control and plant growth promotion potential of salicaceae endophytes. Frontiers in Microbiology, 8(13), 386.
  • Kanchiswamy, C.N., Malnoy, M., Maffei, M.E. 2015. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science, 20(4), 206-211.
  • Kai, M., Piechulla, B. 2010. Impact of volatiles of the rhizobacteria Serratia odorifera on the moss Physcomitrella patens. Plant Signaling and Behaviour, 5(4), 444-6.
  • Kai, M., Piechulla, B. 2009. Plant growth promotion due to rhizobacterial volatiles-- an effect of CO2? FEBS Letters, 583, 3473-7.
  • Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., Piechulla, B. 2009. Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology, 81(6), 1001-1012.
  • Kai, M., Effmert, U., Piechulla, B. 2016. Bacterial-plant-interactions: Approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Frontiers in Microbiology, 7, 108.
  • Kai, M., Crespo, E., Cristescu, S.M., Harren, F.J., Francke, W., Piechulla, B. 2010. Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Applied Microbiology and Biotechnology, 88(4), 965-976.
  • Kai, M. and Piechulla, B. (2010) Impact of volatiles of the rhizobacteria Serratia odorifera on the moss Physcomitrella patens. Plant Signaling Behaviour, 5(4), 444-446.
  • Kabelitz, N., Santos, P.M., Heipieper, H.J. 2003. Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiology Letters, 220(2), 223-227.
  • Junker, R.R., Loewel, C., Gross, R., Dotter, S., Keller, A., Bluthgen, N. 2011. Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biology, 13(6), 918-924.
  • Jishma, P., Hussain, N., Chellappan, R., Rajendran, R., Mathew, J., Radhakrishnan, E.K. 2017. Strain-specific variation in plant growth promoting volatile organic compounds production by five different Pseudomonas spp. as confirmed by response of Vigna radiata seedlings. Journal of Applied Microbiology, 123(1), 204-216.
  • Jin, Z.P., Shen, J.J., Qiao, Z.J., Yang, G.D., Wang, R., Pei, Y.X. 2011. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 414(3), 481-486.
  • Jia, H., Hu, Y., Fan, T., Li, J. 2015. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Scientific Reports, 5, 8251.
  • Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. (1987) GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907.
  • Jacobsen, T. 1995. Acute toxicity of 16 water-soluble chemicals to the fungus Geotrichum candidum measured by reduction in glucose uptake. Toxicology in Vitro, 9(2), 169-73.
  • Jacobs, A.K., Lipka, V., Burton, R.A., Panstruga, R., Strizhov, N., Schulze-Lefert, P., Fincher, G.B. 2003. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. The Plant Cell, 15(11), 2503-2513.
  • Isabel, R. ., Juan, R.H.J., Manuel, M.P., Pablo, G.M., Gloria, G.C., Pablo, R.P., Emilia, L.S. 2014. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000. Environmental Microbiology, 16(7), 2072-2085.
  • Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., Francini, A., Khan, M.I.R. 2017. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Frontiers in Plant Science, 8(4), 475.
  • Insam, H., Seewald, M.S.A. 2010. Volatile organic compounds (VOCs) in soils. Biology and Fertility of Soils, 46(3), 199-213.
  • Imam, J., Shukla, P., Mandal, N.P., Variar, M. 2017. Microbial interactions in plants: perspectives and applications of proteomics. Current Protein and Peptide Science, 18(9), 956-965.
  • Ikeuchi, M., Ogawa, Y., Iwase, A., Sugimoto, K. 2016. Plant regeneration: cellular origins and molecular mechanisms. Development, 143(9), 1442-1451.
  • Idriss, E.E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., Borriss, R. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology, 148(7), 2097-109.
  • Hutchings, M.L., Alpha-Cobb, C.J., Hiller, D.A., Berro, J., Strobel, S.A. 2017. Mycofumigation through production of the volatile DNA-methylating agent N-methyl-N-nitrosoisobutyramide by fungi in the genus Muscodor. Journal of Biology and Chemistry, 292(18), 7358-7371.
  • Hussain, S., Siddique, T., Saleem, M., Arshad, M., Khalid, A. 2009. Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions. Advances in Agronomy, 102, 159-200.
  • Hunziker, L., Bonisch, D., Groenhagen, U., Bailly, A., Schulz, S., Weisskopf, L. 2015. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Applied and Environmental Microbiology, 81(3), 821-830.
  • Hung, R., Lee, S., Bennett, J. 2013. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology, 6(1), 19-26.
  • Huang, X.F., Chaparro, J.M., Reardon, K.F., Zhang, R.F., Shen, Q.R., Vivanco, J.M. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany-Botanique, 92(4), 267-275.
  • Huang, C.J., Tsay, J.F., Chang, S.Y., Yang, H.P., Wu, W.S., Chen, C.Y. 2012. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Management Science, 68(9), 1306-1310.
  • Hossain, M.M., Sultana, F., Hyakumachi, M. 2017. Role of ethylene signalling in growth and systemic resistance induction by the plant growth-promoting fungus Penicillium viridicatum in Arabidopsis. Journal of Phytopathology, 165(7-8), 432-441.
  • Hiscox, J.D. and Israelstam, G.F. (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334.
  • Hern ndez-Le n, R., Rojas-Sol s, D., Contreras, M., Orozco-Mosqueda, M., I. Mac as-Rodr guez, L., Reyes, H., Valencia-Cantero, E., Santoyo, G. 2014. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 81, 83-92.
  • Hennequin, C., Collignon, A., Karjalainen, T. 2001. Analysis of expression of GroEL (Hsp60) of Clostridium difficile in response to stress. Microbial Pathogensis, 31(5), 255-260.
  • Heipieper, H.J., Meinhardt, F., Segura, A. 2003. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiology Letters, 229(1), 1-7.
  • Hartman, G.L., Pawlowski, M.L., Chang, H.X., Hill, C.B. 2016. 3 - Successful Technologies and Approaches Used to Develop and Manage Resistance against Crop Diseases and Pests A2 - Madramootoo, Chandra. in: Emerging Technologies for Promoting Food Security, Woodhead Publishing. Oxford, pp. 43-66.
  • Hardham, A.R., Jones, D.A., Takemoto, D. 2007. Cytoskeleton and cell wall function in penetration resistance. Current Opinion in Plant Biology, 10(4), 342-348.
  • Hao, P., Liu, C., Wang, Y., Chen, R., Tang, M., Du, B., Zhu, L., He, G. 2008. Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiology, 146(4), 1810- 1820.
  • Hao, J.J., Subbarao, K.V., Duniway, J.M. 2003. Germination of Sclerotinia minor and S. sclerotiorum sclerotia under various soil moisture and temperature combinations. Phytopathology, 93(4), 443-50.
  • Han, S.H., Lee, S.J., Moon, J.H., Park, K.H., Yang, K.Y., Cho, B.H., Kim, K.Y., Kim, Y.W., Lee, M.C., Anderson, A.J., Kim, Y., C. 2006. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Molecular Plant Microbe Interacttion, 19, 924-30.
  • Han, D., Yan, D., Cao, A., Fang, W., Liu, P., Li, Y., Ouyang, C., Wang, Q. 2017. Degradation of dimethyl disulphide in soil with or without biochar amendment. Pest Managment Science, 73(9), 1830-1836.
  • Hamel, L.P., Nicole, M.C., Duplessis, S., Ellis, B.E. 2012. Mitogen-activated protein kinase signaling in plant-interacting fungi: Distinct messages from conserved messengers. Plant cell, 24(4), 1327-1351.
  • Gutierrez-Luna, F.M., Lopez-Bucio, J., Altamirano-Hernandez, J., Valencia-Cantero, E., de la Cruz, H.R., Macias-Rodriguez, L. 2010. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51(1), 75-83.
  • Gu, Y.-Q., Mo, M.-H., Zhou, J.-P., Zou, C.-S., Zhang, K.-Q. 2007. Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biology and Biochemistry, 39(10), 2567-2575.
  • Groenhagen, U., Baumgartner, R., Bailly, A., Gardiner, A., Eberl, L., Schulz, S., Weisskopf, L. 2013. Production of bioactive volatiles by different Burkholderia ambifaria strains. Journal of Chemical Ecology, 39(10), 1343- 1345.
  • Grant, M.R., Jones, J.D.G. 2009. Hormone (Dis)harmony moulds plant health and disease. Science, 324(5928), 750-752.
  • Graham, J.H., Linderman, R.G. 1980. Ethylene production by ectomycorrhizal fungi, Fusarium-Oxysporum F-Sp Pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected douglas-fir roots. Canadian Journal of Microbiology, 26(11), 1340-1347.
  • Govrin, E.M., Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10(13), 751-757.
  • Gliwicka, M., Nowak, K., Balazadeh, S., Mueller-Roeber, B., Gaj, M.D. 2013. Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLOS One, 8(7), e69261.
  • Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43: 205-227.
  • Giorgio, A., De Stradis, A., Lo Cantore, P., Iacobellis, N.S. 2015. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Frontiers in Microbiology, 6, 1056.
  • Gillis, M. 2003. DMDS- 2003 field trials in California. In: Proceedings of 2003 annual international research conference on methyl bromide alternatives and emission reductions; 3-6 November 2003; San Diego, CA, USA. Methyl Bromide Alternative Outreach, Fresno, CA.
  • Garnica-Vergara, A., Barrera-Ortiz, S., Munoz-Parra, E., Raya-Gonzalez, J., Mendez-Bravo, A., Macias-Rodriguez, L., Ruiz-Herrera, L.F., Lopez-Bucio, J. 2016. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytologist, 209(4), 1496- 1512.
  • Garcia-Mata, C., Lamattina, L. 2010. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytologist, 188(4), 977-984.
  • Garbeva, P., Hordijk, C., Gerards, S., Boer, W. 2014. Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiology Ecology, 87(3), 639-649.
  • Gao, Q.M., Zhu, S.F., Kachroo, P., Kachroo, A. 2015. Signal regulators of systemic acquired resistance. Frontiers in Plant Science, 6(13), 228.
  • Gamliel, A., Austerweil, M., Kritzman, G. 2000. Non-chemical approach to soilborne pest management – organic amendments. Crop Protection, 19(8), 847-853.
  • Freire, E.S., Campos, V.P., Pinho, R.S.C., Oliveira, D.F., Faria, M.R., Pohlit, A.M., Noberto, N.P., Rezende, E.L., Pfenning, L.H., Silva, J.R.C. 2012. Volatile substances produced by Fusarium oxysporum from coffee rhizosphere and other microbes affect Meloidogyne incognita and Arthrobotrys conoides. Journal of Nematology, 44(4), 321-328.
  • Freeman, J., Rideout, S., Wimer, A. (2009) Dimethyl disulfide use for bacterial wilt management and weed control in virginia tomatoes: American society of Horticultural Science;.44(69), 571-571.
  • Fravel, D.R., Connick, W.J., Jr., Grimm, C.C., Lloyd, S.W. 2002. Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii. Journal Agriculture and Food Chemistry, 50(13), 3761-4.
  • Forte, E., Borisov, V.B., Falabella, M., Colaco, H.G., Tinajero-Trejo, M., Poole, R.K., Vicente, J.B., Sarti, P., Giuffre, A. 2016. The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth. Scientific Reports, 6, 23788.
  • Flores-Vargas, R.D., O'Hara, G.W. 2006. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. Journal of Applied Microbiology, 100(5), 946-954.
  • Fincheira, P., Venthur, H., Mutis, A., Parada, M., Quiroz, A. 2016. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species. Microbiological Research, 193, 39-47.
  • Filiatrault, M.J., Stodghill, P.V., Bronstein, P.A., Moll, S., Lindeberg, M., Grills, G., Schweitzer, P., Wang, W., Schroth, G.P., Luo, S., Khrebtukova, I., Yang, Y., Thannhauser, T., Butcher, B.G., Cartinhour, S., Schneider, D.J. 2010. Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. Journal of Bacteriology, 192(9), 2359-2372.
  • Fiddaman, P.J., Rossall, S. 1994. Effect of Substrate on the Production of Antifungal Volatiles from Bacillus subtilis. Journal of Applied Bacteriology, 76(4), 395- 405.
  • Fialho, M.B., de Andrade, A., Bonatto, J.M., Salvato, F., Labate, C.A., Pascholati, S.F. 2016. Proteomic response of the phytopathogen Phyllosticta citricarpa to antimicrobial volatile organic compounds from Saccharomyces cerevisiae. Microbiol Resources, 183, 1-7.
  • Fialho, M.B., Moraes, M.H.D.d., Tremocoldi, A.R., Pascholati, S.F. 2011. Potential of antimicrobial volatile organic compounds to control Sclerotinia sclerotiorum in bean seeds. Pesquisa Agropecu ria Brasileira, 46, 137-142.
  • Fernando, W.G.D., Ramarathnam, R., Krishnamoorthy, A.S., Savchuk, S.C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955-964.
  • Felten, J., Kohler, A., Morin, E., Bhalerao, R.P., Palme, K., Martin, F., Ditengou, F.A., Legue, V. 2009. The Ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiology, 151(4), 1991-2005.
  • Farag, M.A., Zhang, H., Ryu, C.M. 2013. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. Journal of Chemical Ecology, 39(7), 1007-1018.
  • Farag, M.A., Song, G.C., Park, Y.S., Audrain, B., Lee, S., Ghigo, J.M., Kloepper, J.W., Ryu, C.M. 2017. Biological and chemical strategies for exploring interand intra-kingdom communication mediated via bacterial volatile signals. Nature Protocoles, 12(7), 1359-1377.
  • Estrada, J.M., Rodriguez, E., Quijano, G., Munoz, R. 2012. Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities. Bioprocess and Biosystems Engineering, 35(9), 1477-1488.
  • Engl, C., Waite, C.J., McKenna, J.F., Bennett, M.H., Hamann, T., Buck, M. 2014. Chp8, a diguanylate cyclase from Pseudomonas syringae pv. tomato DC3000, suppresses the pathogen-associated molecular pattern flagellin, increases extracellular polysaccharides, and promotes plant immune evasion. mBio, 5(3), e01168-14.
  • El-Tarabily, K., H. Soliman, M., Nassar, A.H., Al-Hassani, D., Sivasithamparam, K., McKenna, F., Hardy, G. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathology, 49(5), 573- 583.
  • El-Hasan, A., Buchenauer, H. 2009. Actions of 6-Pentyl-alpha-pyrone in controlling seedling blight incited by Fusarium moniliforme and inducing defence responses in maize. Journal of Phytopathology, 157(11-12), 697-707.
  • Ekins, M., A. B. Aitken, E., Goulter, K. 2002. Carpogenic germination of Sclerotinia minor and potential distribution in Australia. Australian Plant Pathology, 31(3), 259-265.
  • Eckert, C., Xu, W., Xiong, W., Lynch, S., Ungerer, J., Tao, L., Gill, R., Maness, P.C., Yu, J.P. 2014. Ethylene-forming enzyme and bioethylene production. Biotechnology for Biofuels, 7(1), 33.
  • Dugravot, S., Grolleau, F., Macherel, D., Rochetaing, A., Hue, B., Stankiewicz, M., Huignard, J., Lapied, B. 2003. Dimethyl disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunction and activation of insect K(ATP) channels. Journal of Neurophysiology, 90(1), 259-270.
  • Dubois, M., Van den Broeck, L., Inze, D. 2018. The pivotal role of ethylene in plant growth. Trends in Plant Science, 23(4), 311-323.
  • Dowd, C., Wilson, I.W., McFadden, H. 2004. Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Molecular Plant-Microbe Interactions, 17(6), 654-67.
  • Ditengou, F.A., Muller, A., Rosenkranz, M., Felten, J., Lasok, H., van Doorn, M.M., Legue, V., Palme, K., Schnitzler, J.P., Polle, A. 2015. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 6, 6279.
  • Dillard, H.R., Ludwig, J.W., Hunter, J.E. 1995. Conditioning sclerotia of Sclerotinia sclerotiorum for carpogenic germination. Plant Science, 79(4), 411-415.
  • Dicke, M., van Loon, J.J., Soler, R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology, 5(5), 317-324.
  • Denance, N., Sanchez-Vallet, A., Goffner, D., Molina, A. 2013. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 4, 155.
  • Delory, B.M., Delaplace, P., Fauconnier, M.e.a. 2016. Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant and Soil, 402(1-2), 1-26.
  • Delaplace, P., Delory, B.M., Baudson, C., de Cazenave, M.M.S., Spaepen, S., Varin, S., Brostaux, Y., du Jardin, P. 2015. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biology, 15.
  • Del Giudice, L., Massardo, D.R., Pontieri, P., Bertea, C.M., Mombello, D., Carata, E., Tredici, S.M., Tala, A., Mucciarelli, M., Groudeva, V.I., De Stefano, M., Vigliotta, G., Maffei, M.E., Alifano, P. 2008. The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environmental Microbiology, 10(10), 2824-2841.
  • De Vrieze, M., Pandey, P., Bucheli, T.D., Varadarajan, A.R., Ahrens, C.H., Weisskopf, L., Bailly, A. 2015. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Frontiers in Microbiology, 6, 1295.
  • Davies, P.J. 1995. Plant Hormones-Physiology, Biochemistry and Molecular Biology. (Dordrecht: The Netherlands: Kluwer Academic Publishers).
  • Davidson, A.L., Dassa, E., Orelle, C., Chen, J. 2008. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiology and Molecular Biology Review, 72(2), 317-364.
  • Dangi, S., Tirado-Corbala, R., Cabrera, J., Wang, D., Gerik, J. 2014. Soil biotic and abiotic responses to dimethyl disulfide spot drip fumigation in established grape vines. Soil Biology and Biochemistry, 78, 520–530
  • Dandurishvili, N., Toklikishvili, N., Ovadis, M., Eliashvili, P., Giorgobiani, N., Keshelava, R., Tediashvili, M., Vainstein, A., Khmel, I., Szegedi, E., Chernin, L. 2011. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. Journal of Appllied Microbiology, 110(1), 341-52.
  • D'Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., Turlings, T.C.J. 2014. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environment, 37(4), 813-826.
  • Cristescu, S.M., De Martinis, D., Hekkert, S.T., Parker, D.H., Harren, F.J.M. 2002. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Applied and Environmental Microbiology, 68(11), 5342-5350.
  • Cosgrove, D.J. 2000. Loosening of plant cell walls by expansins. Nature, 407(6802), 321-6.
  • Cortes‐Barco M., A., Goodwin H., P., Hsiang, T. 2010. Comparison of induced resistance activated by benzothiadiazole, (2R,3R)‐butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathology, 59(4), 643-653
  • Cordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., Carrion, V.J., Raaijmakers, J.M. 2017. Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Frontiers in Plant Science, 8, 1262.
  • Coosemans, J. 2005. Dimethyl disulphide (DMDS): A potential novel nematicide and soil disinfectant. Acta Horticalture, 698, 57-64
  • Contreras-Cornejo, H.A., Macias-Rodriguez, L., Cortes-Penagos, C., Lopez-Bucio, J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149(3), 1579-1592.
  • Contesto, C., Milesi, S., Mantelin, S., Zancarini, A., Desbrosses, G., Varoquaux, F., Bellini, C., Kowalczyk, M., Touraine, B. 2010. The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta, 232(6), 1455-1470.
  • Colcombet, J., Hirt, H. 2008. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochemical Journal, 413, 217-226.
  • Claret, L., Miquel, S., Vieille, N., Ryjenkov, D.A., Gomelsky, M., Darfeuille- Michaud, A. 2007. The flagellar sigma factor FliA regulates adhesion and invasion of Crohn disease-associated Escherichia coli via a cyclic dimeric GMP-dependent pathway. Journal of Biology and Chemistry, 282(46), 33275-33283.
  • Chung, J.H., Song, G.C., Ryu, C.M. 2016. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Molecular Biology, 90(6), 677-687.
  • Choudhary, D.K., Johri, B.N. 2009. Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493-513.
  • Choi, H.K., Song, G.C., Yi, H.S., Ryu, C.M. 2014. Field Evaluation of the Bacterial Volatile Derivative 3-Pentanol in Priming for Induced Resistance in Pepper. Journal of Chemical Ecology, 40(8), 882-892.
  • Cho, S.M., Kang, B.R., Han, S.H., Anderson, A.J., Park, J.Y., Lee, Y.H., Cho, B.H., Yang, K.Y., Ryu, C.M., Kim, Y.C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant Microbe Interaction, 21(8), 1067-75.
  • Chiocchio, V., Matkovic, L. 2011. Determination of ergosterol in cellular fungi by HPLC. A modified technique. The Journal of the Argentine Chemical Society, 98, 10-15.
  • Cheng, X., Etalo, D.W., van de Mortel, J.E., Dekkers, E., Nguyen, L., Medema, M.H., Raaijmakers, J.M. 2017. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens. Environmental Microbiology, 19(11), 4638-4656.
  • Cheng, X., Cordovez, V., Etalo, D.W., van der Voort, M., Raaijmakers, J.M. 2016. Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25. Frontiers in Plant Science, 7, 1706.
  • Chandrasekaran, M., Chun, S.C. 2016. Expression of PR-protein genes and induction of defense-related enzymes by Bacillus subtilis CBR05 in tomato (Solanum lycopersicum) plants challenged with Erwinia carotovora subsp. carotovora. Bioscience Biotechnology and Biochemistry, 13,1-7.
  • Cabrera, J., Wang, D., S Gerik, J., Gan, J. 2014. Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production. Pest management Science, 70(7),115-117
  • Buell, C.R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I.T., Gwinn, M.L., Dodson, R.J., Deboy, R.T., Durkin, A.S., Kolonay, J.F., Madupu, R., Daugherty, S., Brinkac, L., Beanan, M.J., Haft, D.H., Nelson, W.C., Davidsen, T., Zafar, N., Zhou, L., Liu, J., Yuan, Q., Khouri, H., Fedorova, N., Tran, B., Russell, D., Berry, K., Utterback, T., Van Aken, S.E., Feldblyum, T.V., D'Ascenzo, M., Deng, W.L., Ramos, A.R., Alfano, J.R., Cartinhour, S., Chatterjee, A.K., Delaney, T.P., Lazarowitz, S.G., Martin, G.B., Schneider, D.J., Tang, X., Bender, C.L., White, O., Fraser, C.M., Collmer, A. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10181-10186.
  • Brynildsen, M.P., Liao, J.C. 2009. An integrated network approach identifies the isobutanol response network of Escherichia coli. Molecular Systemic Biology, 5, 277.
  • Blom, D., Fabbri, C., Eberl, L., Weisskopf, L. 2011b. Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Applied and Environmental Microbiology, 77(3), 1000-1008.
  • Blom, D., Fabbri, C., Connor, E.C., Schiestl, F.P., Klauser, D.R., Boller, T., Eberl, L., Weisskopf, L. 2011a. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental Microbiology, 13(11), 3047-3058.
  • Bitas, V., McCartney, N., Li, N., Demers, J., Kim, J.E., Kim, H.S., Brown, K.M., Kang, S. 2015. Fusarium Oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Frontiers in Microbiol, 6, 1248.
  • Bitas, V., Kim, H.S., Bennett, J.W., Kang, S. 2013. Sniffing on microbes: Diverse roles of microbial volatile organic compounds in plant health. Molecular Plant-Microbe Interactions, 26(8), 835-843.
  • Bhattacharyya, D., Garladinne, M., Lee, Y.H. (2015) Volatile indole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. Journal of Plant Growth Regulation, 34(1), 158-168.
  • Bennett, S. R., Payton, M., Chamberlin, K. 2016. Three Inoculation Methods for Evaluating Sclerotinia Blight Resistance in Peanut. Peanut Science, 43(1)
  • Baldwin, I.T., Kessler, A., Halitschke, R. (2002) Volatile signaling in plant–plant– herbivore interactions: what is real? Current Opinion in Plant Biology, 5(4), 351-354.
  • Bailly, A., Weisskopf, L. 2017. Mining the volatilomes of plant-associated microbiota for new biocontrol solutions. Frontiers in Microbiology, 8, 1638.
  • Bailly, A., Weisskopf, L. 2017. Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions. Frontiers of Microbiology, 8, 1638.
  • Bailly, A., Weisskopf, L. 2012. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signaling Behavior, 7(1), 79-85.
  • Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., Weisskopf, L. 2014. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant Journal, 80(5), 758-771.
  • Audrain, B., Farag, M.A., Ryu, C.M., Ghigo, J.M. 2015. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 39(2), 222-233.
  • Atmosukarto, I., Castillo, U., M. Hess, W., Sears, J., Strobel, G. 2005. Isolation and characterization of Muscodor albus I-41.3s, a volatile antibiotic producing fungus. Plant Science,169(5), 854-861
  • Asari, S., Matz n, S., Petersen, M.A., Bejai, S., Meijer, J. (2016) Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiology Ecology, 92(6), fiw070-fiw070.
  • Arthikala, M.K., Nava, N., Quinto, C. 2015. Effect of Rhizobium and arbuscular mycorrhizal fungi inoculation on electrolyte leakage in Phaseolus vulgaris roots overexpressing RbohB. Plant Signaling Behavior, 10(4), e1011932.
  • Arrebola, E., Sivakumar, D., Korsten, L. 2010. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biological control, 53, (1), 122-128.
  • Angel Contreras-Cornejo, H., Mac as-Rodr guez, L., Herrera-Estrella, A., L pez- Bucio, J. 2014. The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant and Soil, 379(1-2), 261-274
  • Amavizca, E., Bashan, Y., Ryu, C.M., Farag, M.A., Bebout, B.M., de-Bashan, L.E. 2017. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Scientific Reports, 7.
  • Almenar, E., Auras, R., Rubino, M., Harte, B. 2007. A new technique to prevent the main post harvest diseases in berries during storage: inclusion complexes beta-cyclodextrin-hexanal. International Journal Food Microbiology, 118(2), 164-72.