박사

토양 질 향상 및 독성원소 동화/부동화 작용에서의 바이오차 연구 = Biochar for Soil Quality Improvement and Potentially Toxic Elements (Im)mobilization

논문상세정보
' 토양 질 향상 및 독성원소 동화/부동화 작용에서의 바이오차 연구 = Biochar for Soil Quality Improvement and Potentially Toxic Elements (Im)mobilization' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Raman analysis
  • Soil contamination
  • Soil quality
  • Toxic elements
  • dom
  • fame
  • sem-edx
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
60 0

0.0%

' 토양 질 향상 및 독성원소 동화/부동화 작용에서의 바이오차 연구 = Biochar for Soil Quality Improvement and Potentially Toxic Elements (Im)mobilization' 의 참고문헌

  • Zou, Y., Xiangxue, Wang, Ayub, Khan, Pengyi, Wang, Yunhai, Liu, Ahmed, Alsaedi, Tasawar, Hayat, Xiangke, Wang., 2016. Environmental Remediation and Application of Nanoscale Zero- Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environmental Science and Technology 50, 7290−7304. doi:10.1021/acs.est.6b01897.
  • Zimmerman, A.R., Gao, B., Ahn, M.Y., 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry 43, 1169– 1179. doi: 10.1016/j.soilbio.2011.02.005.
  • Zimmerman, A.R., 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar. Environmental science and technology 44, 1295–1301. doi:10.1021/es903140c.
  • Zibilske, L.M., 1994. Carbon mineralization. In: Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. Methods of soil analyses, Part 2 microbiological and biochemical properties, soil science society of America book series, vol 5. Soil Science Society America Inc., Madison 835–864.
  • Zhu, X., Chen, B., Zhu, L., Xing, B., 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution 227, 98- 115. doi: 10.1016/j.envpol.2017.04.032.
  • Zhou, Y., Gao, B., Zimmerman, A.R., Chen, H., Zhang, M., Cao, X., 2014. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology 152, 538–542. doi:10.1016/j.biortech.2013.11.021.
  • Zheng, J., Han, J., Liu, Z., Xia, W., Zhang, X., Li, L., Liu, X., Bian, R., Cheng, K., Zheng, J., Pan, G., 2017. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture, Ecosystems and Environment 241, 70-78. doi: 10.1016/j.agee.2017.02.034.
  • Zhao, X., Yan, X., Wang, S., Xing, G., Zhou, Y., 2013. Effects of the addition of rice-straw-based biochar on leaching and retention of fertilizer N in highly fertilized cropland soils. Soil science and plant nutrition 59, 771–782. doi:10.1080/00380768.2013.830229.
  • Zhang, W., Jiang, J., Li, D., Li, T., Li, K., Wang, J., 2016. Stabilization of V contaminated soils with adsorption materials. China Environmental Science 36, 1500-1505.
  • Zhang, R., Zhang, Y., Song, L., Song, X., H nninen, H., Wu, J., 2017. Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition. Forest Ecology and Management 391, 321-329. doi:10.1016/j.foreco.2017.02.036.
  • Zhang, M., Ok, Y.S., 2014. Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Management 5, 255–257. doi:10.1080/17583004.2014.973684.
  • Zhang, M., Gao, B., Yao, Y., Xue, Y., Inyang, M., 2012. Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of The Total Environment 435, 567–572. doi:10.1016/j.scitotenv.2012.07.038.
  • Zhang, L., Sun, X., 2014. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresource Technology 171, 274–284. doi:10.1016/j.biortech.2014.08.079.
  • Zhang, A.F., Cui, L.Q., Pan, G.X., Li, L.Q., Hussain, Q., Zhang, X.H., Zheng, J.W., Crowley, D., 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment 139, 469– 475. doi:10.1016/j.agee.2010.09.003.
  • Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X., 2012b. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351, 263–275. doi:10.1007/s11104-011-0957-x.
  • Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X., Yu, X., 2012a. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crops Research 127, 153–160. doi: 10.1016/j.fcr.2011.11.020.
  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H. 2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research 20: 8472-8483. DOI:10.1007/s11356-013-1659-0.
  • Zeien, H., Br mmer, G.W., 1989. Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Boden. Mitt. Dtsch. Bodenkd. Ges. 59, 505-510.
  • Yue, Y., Cui, L., Lin, Q., Li, G., Zhao, X., 2017. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 173, 551-556. doi:10.1016/j.chemosphere.2017.01.096.
  • Yuan, Y., Bolan, N., Pr voteau, A., Vithanage, M., Biswas, J.K., Ok, Y.S., Wang, H., 2017. Applications of biochar in redox-mediated reactions. Bioresource Technology 246, 271-281
  • Yuan, J.H., Xu, R.K., Qian, W., Wang, R.H., 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. Journal of Soil and Sediments 11, 741–750. doi:10.1007/s11368-011-0365-0.
  • Yu, Z., Weiwen, Qiu, Fei, Wang, Ming, Lei, Di, Wang, Zhengguo, Song., 2017. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere 168, 341-349
  • Yu, K.W., Rinklebe, J., 2011. Advancement in soil microcosm apparatus for biogeochemical research. Ecol. Eng. 37, 2071-2075.
  • Yu, K., B hme, F., Rinklebe, J., Neue, H.U., DeLaune, R.D., 2007. Major biogeochemical processes in soils- A microcosm incubation from reducing to oxidizing conditions. Soil Science Society of America Journal 71, 1406–1417.
  • Yorgun, S., Vural, N., Demiral, H., 2009. Preparation of high-surface area activated carbon from Paulownia by ZnCl2 activation. Microporous and Mesoporous Materials 122, 189– 194.doi:10.1016/j.micromeso.2009.02.032.
  • Yao, F.X., Arbestain, M.C., Virgel, S., Blanco, F., Arostegui, J., Maci -Agull , J.A., Mac as, F., 2010. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere, 80, 724–732. DOI:10.1016/j.chemosphere.2010.05.026.
  • Y.S. Ok, S.X. Chang, B. Gao, H.-J. Chung, SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research, Environmental Technology & Innovation, 4 (2015) 206-209.
  • Y.-H. Kao, S.-W. Wang, C.-W. Liu, P.-L. Wang, C.-H. Wang, S.K. Maji, Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study, Science of the Total Environment, 409 (2011) 4818-4830.
  • Y. Zhang, Y. Wang, X. Zhang, R. Li, Y. Chen, Q. Meng, Investigating the behavior of binding properties between dissolved organic matter (DOM) and Pb (II) during the soil sorption process using parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy (2D-COS), Environmental Science and Pollution Research, 24 (2017) 25156-25165.
  • Y. Li, S. Wang, L. Zhang, H. Zhao, L. Jiao, Y. Zhao, X. He, Composition and spectroscopic characteristics of dissolved organic matter extracted from the sediment of Erhai Lake in China, Journal of soils and sediments, 14 (2014) 1599-1611.
  • Y. Kuzyakov, I. Bogomolova, B. Glaser, Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis, Soil Biology and Biochemistry, 70 (2014) 229-236.
  • Xu, H.J., Wang, X.H., Li, H., Yao, H.Y., Su, J.Q., Zhu, Y.G., 2014. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environmental Science and Technology 48, 9391–9399.
  • Xu, C.Y., Hosseini, Bai, S., Xu, Z., Blumfield, T.J., Zhao, H., Wang, H., Wallace, H.M., Van Zwieten, L., 2015. Biochar application increases soil available nitrogen and plant-to-soil carbon input. 2nd International Conference on Biochar and Green Agriculture, Nanjing, China.
  • Xu CY, Hosseini Bai S, Xu Z, Blumfield TJ, Zhao H, Wang H, Wallace HM, Van Zwieten L. 2015. Biochar application increases soil available nitrogen and plant-to-soil carbon input. The 2nd International Conference on Biochar and Green Agriculture. 14-18th April, Nanjing, China, pp 1-2.
  • Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R. and Mopper, K., 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37(20), 4702- 4708.
  • Warnock, D.D., Mummey, D.L., McBride, B., Major, J., Lehmann, J., Rillig, M.C., 2010. Influences of non-herbaceous biochar on Arbuscular Mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Applied Soil Ecology 46, 450– 456. doi:10.1016/j.apsoil.2010.09.002.
  • Warnock, D., Lehmann, J., Kuyper, T., Rillig, M., 2007. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300: 9–20. doi:10.1007/s11104-007-9391-5.
  • Wang, J., Xiong, Z., Kuzyakov, Y., 2016. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Global Change Biology Bioenergy, 8(3), 512–523.
  • Wang, J., Xiong, Z., Kuzyakov, Y., 2016. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Global Change Biology Bioenergy 8, 512–523. DOI: 10.1111/gcbb.12266.
  • Walkley, A., 1947. A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and inorganic soil constituents. Soil Science, 63, 251– 264.
  • W. He, J.-H. Lee, J. Hur, Anthropogenic signature of sediment organic matter probed by UV– Visible and fluorescence spectroscopy and the association with heavy metal enrichment, Chemosphere, 150 (2016) 184-193.
  • Voltr, V., 2012. Concept of soil fertility and soil productivity: evaluation of agricultural sites in the Czech Republic. Archives of Agronomy and Soil Science 58, 5243-5251.
  • Vithanage, M., Rajapaksha, A.U., Zhang, M., Thiele-Bruhn, S., Lee, S.S., Ok, Y.S., 2015. Acidactivated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research 22, 2175–2186. doi:10.1007/s11356-014-3434-2.
  • Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y.S., Kirkham, M.B., Rinklebe, J., 2016. Interaction of arsenic with biochar in soil and water: A critical review. Carbon 219- 230.
  • Veihmeyer, F.J., Hendrickson, A.H., 1931. The moisture equivalent as a measure of the field capacity of soils. Soil Science, 32, 181–194.
  • Vanlauwe, B., Bationo, A., Chianu, J., Giller, K.E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K.D., Smaling, E.M.A., Woomer, P.L., Sanginga, N., 2010. Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agriculture 39, 17–24.
  • Vandecasteele, B., Sinicco, T., D'Hose, T., Nest, T.V., Mondini, C., 2016. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. Journal of Environmental Management 168, 200–209.
  • Vandecasteele, B., Reubens, B., Willekens, K., De Neve, S., 2014. Composting for increasing the fertilizer value of chicken manure: effects of feedstock on P availability. Waste and Biomass Valorization, 5, 491–503. doi:10.1007/s12649-013-9264-5.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., Cowie, A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235–246. Doi:10.1007/s11104-009-0050-x.
  • V.L. Quang, H.-C. Kim, T. Maqbool, J. Hur, Fate and fouling characteristics of fluorescent dissolved organic matter in ultrafiltration of terrestrial humic substances, Chemosphere, 165 (2016) 126-133.
  • Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A.S., El-Naggar, A.H., Al-Wabel, M.I., 2015. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental Geochemistry and Health 38, 511-521. doi:10.1007/s10653-015-9736-6
  • United States Environmental Protection Agency (USEPA). 1994. Synthetic precipitation leaching procedure. 1312.
  • United States Environmental Protection Agency (USEPA), 2007. Microwave assisted acid digestion of sediments, sludges, soils, and oils. Vol. 3051A.
  • USEPA. 1996. Microwave assisted acid digestion of sediments, sludges, soils, and oils. Method 3051, Washington DC, USA.
  • Tuomela, M., Vikman, M., Hatakka, A., It vaara, M., 2000. Biodegradation of lignin in a compost environment: a review. Bioresource Technology 72, 169–183. doi:10.1016/S0960- 8524(99)00104-2.
  • Thies, J.E., Rillig, M.C., 2009. Characteristics of biochar: biological properties. In: Lehmann, J., Joseph, S., editors. Biochar for Environmental Management. Science and Technology London: Earthscan 85–105.
  • T.E. Angst, S.P. Sohi, Establishing release dynamics for plant nutrients from biochar, Gcb Bioenergy, 5 (2013) 221-226.
  • T. Jamieson, E. Sager, C. Gu guen, Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies, Chemosphere, 103 (2014) 197-204.
  • Symeonakis, E., Karathanasis, N., Koukoulas, S., Panagopoulos, G., 2016. Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: The case of lesvos island. Land Degradation & Development, 27(6), 1562–1573.
  • Subedi, R., Kammann, C., Pelissetti, S., Taupe, N., Bertora, C., Monaco, S., 2015. Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? European Journal of Soil Science. doi:10.1111/ejss.12302.
  • Su, H., Zhanqiang, Fang., Pokeung Eric, Tsang, Jianzhang, Fang, Dongye, Zhao., 2016. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environmental Pollution 214, 94-100.
  • Streubel JD, Collins HP, Garcia-Perez M, Tarara J, Granatstein D, Kruger CE. 2011. Influence of contrasting biochar types on five soils at increasing rates of application. Soil Science Society of America Journal 75:1402-1413. DOI:10.2136/sssaj2010.0325.
  • Steiner, C., Melear, N., Harris, K., Das, K.C., 2011. Biochar as bulking agent for poultry litter composting. Carbon Management 2, 227–230.
  • Steiner, C., Glaser, B., Teixeira, W.G., Lehmann, J., Blum, W.E.H., Zech, W., 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science 171, 893–9. doi:10.1002/jpln.200625199.
  • Steinbeiss, S., Gleixner, G., Antonietti, M., 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry 41, 1301–1310. doi:10.1016/j.soilbio.2009.03.016.
  • Srinivasarao, C.H., Venkateswarlu, B., Lal, R., Singh, A.K., Kundu, S., Vittal, K.P.R., Patel, J.J., Patel, M.M., 2014. Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in western india. Land Degradation and Development 25, 173–183. doi:10.1002/ldr.1158.
  • Spokas, K.A., Cantrell, K.B., Novak, J.M., Archer, D.W., Ippolito, J.A., Collins, H.P., Boateng, A.A., Lima, A.A., Lamb, M.C., McAloon, A.J., Lentz, R.D., Nichols, K.A., 2012. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality 41, 973–989. doi:10.2134/jeq2011.0069.
  • Spokas, K.A., 2010. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management 1, 289–303.
  • Solaiman, Z.M., Blackwell, P., Abbott, L.K., Storer, P., 2010. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Australian Journal of Soil Research 48, 546–554.
  • Solaiman, Z.M., Anawar, H.M., 2015. Application of biochars for soil constraints: Challenges and solutions. Pedosphere 25, 631–638. doi:10.1016/S1002-0160(15)30044-8.
  • Sohi, S., Krull, E., Lopez-Capel, E., Bol, R., 2010. A review of biochar and its use and function in soil. Advances in Agronomy 105, 47–82.
  • Smith, P., House, J.I., Bustamante, M., Jaroslava Sobock Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J., Pugh, T.A.M., 2015. Global change pressures on soils from land use and management. Global Change Biology 22, 1008–1028. doi:http://dx.doi.org/ 10.1111/gcb.13068.
  • Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Research 79: 7-31. DOI:10.1016/j.still.2004.03.008.
  • Singh, R., Babu, J.N., Kumar, R., Srivastava, P., Singh, P., Raghubanshi, A.S., 2015. Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective. Ecological Engineering 77, 324–347. doi:10.1016/j.ecoleng.2015.01.011.
  • Singh, B., Singh, B.P., Cowie, A.L., 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research 48, 516–525.
  • Sigua, G.C., Novak, J.M., Watts, D.W., 2016. Ameliorating soil chemical properties of a hard setting subsoil layer in Coastal Plain USA with different designer biochars. Chemosphere 142, 168–175. doi:10.1016/j.chemosphere.2015.06.016.
  • Shen, Z., Som, A.M., Wang, F., Jin, F., McMillan, O., Al-Tabbaa, A., 2016. Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Science of the Total Environment 542, 771-776.
  • Shang S, Jiang P, Chang SX, Song Z, Liu J, Sun L. 2014. Soil Organic Carbon in Particle Size and Density Fractionations under Four Forest Vegetation-Land Use Types in Subtropical China. Forests 5: 1391-1408. DOI:10.3390/f5061391.
  • Shaheen, S.M., Shams, M.S., Khalifa, M.R., El-Daly, M.A., Rinklebe, J., 2017c. Various soil amendments and wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotox. Environ. Safe. 142, 375–387.
  • Shaheen, S.M., Rinklebe, J., Selim, H.M., 2015a. Impact of various amendments on the bioavailability and immobilization of Ni and Zn in a contaminated floodplain soil. International Journal of Environmental Science and Technology 12, 2765-2776
  • Shaheen, S.M., Rinklebe, J., Rupp, H., Meissner, R., 2014a. Temporal dynamics of pore water concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated floodplain soil assessed by undisturbed groundwater lysimeters. Environmental Pollution 191, 223-231.
  • Shaheen, S.M., Rinklebe, J., Frohne, T., White, J.R., DeLaune, R.D., 2016. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils. Chemosphere 150, 740-748.
  • Shaheen, S.M., Rinklebe, J., Frohne, T., White, J.R., DeLaune, R.D., 2014b. Biogeochemical factors governing cobalt, nickel, selenium, and vanadium dynamics in periodically flooded Egyptian North Nile Delta rice soils. Soil Science Society of America Journal 78, 1065-1078.
  • Shaheen, S.M., Rinklebe, J., 2017. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil. Journal of Environmental Management 186, 253-260.
  • Shaheen, S.M., Rinklebe, J., 2015. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering 74, 319-326. DOI: 10.1016/j.ecoleng.2014.10.024.
  • Shaheen, S.M., Rinklebe, J., 2014. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228, 142-159.
  • Shaheen, S.M., Kwon, E.E., Biswas, J.K., Tack, F.M.G., Ok, Y.S., Rinklebe, J., 2017a. Arsenic, chromium, molybdenum, and selenium: geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere 180, 553-563.
  • Shaheen, S.M., Frohne, T., White, J.R., DeLaune, R.D., Rinklebe, J., 2017b. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (USA) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. Journal of Environmental Management 186, 131-140.
  • Shaheen, S.M., Eissa, F., Ghanem, G, Gamal El-Din, H., Al-Anany, F., 2015b. Metal ion removal from industrial wastewaters by sorption on activated carbon, cement kiln dust, and sawdust. Water Environment Research 87, 506-515.
  • Shaheen, S. M., Rinklebe, J., Rupp, H., Meissner, R., 2014c. Lysimeter trials to assess the impact of different flood-dry-cycles the dynamics of pore water concentrations of As, Cr, Mo, and V in a contaminated floodplain soil. Geoderma 228-229, 5-13.
  • Schulz-Zunkel, C., Krueger, F., 2009. Trace metal dynamics in floodplain soils of the river Elbe: a review. Journal of environmental quality 38, 1349-1362.
  • Schulz, H., Dunst, G., Glaser, B., 2013. Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development 33, 817–827. doi:10.1007/s13593-013-0150-0.
  • Schmidt, H.P., Kammann, C., Niggli, C., Evangelou, M.W.H., Mackie, K.A., Abiven, S., 2014. Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems and Environment 15, 117–123. doi:10.1016/j.agee.2014.04.001.
  • Schmidt, H.-P., Pandit, B.H., Martinsen, V., Cornelissen, G., Conte, P., Kammann, C.I., 2015. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urineenhanced biochar to a fertile tropical soil. Agriculture 5, 723–741. doi:10.3390/agriculture5030723.
  • Scheer, C., Grace, P.R., Rowlings, D.W., Kimber, S., Van Zwieten, L., 2011. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345, 47–58. doi:10.1007/s11104-011-0759-1.
  • Sarkar, S.K., Mondal, P., Biswas, J.K., Kwon, E.E., Ok, Y.S., Rinklebe, J., 2017. Trace elements in surface sediments of the Hooghly (Ganges) estuary: distribution and contamination risk assessment. Environmental Geochemistry and Health 1-14.
  • Saranya, K., Kumutha, K., 2011. Standardization of the substrate material for large scale production of arbuscular mycorrhizal inoculum. International Journal of Agriculture Sciences 3, 71–77.
  • Sanchez, A., Artola, A., Font, X., Gea, T., Barrena, R., Gabriel, D., Sanchez-Monedero, M.A., Roig, A., Cayuela, M.L., Mondini, C., 2015. Greenhouse gas from organic waste composting: emissions and measurements. In: Lichtfouse et al., eds.), CO2 Sequestration, Biofuels and Depollution, Environmental Chemistry for a Sustainable World 5. Springer International Publishing. pp. 33–45.
  • Sackett, T.E., Basiliko, N., Noyce, G.L., Winsborough, C., Schurman, J., Ikeda, C., Thomas, S.C., 2015. Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy, 7, 1062–1074. DOI:10.1111/gcbb.12211.
  • SAS Institute 2004. SAS/STAT User’s Guide, Release 9.1 . SAS Institute Inc., Cary, NC.
  • S.M. Shaheen, J. Rinklebe, T. Frohne, J.R. White, R.D. DeLaune, Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils, Chemosphere, 150 (2016) 740-748.
  • S.M. Shaheen, J. Rinklebe, Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil, Environmental geochemistry and health, 37 (2015) 953-967.
  • Rozan, T.F., Lassman, M.E., Ridge, D.P., Luther, G.W., 2000. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406, 879-882.
  • Rogovska N, Laird D, Cruse R, Fleming P, Parkin T, Meek D. 2011. Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Science Society of America Journal 75: 871–879. DOI:10.2136/sssaj2010.0270.
  • Robertson, S.J., Rutherford, M.P., L pez-Guti rrez, J.C, Massicotte, H.B., 2012. Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Canadian Journal of Soil Science 92, 329–340. doi:10.4141/cjss2011-066.
  • Rizwan, M., Ali, S., Qayyum, M.F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., Ok, Y.S., 2016. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23, 2230–2248. DOI:10.1007/s11356-015-5697-7.
  • Rinklebe, J., Shaheen, S.M., Yu, K., 2016b. Release of As, Ba, Cd, Cu, Pb, and Sr under predefinite redox conditions in different rice paddy soils originating from the U.S.A. and Asia. Geoderma 270, 21-32.
  • Rinklebe, J., Shaheen, S.M., Schroter, F., Rennert, T., 2016c. Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. Chemosphere 150, 390-397.
  • Rinklebe, J., Shaheen, S.M., Frohne, T., 2016a. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 142, 41-47.
  • Rinklebe, J., Shaheen, S.M., Frohne, T., 2016. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 142, 41-47. DOI: 10.1016/j.chemosphere.2015.03.067.
  • Rinklebe, J., Shaheen, S.M., 2017b. Redox chemistry of nickel in soils and sediments: A review. Chemosphere 179, 265-278.
  • Rinklebe, J., Shaheen, S.M., 2017a. Geochemical distribution of Co, Cu, Ni, and Zn in soil profiles of Fluvisols, Luvisols, Gleysols, and Calcisols originating from Germany and Egypt. Geoderma 307, 122-138.
  • Rinklebe, J., Shaheen, S.M., 2014. Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River, Germany. Water, Air, & Soil Pollution 225(8), 2039. DOI 10.1007/s11270-014-2039-1
  • Rinklebe, J., Kumpiene, J., Du Laing, G., Ok, Y.S., 2017b. Biogeochemistry of trace elements in the environment – Editorial to the special issue. Journal of environmental management 186, 127- 130.
  • Rinklebe, J., Knox, A. S., Paller, M., 2017a. Trace elements in waterlogged soils and sediments: CRC Press; Taylor & Francis Group, New York, USA
  • Rhim, Y., Zhang, D., Fairbrother, D.H., Wepasnick, K.A., Livi, K.J., Bodnar, R.J., Nagle, D.C., 2010. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature. Carbon, 48, 1012–1024. DOI:10.1016/j.carbon.2009.11.020.
  • Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of wetlands: science and applications. CRC, Boca Raton [u.a.].
  • Randolph, P., Bansode, R.R., Hassan, O.A., Rehrah, D., Ravella, R., Reddy, M.R., Watts, D.W., Novak, J.M., Ahmedna, M., 2017. Effect of biochars produced from solid organic municipal waste on soil quality parameters. Journal of Environmental Management 192, 271-280.
  • Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 48, 271–284. doi:10.1007/s00374-011-0624-7.
  • Rajapaksha, A.U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S.X., Ok, Y.S., 2014. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology 166, 303–308. doi:10.1016/j.biortech.2014.05.029.
  • Rajapaksha, A.U., Chen, S.S., Tsang, D.C., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S., Ok, Y.S., 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148, 276-291.
  • Rajapaksha, A., Ahmad, M., Vithanage, M., Kim, K.R., Chang, J., Lee, S., Ok, Y.S., 2015. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health 37, 931–942. doi:10.1007/s10653-015-9694-z.
  • Raboin, L.-M., Razafimahafaly, A.H.D., Rabenjarisoa, M.B., Rabary, B., Dusserre, J., Thierry Becquer, T., 2016. Improving the fertility of tropical acid soils: Liming versus biocharapplication? A long term comparison in the highlands of Madagascar. Field Crops Research 199, 99–108. doi:10.1016/j.fcr.2016.09.005.
  • Qian, L., Chen, L., Joseph, S., Pan, G., Li, L., Zheng, J., Zhang, X., Zheng, J., Yu, X., Wang, J., 2014. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management 5, 145–154.
  • Qi, F., Lamb, D., Naidu, R., Bolan, N.S.,Yan, Y., Ok, Y.S., Rahman, M.M., Choppala, G., 2018. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Science of the Total Environment 610–611, 1457–1466
  • Purakayastha, T.J., Kumari, S., Pathak, H., 2015. Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239, 293–303. doi:10.1016/j.geoderma.2014.11.009.
  • Purakayastha, T.J., 2010. Effect of biochar on yield of different crops. IARI. Annual Report, Indian Agricultural Research Institute, New Delhi-110012, India 11, 55.
  • Prost, K., Borchard, N., Siemens, J., Kautz, T., Sequaris, J-M., Moeller, A., Amelung, W., 2013. Biochar affected by composting with farmyard manure. Journal of Environmental Quality, 42, 164–172. doi:10.2134/jeq2012.0064.
  • Prayogo, C., Jones, J.E., Baeyens, J., Bending, G.D., 2014. Impact of biochar on mineralization of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils 50, 695–702. doi:10.1007/s00374-013-0884-5.
  • Pietik inen, J., Kiikkil , O., Fritze, H., 2003. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89, 231–242.
  • Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P., 2016. Climate-smart soils. Nature 532, 49–57. doi:10.1038/nature17174.
  • Park, J.H., Ok, Y.S., Kim, S.H., Kang, S.W., Cho, J.S., Heo, J.S., Delaune, R.D., Seo, D.C., 2015. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. Journal of the Korean Society for Applied Biological Chemistry, 58(5), 751–760. DOI:10.1007/s13765-015-0103-1.
  • Park, J.H., Ok, Y.S., Kim, S.H., Kang, S.W., Cho, J.S., Heo, J.S., Delaune, R.D., Seo, D.C., 2015. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. Journal of the Korean Society for Applied Biological Chemistry 58, 751–760. doi:10.1007/s13765-015-0103-1.
  • Park, J.H., Ok, Y.S., Kim, S.H., Kang, S.W., Cho, J.S., Heo, J.S., Delaune, R.D., Seo, D.C., 2015. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. Journal of the Korean Society for Applied Biological Chemistry 58, 751–760.
  • Park JH, Ok YS, Kim SH, Kang SW, Cho JS, Heo JS, Delaune RD, Seo DC. 2015. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. Journal of the Korean Society for Applied Biological Chemistry 58(5): 751-760.
  • Omondi, M.O., Xia, X., Nahayo, A., Liu, X., Korai, P.K., Pan, G., 2016. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274, 28–34. doi:10.1016/j.geoderma.2016.03.029.
  • Ok, Y.S., Chang, S.X., Gao, B., Chung, H.J., 2015. SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation 4, 206–209.
  • Ok YS, Uchimiya SM, Chang SX, Bolan N. 2015. Biochar— production, characterization and applications. CRC Press, Taylor and Francis, London .
  • Ok YS, Chang SX, Gao B, Chung HJ (2015). SMART biochar technology-A shifting paradigm towards advanced materials and healthcare research. Environmental Technology and Innovation 4:206-209.
  • Ogbonnaya U., Semple K.T., 2013. Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agronomy 3, 349–375. doi:10.3390/agronomy3020349.
  • Nyssen, J., Frankl, A., Zenebe, A., Poesen, J., Deckers, J., 2015. Environmental conservation for food production and sustainable livelihood in Tropical Africa. Land Degradation and Development 26, 629–631. doi:10.1002/ldr.2379.
  • Nur, M., Islami, T., Handayanto, E., Nugroho, W., Utomo, W., 2014. The use of biochar fortified compost on calcareous soil of east Nusa Tenggara, Indonesia: 2. Effect on the yield of maize (Zea mays L) and phosphate absorption. American-Eurasian Journal of Sustainable Agriculture 8, 105–111.
  • Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J., Schomberg, H., 2009b. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3, 195–206.
  • Novak, J.M., Cantrell, K.B., Watts, D.W., Busscher, W.J., Johnson, M.G., 2014. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. Journal of Soils and Sediments 14, 330–343.
  • Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., Niandou, M.A., 2009a. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science 174(2), 105-112. doi:10.1097/SS.0b013e3181981d9a.
  • Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MA. 2010. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154: 281–288. DOI: 10.1016/j.geoderma.2009.10.014.
  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MA. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science 174(2):105-112. DOI:10.1097/SS.0b013e3181981d9a.
  • Niazi, N.K., Bibi, I., Shahid, M., Ok, Y.S., Burtonc, E.D., Wang, H., Shaheen, S.M., Rinklebe, J., L ttge, A., 2018. Arsenic sorption to perilla leaf biochar in aqueous environments: An advanced spectroscopic and microscopic examination. Environmental Pollution 232, 31-41.
  • Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Burton, E. D., Wang, H., Shaheen, S.M., Rinklebe, J., L ttge, A., 2017. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution. DOI: 10.1016/j.envpol.2017.09.051.
  • Nelissen, V., Ruysschaert, G., Manka’,Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., Cornelis, W., Boeckx, P., 2015. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy 62, 65–78. doi:10.1016/j.eja.2014.09.006.
  • N. Brady, R. Weil, The nature and properties of soils . Columbus, EUA: Pearson Education, Inc.[Links], (2016).
  • N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, K. Scheckel, Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize?, Journal of Hazardous Materials, 266 (2014) 141-166.
  • Mukherjee, A., Zimmerman, A.R., Harris, W., 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247–255. doi:10.1016/j.geoderma.2011.04.021
  • Mukherjee, A., Zimmerman, A.R., Hamdan, R. and Cooper, W.T., 2014. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth 5(2), p.693.
  • Mukherjee, A., Zimmerman, A.R., 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193, 122-130.
  • Mills RTE, Tipping E, Bryant CL, Emmett BA. 2014. Long-term organic carbon turnover rates in natural and semi-natural topsoils. Biogeochemistry 118: 257–272. DOI: 10.1007/s10533-013-9928-z.
  • Merritt, K.A., Erich, M.S., 2003. Influence of organic matter decomposition on soluble carbon and its copper-binding capacity. Journal of Environmental Quality 32, 2122-2131.
  • Mekuria, W., Noble, A., Sengtaheuanghoung, O., Hoanh, C.T., Bossio, D., Sipaseuth, N., McCartney, M., Langan, S., 2014. Organic and clay-based soil amendments increase maize yield, total nutrient uptake, and soil properties in Lao PDR. Agroecology and Sustainable Food Systems 38, 936–961. doi:10.1080/21683565.2014.917144.
  • Mekuria, W., Langan, S., Noble, A., Johnston, R., 2016. Soil restoration after seven years of exclosure management in northwestern Ethiopia. Land Degradation & Development. DOI:10.1002/ldr.2527.
  • Mandal, S., Sarkar, B., Bolan, N., Novak, J., Ok, Y.S., Van Zwieten, L., Singh, B.P., Kirkham, M.B., Choppala, G., Spokas, K., Naidu, R., 2016. Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 46, 1367–1401. DOI:10.1080/10643389.2016.1239975
  • Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J., 2012. Nutrient leaching in a Colombian savanna oxisol amended with biochar. Journal of Environmental Quality 41, 1076–1086. doi:10.2134/jeq2011.0128.
  • Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombia savanna oxisol. Plant Soil 333, 117–128. doi:10.1007/s11104-010-0327-0.
  • Major J., 2013. Practical aspects of biochar application to tree crops. IBI Technical Bulletin, 102, International Biochar Initiative (Accessed online at http://www.biocharinternational.org/sites/default/files/Technical%20Bulletin%20Biochar%20Tree%20Planting.pdf.
  • Ma, L.Q., Rao, G.N., 1997. Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality 26, 259-264.
  • M.E. Schutter, R.P. Dick, Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities, Soil Science Society of America Journal, 64 (2000) 1659- 1668.
  • M. Uchimiya, T. Ohno, Z. He, Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes, Journal of analytical and applied pyrolysis, 104 (2013) 84-94.
  • M. Derrien, L. Yang, J. Hur, Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review, Water research, 112 (2017) 58-71.
  • M. Chen, J.-H. Kim, S.-I. Nam, F. Niessen, W.-L. Hong, M.-H. Kang, J. Hur, Production of fluorescent dissolved organic matter in Arctic Ocean sediments, Scientific reports, 6 (2016) 39213.
  • M. Ahmad, S.S. Lee, S.E. Lee, M.I. Al-Wabel, D.C. Tsang, Y.S. Ok, Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils, Journal of soils and sediments, 17 (2017) 717-730.
  • M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19-33.
  • Luther, G.W., Theberge S.M., Rozan T.F., Rickard D., Rowlands C.C., Oldroyd A., 2002. Aqueous copper sulfide clusters as intermediates during copper sulfide formation. Environmental Science & Technology 36, 394-402.
  • Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H., Wang, Z., 2016. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments. doi:10.1007/s11368-016-1361-1.
  • Lu, S.G., Sun, F.F., Zong, Y.T., 2014. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena 114, 37–44. doi:10.1016/j.catena.2013.10.014.
  • Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y.S., Niazi, N.K., Xu, S., Yuan, G., Chen, X., Zhang, X., Liu, D., 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management 186, 285-292.
  • Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., Paz-Ferreiro, J., 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and Soil 373, 583–594.
  • Liu, X., Ye, Y., Liu, Y., Zhang, A., Zhang, X., Li, L., Pan, G., Kibue, G.W., Zheng, J., Zheng, J., 2014. Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China. Agricultural Systems 129, 22–29. doi:10.1016/j.agsy.2014.05.008.
  • Liu, W.J., Jiang, H., Yu, H.Q., 2015. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews 115, 12251–12285.
  • Liu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B., Glaser, B., 2012. Short term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. Journal of plant nutrition and soil science 175, 698–707. doi:10.1002/jpln.201100172.
  • Liu, C., Wang, H., Tang, X., Guan, Z., Reid, B.J., Rajapaksha, A.U., Ok, Y.S., Sun, H., 2016. Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China. Environmental Science and Pollution Research 23, 995–1006. doi:10.1007/s11356-015-4885-9.
  • Lin, Z., Liu, Q., Liu, G., Cowie, A.L., Bei, Q., Liu, B.I.U., Wang, X., J.,Ma , Zhu, J., Xie, Z., 2017. Effects of different biochars on Pinus elliottii growth, N use efficiency, soil N2O and CH4 emissions and C storage in a subtropical area of China. Pedosphere 27, 248-261. doi:10.1016/S1002-0160(17)60314-X.
  • Lin, Y., Munroe, P., Joseph, S., Kimber, S., Van Zwieten, L., 2012. Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil 357, 369-380.
  • Lin Y, Munroe, P, Joseph S, Kimber S, Van Zwieten L. 2012. Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil 357: 369-380. DOI:10.1007/s11104-012-1169-8.
  • Lim JE, Kim HW, Jeong SH, Lee SS, Yang JE, Kim KH, Ok YS. 2014. Characterization of burcucumber biochar and its potential as an adsorbent for veterinary antibiotics in water. Journal of Applied Biological Chemistry 57: 65-72.
  • Liang, F., L.I., G.T., Lin, Q.M., Zhao, X.R., 2014. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil. Journal of Integrative Agriculture 13, 525–532.
  • Liang, C., Gasc , G., Fu, S., M ndez, A., Paz-Ferreiro, J., 2016. Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size. Soil and Tillage Research 164, 3–10.
  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., Skjemstad, J.O., Thies, J., Luizao, F.J., Petersen, J., Neves, E.G., 2006. Black carbon increases cation exchange capacity. Soil Science Society of America Journal 70, 1719–30.
  • Li, Y., Wang, X., Zhu, Y., Wang, L., Wang, Z., 2012. In situ preparation of biochar coated silica material from rice husk. Colloids and Surfaces A: Physicochemical and Engineering Aspects 395, 157–160. doi:10.1016/j.colsurfa.2011.12.023.
  • Li, X.J., Hayashi, J., Li, C.Z., 2006. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel, 85, 1700–1707. DOI:10.1016/j.fuel.2006.03.008.
  • Li, T., Jiang, J., Li, D., Wang, J., 2016b. Solidifying effect of heavy metals in the vanadium depositpolluted soil by iron-based solid agents. China Environmental Science 36, 2108-2114.
  • Li, H., Ye, X., Geng, Z., Zhou, H., Guo, X., Zhang, Y., Zhao, H., Wang, G., 2016a. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Journal of Hazardous Materials 304, 40-48.
  • Lentz, R.D., Ippolito, J.A., Spokas, K.A., 2014. Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn. Soil Science Society of America Journal 78, 1641–1655.
  • Lentz, R.D., Ippolito, J.A., 2012. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality 41, 1033–1043. doi:10.2134/jeq2011.0126.
  • Lei, O., Zhang, R., 2013. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. Journal of Soils and Sediments 13, 1561–1572.
  • Lehmann, J., da Silva, J.P., Steiner, C., Nehls, T., Zech, W., Glaser, B., 2003. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon Basin: fertilizer, manure and charcoal amendments. Plant Soil 249, 343–357. doi:10.1023/A:1022833116184.
  • Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota — a review. Soil Biology and Biochemistry 43, 1812–1836. doi:10.1016/j.soilbio.2011.04.022.
  • Lehmann, J., Joseph, S., 2015. Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd ed. Earthscan from Routledge, London, pp 1–1214.
  • Lehmann, J., Joseph, S., 2009. Biochar for Environmental Management: an Introduction. In: Lehmann J, Joseph S. (Eds.). Biochar for Environmental Management Science and Technology. Earthscans, UK 1–12.
  • Lehmann, J., Gaunt, J., Randon, M., 2006. Biochar sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change 11, 395–419. doi:10.1007/s11027-005-9006-5.
  • Lehmann, J., 2007b. A handful of carbon. Nature 447, 143–144. doi:10.1038/447143a.
  • Lehmann, J., 2007a. Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381–387. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
  • Lee, Y., Ryu, C., Park, Y.K., Jung, J.H., Hyun, S., 2013a. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology, 130, 345–350. DOI:10.1016/j.biortech.2012.12.012.
  • Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y.K., Jung, J., Hyun, S., 2013b. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresource Technology, 148, 196–201. DOI:10.1016/j.biortech.2013.08.135.
  • Lal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895. doi:10.3390/su7055875.
  • Lal, R., 2015. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability, 7, 5875–5895.
  • Lal R. 2008. Carbon sequestration. Phil Trans R Soc B 363: 815–830. DOI:10.1098/rstb.2007.2185.
  • Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623-1627. DOI:10.1126/science.1097396
  • Laird, D.A., Brown, R.C., Amonette, J.E., Lehmann, J., 2009. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts and Biorefining 3, 547–562. doi:10.1002/bbb.169.
  • Laird, D.A., 2008. The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100, 178–181. doi:10.2134/agrojnl2007.0161.
  • Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158,436–42. doi:10.1016/j.geoderma.2010.05.012.
  • Laird D, Fleming P, Davis DD, Horton R, Wang B, Karlen DL. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158: 443-449. DOI:10.1016/j.geoderma.2010.05.013.
  • Lagomarsino A, Grego S, Kandeler E. 2012. Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions. Pedobiologia 55: 101- 110. DOI:10.1016/j.pedobi.2011.12.002.
  • Laghari, M., Naidu, R., Xiao, B., Hu, Z., Mirjat, M.S., Hu, M., Kandhro, M.N., Chen, Z., Guo, D., Jogi, Q., Abudi, Z.N., 2016. Recent developments in biochar as an effective tool for agricultural soil management: a review. Journal of the Science of Food and Agriculture 96, 4840-4849. doi:10.1002/jsfa.7753.
  • Laghari, M., Mirjat, M.S., Hu, Z., Fazal, S., Xiao, B., Hu, M., Chen, Z., Guo, D., 2015. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 135, 313- 320. doi:10.1016/j.catena.2015.08.013.
  • L.-x. Zhu, Q. Xiao, Y.-f. Shen, S.-q. Li, Effects of biochar and maize straw on the short-term carbon and nitrogen dynamics in a cultivated silty loam in China, Environmental Science and Pollution Research, 24 (2017) 1019-1029.
  • L. Zibilske, Carbon mineralization 1, Methods of soil analysis: Part 2—Microbiological and biochemical properties, (1994) 835-863.
  • L. Yang, J. Hur, W. Zhuang, Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review, Environmental Science and Pollution Research, 22 (2015) 6500-6510.
  • L. Liu, G. Liu, J. Zhou, J. Wang, R. Jin, A. Wang, Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues, RSC Advances, 6 (2016) 84388-84396.
  • Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., Xu, X., 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 41, 210–219. DOI:10.1016/j.soilbio.2008.10.016.
  • Kuzyakov, Y., Bogomolova, I., Glaser, B., 2014. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 70, 229–236. DOI: 10.1016/j.soilbio.2013.12.021.
  • Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., Naidu, R., 2016. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environment international 87, 1-12. doi:10.1016/j.catena.2015.08.013.
  • Kuo, S., 1996. Phosphorus. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. Methods of soil analysis. Part 3-chemical methods, soil science society of America book series, vol 5. Soil Science Society America Inc., Madison 869–919.
  • Krishnakumar, S., Kumar, S.R., Mariappan, N., Surendar, K.K., 2013. Biochar-boon to soil health and crop production. African Journal of Agricultural Research 8, 4726-4739. doi:10.5897/AJAR.
  • Kookana, R.S., Sarmah, A.K.,Van Zwieten, L., Krull, E., Singh, B., 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in Agronomy 112,103–143. doi:10.1016/B978-0-12-385538-1.00003-2.
  • Kolb, S.E., Fermanich, K.J., Dornbush, M.E., 2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of American Journal, 73, 1173– 1181. DOI:10.2136/sssaj2008.0232.
  • Knicker, H., 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochem 85, 91–118. doi:10.1007/s10533-007-9104-4.
  • Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F., Soja, G., 2014. Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177, 3–15. DOI:10.1002/jpln.201200282.
  • Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F., Soja, G., 2014. Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science 177, 3–15.
  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G., 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality 41, 990–1000. doi:10.2134/jeq2011.0070.
  • Kleegberg, K.K., Schlegelmilch, M., Strees, J., Steinhart, H., Stegmann, R., 2005. Odour abatement strategy for a sustainable odour management. In: Proceedings of the Tenth International Waste Management and Landfill Symposium, Sardinia, 3–7 October 2005.
  • Kl pfel, L., Keiluweit, M., Kleber, M., Sander, M., 2014. Redox properties of plant biomassderived black carbon (biochar). Environmental Science & Technology 48, 5601–5611.
  • Kinney, T.J., Masiello, C.A., Dugan, B., Hockaday, W.C., Dean, M.R., Zygourakis, K., Barnes, R.T., 2012. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41, 34–43.
  • Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J.M., Riha, S., Verchot, L., Recha, J.W., Pell, A.N., 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11, 726–739. doi:10.1007/s10021-008-9154-z.
  • Kim, S., Agblevor, F.A., Lim, J., 2009. Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. Journal of Industrial and Engineering Chemistry 15, 247– 252. doi:10.1016/j.jiec.2008.10.004.
  • Kim, K.H., Kim, J., Cho, T., Choi, J.W., 2012. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida. Bioresource Technology 118, 158–162. doi:10.1016/j.biortech.2012.04.094.
  • Kim, H.S., Kim, K.R., Yang, J.E., Ok, Y.S., Owens, G., Nehls, T., Wessolek, G., Kim, K.H., 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142, 153-159.
  • Khan, S., Chao, C., Waqas, M., Arp, H.P.H., Zhu, Y.G., 2013. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environmental Science and Technology 47, 8624–8632.
  • Khan, N., Clark, I., S nchez-Monedero, M.A., Shea, S., Meier, S., Qi, F., Kookana, R.S., Bolan, N., 2016. Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost. Chemosphere 142, 14–23.
  • Khan, N., Clark, I., S nchez-Monedero, M.A., Shea, S., Meier, S., Bolan, N., 2014. Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresource Technology 168, 245–251. doi:10.1016/j.biortech.2014.02.123.
  • Khalifa, N., Yousef, L.F., 2015. A Short Report on Changes of Quality Indicators for a Sandy Textured Soil after Treatment with Biochar Produced from Fronds of Date Palm. Energy Procedia 74, 960–965.
  • Kasozi, G.N., Zimmerman, A.R., Nkedi-Kizza, P., Gao, B., 2010. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars. Environmental Science and Technology 44,6189–6195.
  • Karimian, N., Johnston, S.G., Burton, E.D., 2017. Effect of cyclic redox oscillations on water quality in freshwater acid sulfate soil wetlands. Science of the Total Environment, 581–582: 314–327.
  • Karimian, N., Johnston, S.G., Burton, E.D., 2017. Acidity generation accompanying iron and sulfur transformations during drought simulation of freshwater re-flooded acid sulfate soils. Geoderma, 285: 117–131.
  • Karhu, K., Mattila, T., Bergstr m, I., Regina, K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study. Agriculture, Ecosystems and Environment 140, 309–313. doi:10.1016/j.agee.2010.12.005.
  • Karathanasis AD, Hajek BF, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME. 1996. Elemental analysis by X-ray fluorescence spectroscopy. In Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (vol 5, eds) Methods of soil analysis. Part 3-chemical methods. Soil Science Society of America book series, Soil Science Society America Inc, Madison, USA, pp 161-223.
  • Kanthle AK, Lenka NK, Lenka S, Tedia K. 2016. Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India. Soil and Tillage Research 157: 65-72. DOI: 10.1016/j.still.2015.11.009.
  • Kammann, C.I., Schmidt, H.P., Messerschmidt, N., Linsel, S., Steffens, D., M ller, C., Koyro, H.W., Conte, P., Stephen, J., 2015. Plant growth improvement mediated by nitrate capture in cocomposted biochar. Scientific Reports 5, 11080 doi:10.1038/srep11080.
  • Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants (fourth ed.) CRC Press, Boca Raton, USA.
  • K.A. Spokas, K.B. Cantrell, J.M. Novak, D.W. Archer, J.A. Ippolito, H.P. Collins, A.A. Boateng, I.M. Lima, M.C. Lamb, A.J. McAloon, Biochar: a synthesis of its agronomic impact beyond carbon sequestration, Journal of environmental quality, 41 (2012) 973-989.
  • K rschens, M., Albert, E., Baumecker, M., Ellmer, F., Grunert, M., Hoffmann, S., Kismanyoky, T., Kubat, J., Kunzova, E., Marx, M. and Rogasik, J., 2014. Humus und Klima nderung-Ergebnisse aus 15 langj hrigen Dauerfeldversuchen. Archives of Agronomy and Soil Science, 60(11), 1485- 1517. DOI: 10.1080/03650340.2014.892204.
  • Juo, A.S., Franzluebbers, K., 2003. Tropical soils: properties and management for sustainable agriculture. Oxford University Press on Demand.
  • Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., Van Zwieten, L., Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., 2010. An investigation into the reactions of biochar in soil. Australian Journal of Soil Research 48, 501–515.
  • Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J, Van Zwieten, L., Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., 2010. An investigation into the reactions of biochar in soil. Soil Research 48, 501-515.
  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J. 2010. An investigation into the reactions of biochar in soil. Soil Research 48: 501-515. DOI:10.1071/SR10009.
  • Jones, D.L., Rousk, J., Edwards-Jones, G., DeLuca, T.H., Murphy, D.V., 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry 45, 113–124. doi:10.1016/j.soilbio.2011.10.012.
  • Jones, D.L., Murphy, D.V., Khalid, M., Ahmad, W., Edwards-Jones, G., DeLuca, T.H., 2011. Shortterm biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry, 43, 1723–1731. DOI:10.1016/j.soilbio.2011.04.018.
  • Johnston, S. G., Burton, E. D., Aaso, T. & Tuckerman, G. 2014. Sulfur, iron and carbon cycling following hydrological restoration of acidic freshwater wetlands. Chemical Geology 371: 9-26.
  • Jirka, S., Tomlinson, T., IBI., 2015. State of the Biochar Industry; accessed at: http://www.biocharinternational.org/sites/default/files/State_of_the_Biochar_Industry_2013.pdf [Accesses August 26, 2016].
  • Jindo, K., Suto, K., Matsumoto, K., Garcia, C., Sonoki, T., Sanchez-Monedero, MA., 2012. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresource Technology 110, 396–404. doi:10.1016/j.biortech.2012.01.120.
  • Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F. and Ma, S., 2013. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochimica Acta, 113, 481–489. DOI:10.1016/j.electacta.2013.09.121.
  • Jia, X., Yuan, W., Ju, X., 2015. Short Report: Effects of Biochar Addition on Manure Composting and Associated N2O Emissions. Journal of Sustainable Bioenergy Systems 5, 56-61.
  • Jeffery, S., Verheijen, F.G.A., van der Velde, M, Bastos, A.C., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystem & Environment, 144, 175–187. DOI:10.1016/j.agee.2011.08.015.
  • Jeffery, S., Verheijen, F.G.A., Velde, M., Bastos, A.C., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment 144, 175–187. doi:10.1016/j.agee.2011.08.015.
  • Jeffery, S., Meinders, M.B., Stoof, C.R., Bezemer, T.M., van de Voorde, T.F., Mommer, L., Groenigen, J.W., 2015b. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 251, 47–54. doi:10.1016/j.geoderma.2015.03.022.
  • Jeffery, S., Bezemer, M., Cornelissen, G., Kuyper, T.W., Lehmann, J., Mommer, L., Sohi, S.P., Van De Voorde, T.F.J.,Wardle, D.A., Van Groenigen, J.W., 2015a. The way forward in biochar research: targeting trade-offs between the potential wins. Global Change Biology Bioenergy 7, 1–13. DOI: 10.1111/gcbb.12132.
  • Jagadamma S, Lal R. 2010. Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biology and fertility of soils 46: 543-554. DOI: 10.1007/s00374-010-0459-7.
  • J.L. Weishaar, G.R. Aiken, B.A. Bergamaschi, M.S. Fram, R. Fujii, K. Mopper, Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environmental science & technology, 37 (2003) 4702-4708.
  • J.L. Deenik, T. McClellan, G. Uehara, M.J. Antal, S. Campbell, Charcoal Volatile Matter Content Influences Plant Growth and Soil Nitrogen Transformations All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher, Soil Science Society of America Journal, 74 (2010) 1259-1270.
  • J.J. Hoorman, Role of Soil Bacteria: Update and Revision.
  • J. Wei, L. Han, J. Song, M. Chen, Evaluation of the interactions between water extractable soil organic matter and metal cations (Cu (II), Eu (III)) using Excitation-Emission Matrix combined with Parallel Factor Analysis, International journal of molecular sciences, 16 (2015) 14464-14476.
  • J. Rinklebe, S.M. Shaheen, K. Yu, Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the USA and Asia, Geoderma, 270 (2016) 21-32.
  • J. Lehmann, M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, D. Crowley, Biochar effects on soil biota–a review, Soil biology and biochemistry, 43 (2011) 1812-1836.
  • J. Hur, B.-M. Lee, K.-H. Shin, Spectroscopic characterization of dissolved organic matter isolates from sediments and the association with phenanthrene binding affinity, Chemosphere, 111 (2014) 450-457.
  • Ishii, K., Fukui, M., Takii, S., 2000. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. Journal of applied microbiology 89, 768– 777. doi:10.1046/j.1365-2672.2000.01177.x.
  • Ippolito, J.A., Novak, J.M., Busscher, W.J., Ahmedna, M., Rehrah, D., Watts, D.W., 2012. Switchgrass biochar affects two Aridisols. Journal of Environmental Quality 41, 1123–1130. doi:10.2134/jeq2011.0100.
  • Ippolito, J.A., Ducey, T.F., Cantrell, K.B., Novak, J.M., Lentz, R.D., 2016. Designer, acidic biochar influences calcareous soil characteristics. Chemosphere 142, 184–191. doi:10.1016/j.chemosphere.2015.05.092.
  • Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y.S., Cao, X., 2015. A Review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology 4, 406–433 doi:10.1080/10643389.2015.1096880.
  • Inyang, M., Gao, B., Zimmerman, A., Zhang, M., Chen, H., 2014. Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chemical Engineering Journal 236, 39–46. doi:10.1016/j.cej.2013.09.074.
  • Igalavithana, A.D., Ok, Y.S., Usman, A.R., Al-Wabel, M.I., Oleszczuk, P., Lee, S.S., 2015. The Effects of Biochar Amendment on Soil Fertility. Agricultural and Environmental Applications of Biochar: Advances and Barriers, Soil Science Society of America, Inc, USA, ISBN: 978-0-89118-967-1.
  • Igalavithana, A.D., Ok, Y.S., Niazi, N.K., Rizwan, M., Al-Wabel, M.I., Usman, A.R., Moon, D.H., Lee, S.S., 2017. Effect of corn residue biochar on the hydraulic properties of sandy loam soil. Sustainability, 9(2), 266. DOI:10.3390/su9020266.
  • Igalavithana, A.D., Lee, S.E., Lee, Y.H., Tsang, D.C.W., Rinklebe, J., Kwon, E.E., Ok, Y.S., 2017. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174, 593–603.
  • Igalavithana, A.D., Lee, S-E., Lee, Y.H., Tsang, D.C.W., Rinklebe, J., Kwon, E.E., Ok, Y.S., 2017. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174, 593-603. DOI: 10.1016/j.chemosphere.2017.01.148.
  • Ibrahim, H.M., Al-Wabel, M.I., Usman, A.R.A., Al-Omran, A., 2013. Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Science 178, 165–173.
  • IBI, 2012. Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative, April 2012.
  • Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A.M., Solaiman, Z.M., Alghamdi, S.S., Ammara, U., Ok, Y.S., Siddique, K.H., 2017. Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments 17, 685–716. doi:10.1007/s11368-016-1360-2
  • Hooda, P.S., 2010. Trace Elements in Soils. First ed. John Wiley & Sons Ltd, United Kingdom.
  • Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237: 173-195.
  • Hill, R.A., Harris, A., Stewart, A., Bolstridge, N., McLean, K.L., Blakeley, R., 2007. Charcoal and selected beneficial microorganisms: plant trials and SEM observations. Proceedings of the International Agrichar Conference, Terrigal NSW Australia May 2007.
  • Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K., Ani, F.N., 2002. Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40, 2381–2386. doi:10.1016/S0008-6223(02)00118-5.
  • Havlin, J.L., Tisdale, S.L., Nelson, W.L., Beaton, J.D., 2014. Soil Fertility and Nutrient Management: An Introduction to Nutrient Management. 8th Edition. pp. 505.. Pearson, Upper Saddle River, NJ.
  • Havlin, J.L., Tisdale, S.L., Nelson, W.L., Beaton, J.D., 2014. Soil Fertility and Nutrient Management: An Introduction to Nutrient Management. 8th Edition. 505 p. Pearson, Upper Saddle River, NJ.
  • Hardie, M., Clothier, B., Bound, S., Oliver, G., Close, D., 2014. Does biochar influence soil physical properties and soil water availability? Plant Soil 376, 347–361. doi:10.1007/s11104-013-1980-x.
  • Hangs, R.D., Ahmed, H.P., Schoenau, J.J., 2016. Influence of willow biochar amendment on soil nitrogen availability and greenhouse gas production in two fertilized temperate prairie soils. Bioenergy Research 9, 157–171. doi:10.1007/s12155-015-9671-5.
  • Han, F., Ren, L., Zhang, X.C., 2016. Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. Catena 137, 554–562. doi:10.1016/j.catena.2015.11.002.
  • Haider, G., Steffens, D., Moser, G., M ller, C., Kammann, C.I., 2017. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agriculture, Ecosystems and Environment 237, 80-94. doi:10.1016/j.agee.2016.12.019.
  • Haefele, S.M., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A.A., Pfeiffer, E.M., Knoblauch, C., 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121, 430–440. DOI:10.1016/j.fcr.2011.01.014.
  • H. Yu, F. Qu, H. Chang, S. Shao, X. Zou, G. Li, H. Liang, Understanding ultrafiltration membrane fouling by soluble microbial product and effluent organic matter using fluorescence excitation–emission matrix coupled with parallel factor analysis, International Biodeterioration & Biodegradation, 102 (2015) 56-63.
  • Guo, X., Jiang, J., Xi, B., He, X., Zhang, H., Deng, Y., 2012. Study on the spectral and Cu (II) binding characteristics of DOM leached from soils and lake sediments in the Hetao region. Environmental Science and Pollution Research 19, 2079-2087.
  • Guo, J., Lua, A.C., 1998. Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. Journal of Analytical and Applied Pyrolysis 46, 113–125. doi:10.1016/S0165-2370(98)00074-6.
  • Gunes, A., Inal, A., Taskin, M.B., Sahin, O., Kaya, E.C., Atakol, A., 2014. Effect of phosphorusenriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management 30, 182–188. doi:10.1111/sum.12114.
  • Gul, S., Whalen, J.K., 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils- Review Paper. Soil Biology and Biochemistry 103, 1-15. DOI: 10.1016/j.soilbio.2016.08.001.
  • Guide, S.Q.T.K., 1999. USDA Agricultural Research Service. National Conservation Service. Soil Quality Institute. Washington DC, USA.
  • Gu, Y.G., Gao, Y.P., Lin, Q., 2016. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China's largest city, Guangzhou. Applied Geochemistry 67, 52-58.
  • Grunwald, D., Kaiser, M., Ludwig, B., 2016. Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures. Soil and Tillage Research 164, 11-17. doi:10.1016/j.still.2016.01.002
  • Gray, M., Johnson, M.G., Dragila, M.I., Kleber, M., 2014. Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass and Bioenergy 61, 196–205. doi:10.1016/j.biombioe.2013.12.010.
  • Glaser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal— a review. Biology and Fertility of Soils 35, 219– 230. doi:10.1007/s00374-002-0466-4.
  • Gee, G.W., Bauder, J.W., Klute, A., 1986. Particle-size analysis. In: Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. Methods of soil analysis. Part 1. Physical and mineralogical methods, soil science society of America book series, vol 5. Soil Science Society America Inc., Madison, 383–411.
  • Galinato, S.P., Yoder, J.K., Granatstein, D., 2011. The economic value of biochar in crop production and carbon sequestration. Energy Policy 39, 6344–6350. doi:10.1016/j.enpol.2011.07.035.
  • Gajalakshmi, S., Abbasi, S.A., 2008. Solid Waste Management by Composting: State of the Art. Critical Reviews in Environmental Science and Technology 38, 311–400. doi:10.1080/10643380701413633.
  • G ere a, D., Lehmann, J., Hanley, K., Enders, A., Hyland, C., Riha, S., 2013. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 365, 239–254. doi:10.1007/s11104-012-1383-4.
  • Fungo B, Lehmann J, Kalbitz K, Thionģo M, Okeyo I, Tenywa M, Neufeldt H. 2017. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil and Tillage Research 165: 190-197. DOI: 10.1016/j.still.2016.08.012.
  • Fulda, B., Voegelin, A., Ehlert, K., Kretzschmar, R., 2013. Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. Geochimica et Cosmochimica Acta 123, 385-402.
  • Frohne, T., J. Rinklebe, R.A. Diaz-Bone, Du Laing G., 2011. Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160, 414–424.
  • Feng, M.H., Shan, X.Q., Zhang, S., Wen, B., 2005. A comparison of the rhizospherebased method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution 137, 231-240.
  • FAO (The Food and Agriculture Organization of the United Nations. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy; Earthscan: London, UK (2011. Available online: http://www.fao.org/docrep/017/i1688e/i1688e.pdf (accessed on 28 December 2016.
  • Eswaran H, Reich PF, Kimble JM, Beinroth FH, Padmanabhan E, Moncharoen P. 2000. Global carbon stocks. In Lal R, Kimble JM, Steeart BA, Eswaran H (eds) Global climate change and pedogenic carbonates. Lewis Publishers, Boca Raton, USA, pp 15-25.
  • Elmer, W.H., Pignatello, J.J., 2011. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Disease 95, 960–966. doi:10.1094/PDIS-10-10-0741.
  • El-Naggar, A.H., Usman, A.R., Al-Omran, A., Ok, Y.S., Ahmad, M., Al-Wabel, MI., 2015. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere 138, 67–73. doi:10.1016/j.chemosphere.2015.05.052.
  • El-Naggar, A.H., Usman, A.R., Al-Omran, A., Ok, Y.S., Ahmad, M., Al-Wabel, M.I., 2015. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere 138, 67–73.
  • El-Naggar, A., Shaheen, S.M., Ok, Y.S. and Rinklebe, J., 2018a. Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. Science of The Total Environment, 624, 1059– 1071.
  • El-Naggar, A., Rajapaksha, A., Shaheen, S.M., Rinklebe, J., and Ok, Y.S., 2018c. Potential of biochar to immobilize nickel in contaminated soils, in: Tsadilas, C., Rinklebe, J., and Selim, M. (Eds), Nickel in Soils and Plants. CRC Taylor and Francis Group, NW.
  • El-Naggar, A., Awad, Y.M., Tang, X.Y., Liu, C., Niazi, N.K., Jien, S.H., Tsang, D.C., Song, H., Ok, Y.S. and Lee, S.S., 2018b. Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degradation & Development. DOI: 10.1002/ldr.2896.
  • El-Naggar A, Shaheen S, Ok YS, Rinklebe J. 2018. Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. Science of the Total Environment (in press).
  • El-Mahrouky M, El-Naggar AH, Usman AR, Al-Wabel M. 2015. Dynamics of CO2 emission and biochemical properties of a sandy calcareous soil amended with Conocarpus waste and biochar. Pedosphere 25(1): 46-56. DOI:10.1016/S1002-0160(14)60075-8
  • Edenborn, S.L., Edenborn, H.M., Krynock, R.M., Haug, K.L.Z., 2015. Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar. Journal of Environmental Management 150, 226–234. doi:10.1016/j.jenvman.2014.11.023.
  • E.S. Kritzberg, J.J. Cole, M.L. Pace, W. Gran li, D.L. Bade, Autochthonous versus allochthonous carbon sources of bacteria: Results from whole‐lake 13C addition experiments, Limnology and Oceanography, 49 (2004) 588-596.
  • E.-A. Kim, H.V.-M. Nguyen, H.S. Oh, J. Hur, J.H. Choi, Influence of soil conditions on dissolved organic matter leached from forest and wetland soils: a controlled growth chamber study, Environmental Science and Pollution Research, 23 (2016) 5203-5213.
  • Ducey, T.F., Ippolito, J.A., Cantrell, K.B., Novak, J.M., Lentz, R.D., 2013. Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology 65, 65–72. doi:10.1016/j.apsoil.2013.01.006.
  • Du ZL, Zhao JK, Wang YD, Zhang QZ. 2016. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. Journal of Soils and Sediments 1-9. DOI:10.1007/s11368-015-1349-2.
  • Downie, A., Crosky, A., Munroe, P., 2009. Physical properties of biochar. In: Lehmannm J, Joseph S, editors. Biochar for Environmental Management: Science and Technology. London: Earthscan 13–32.
  • Doan, T.T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.L., Jouquet, P., 2015. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. The Science of the total environment 514, 147–154. doi:10.1016/j.scitotenv.2015.02.005.
  • Din, E.N. 15933, 2012. Schlamm, behandelter Bioabfall und Boden – Bestimmung des pH-Werts. Deutsches Institut f r Normung.
  • Dias, B.O., Silva, C.A., HigashiXawa, F.S., Roig, A., Sanchez-Monedero, M.A., 2010. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresource Technology 101, 1239–1246. doi:10.1016/j.biortech.2009.09.024.
  • Deenik, J.L., Diarra, A., Uehara, G., Campbell, S., Sumiyoshi, Y., Antal, M.J., 2011. Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol. Soil Science 176, 336–345. doi:10.1097/SS.0b013e31821fbfea.
  • DeLaune, R.D., Seo, D.C., 2011. Heavy metals transformation in wetlands, in: Selim, H.M.(Ed.), Dynamics and bioavilablity of heavy metals in the rootzone. Taylor & Francis Group, LLC. Boca Raton, London, New York, pp. 219-244.
  • David, J.M., 2015. Biochar and compost increase crop yields but the effect is short term on sandplain soils of Western Australia. Pedosphere 25, 720–728. doi:10.1016/S1002-0160(15)30053-9.
  • Das, O., Sarmah, A.K., 2015. The love–hate relationship of pyrolysis biochar and water: a perspective. Science of the Total Environment 512, 682–685. doi:10.1016/j.scitotenv.2015.01.061.
  • Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P.C., Xu, J., 2017. Potential role of biochars in decreasing soil acidification-A critical review. Science of The Total Environment. doi:10.1016/j.scitotenv.2016.12.169.
  • D.M. McKnight, E.W. Boyer, P.K. Westerhoff, P.T. Doran, T. Kulbe, D.T. Andersen, Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnology and Oceanography, 46 (2001) 38-48.
  • D.D. Phong, J. Hur, Insight into photocatalytic degradation of dissolved organic matter in UVA/TiO2 systems revealed by fluorescence EEM-PARAFAC, Water research, 87 (2015) 119-126.
  • Craven, A.M., Aiken, G.R., Ryan, J.N., 2012. Copper(II) Binding by Dissolved Organic Matter: Importance of the Copper-to-Dissolved Organic Matter Ratio and Implications for the Biotic Ligand Model. Environmental Science & Technology 46, 9948-9955.
  • Coomes, O.T., Miltner, B.C., 2016. Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems. Land Degradation & Development, 1–11. DOI: 10.1002/ldr.2500.
  • Coomes OT, Miltner BC. 2016. Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems. Land Degradation & Development 00: 1-11. DOI:10.1002/ldr.2500.
  • Conte, P., Laudicina, V.A., 2017. Mechanisms of Organic Coating on the Surface of a Poplar Biochar. Current Organic Chemistry 21, 1-7. doi:10.2174/1385272821666161216122035.
  • Clough, T.J., Condron, L.M., Kammann, C., Muller, C., 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3, 275–293. doi:10.3390/agronomy3020275.
  • Christensen BT. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52: 345–353. DOI:10.1046/j.1365-2389.2001.00417.x.
  • Chenu C, Plante AF, Puget P. 2006. Organo-Mineral Relationships. In: Lal R (vol I, 2nd eds) Encyclopedia of Soil Science. Taylor & Frhancis Group, New York, USA, pp 1227-1232.
  • Cheng, C.H., Lehmann, J., 2009. Ageing of black carbon along a temperature gradient. Chemosphere 75, 1021–1027. doi:10.1016/j.chemosphere.2009.01.045
  • Cheng, C.H., Lehmann, J., 2009. Ageing of black carbon along a temperature gradient. Chemosphere 75, 1021-1027.
  • Cheng CH, Lehmann J, Engelhard MH. 2008. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72: 1598-1610. DOI:10.1016/j.gca.2008.01.010.
  • Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S., 2007. Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research 45, 629–634.
  • Chan, K., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S., 2007. Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research, 45, 629–634. DOI:10.1071/SR07109.
  • Chan KY, Heenan DP, Oates A. 2002. Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil Tillage Research 63: 133–139. DOI:10.1016/S0167-1987(01)00239-2.
  • Cely, P., Tarquis, A.M., Paz-Ferreiro, J., M ndez, A., Gasc , G., 2014. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth Discuss, 6, 849–868. DOI:10.5194/se-5-585-2014.
  • Carlson, J., Saxena, J., Basta, N., Hundal, L., Busalacchi, D., Dick, R.P., 2015. Application of organic amendments to restore degraded soil: effects on soil microbial properties. Environmental Monitoring and Assessment 187, 1–15. doi:10.1007/s10661-015-4293-0.
  • Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S., 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 107, 419–428. doi:10.1016/j.biortech.2011.11.084.
  • Cai Y, Chang SX. 2015. Biochar effects on Soil Fertility and nutrient cycling. In Ok YS, Uchimiya SM, Chang SX, Bolan N (eds) Biochar: Production, Characterization, and Applications. CRC Press, Taylor & Francis Group, Boca Raton, USA, pp 246-271.
  • C.E. Brewer, R. Unger, K. Schmidt-Rohr, R.C. Brown, Criteria to select biochars for field studies based on biochar chemical properties, Bioenergy Research, 4 (2011) 312-323.
  • Butnan, S., Deenik, J.L., Toomsan, B., Antal, M.J., Vityakon, P., 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237, 105–116. DOI:10.1016/j.geoderma.2014.08.010.
  • Butnan, S., Deenik, J.L., Toomsan, B., Antal, M.J., Vityakon, P., 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237, 105–116. DOI:org/10.1016/j.geoderma.2014.08.010.
  • Buss, W., Kammann, C., Koyro, H-W., 2012. Biochar reduces copper toxicity in Chenopodium quinoa willd. in a sandy soil. Journal of Environmental Quality 41, 1157. doi:10.2134/jeq2011.0022.
  • Busch, D., Glaser, B., 2015. Stability of co-composted hydrochar and biochar under field conditions in a temperate soil. Soil Use and Management 31, 251–258. doi:10.1111/sum.12180.
  • Burton, E.D., Bush, R.T., Sullivan, L.A., 2006b. Acid-volatile sulfide oxidation in coastal flood plain drains: iron–sulfur cycling and effects on water quality. Environ. Sci. Technol. 40 (4), 1217–1222.
  • Burton, E.D., Bush, R.T., Sullivan, L.A., 2006a. Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes. Environ. Sci. Technol. 40 (3), 888–893.
  • Bruun, T.B., Elberling, B., Neergaard, A.D., Magid, J., 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation and Development 26, 272–283. doi:10.1002/ldr.2205.
  • Bruun, T.B., Elberling, B., Neergaard, A.D., Magid, J., 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation & Development, 26(3), 272–283. DOI: 10.1002/ldr.2205.
  • Bruun, E.W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H., 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry 46, 73– 79. doi:10.1016/j.soilbio.2011.11.019.
  • Bruun TB, Elberling B, Neergaard AD, Magid J. 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation & Development 26: 272-283. DOI:10.1002/ldr.2205.
  • Brown, I.C., 1943. A rapid method of determining exchaneable hydrogen and total exchangeable bases in soil. Soil Science, 56, 353–357.
  • Brodowski S, Amelung W, Haumaier L, Abetz C, Zech W. 2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128: 116-129. DOI:10.1016/j.geoderma.2004.12.019.
  • Brodie, H.L., Carr, L.E., Condon, P., 2000. A comparison of static pile and turned windrow methods for poultry litter compost production. Compost Science and Utilization 8, 178–89. doi:10.1080/1065657X.2000.10701990.
  • Brewer, C.E., Unger, R., Schmidt-Rohr, K., Brown, R.C., 2011. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Research 4, 312–323. doi:10.1007/s12155-011-9133-7.
  • Bremner, J.M., 1996. Nitrogen-total. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. Methods of soil analysis. Part 3-chemical methods, soil science society of America book series, vol 5. Soil Science Society America Inc., Madison 1085–1121.
  • Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H.W., Moeller, A., Amelung, W., 2012. Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use and Management 28, 177–184. doi:10.1111/j.1475-2743.2012.00407.x.
  • Borchard, N., Siemens, J., Ladd, B., M ller, A., Amelung, W., 2014. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Research 144, 184–194. doi:10.1016/j.still.2014.07.016.
  • Boehm, H.P., 2001. Carbon surface chemistry. In Delhaes P (eds) Graphite and precursors. CRC, Amsterdam, pp. 141-178.
  • Blume, H. P., Stahr, K., Leinweber, P., 2011. Bodenkundliches Praktikum. Heidelberg: Springer Spektrum, Akademischer Verlag, 3. Aufl.
  • Blackwell, P., Shea, S., Storer, P., Kerkmans, M., Stanley, I., 2007. Improving wheat production with deep banded oil mallee charcoal in Western Australia. Talk given at the International Agrichar Conference, April 27-May 2, 2007, Terrigal, NSW Australia.
  • Blackwell, P., Riethmuller, G., Collins, M., 2009. Biochar application to soil. In: Lehmann, J., Joseph, S., Eds.), Biochar for Environmental Management Science and Technology. Earthscans, UK, pp. 207–226.
  • Bindraban, P.S., van der Velde, M., Ye, L., van den Berg, M., Materechera, S., Innocent Kiba, D., Tamene, L., Vala Ragnarsdottir, K., Jongschaap, R., Hoogmoed, M., 2012. Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability 4, 478–488. doi:10.1016/j.cosust.2012.09.015
  • Biederman, L.A., Harpole, W.S., 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 5, 202–214. doi:10.1111/gcbb.12037
  • Beiyuan, J., Awad, Y.M., Beckers, F., Tsang, D.C.W., Ok, Y.S., Rinklebe, J., 2017. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 178, 110-118. doi:10.1016/j.chemosphere.2017.03.022.
  • Beiyuan, J., Awad, Y.M., Beckers, F., Tsang, D.C., Ok, Y.S., Rinklebe, J., 2017. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 178, 110-118.
  • Beesley, L., Moreno-Jim nez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., Sizmur, T., 2011. A review of biochars’ potential role in the remediation, revegetation and restorationof contaminated soils. Environmental Pollution 159, 3268– 3282. DOI:org/10.1016/j.envpol.2011.07.023.
  • B.P. Singh, A.L. Cowie, Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil, Scientific reports, 4 (2014) 3687.
  • Awad, Y.M., Blagodatskaya, E., Ok, Y.S., Kuzyakov, Y., 2013. Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates. European Journal of Soil Science 64, 488–499. doi:10.1111/ejss.12034.
  • Awad, Y.M., Blagodatskaya, E., OK, Y.S., Kuzyakov, Y., 2012. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. European Journal of Soil Biology, 48, 1–10. DOI: 10.1016/j.ejsobi.2011.09.005.
  • Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., Horie, T., 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research 111, 81–84. doi.org/10.1016/j.fcr.2008.10.008.
  • Artiola, JF, Rasmussen C, Freitas R. 2012. Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Science 177: 561-570. DOI:10.1097/SS.0b013e31826ba908.
  • Arevalo CBM., Chang SX, Bhatti JS, Sidders D. 2012. Mineralization potential and temperature sensitivity of soil organic carbon under different land uses in the Parkland region of Alberta, Canada. Soil Science Society of America Journal 76: 241–251. DOI:11.0126/sssaj2011.0126.
  • Antoniadis, V., Levizou, E., Shaheen, S.M., Ok, Y.S., Sebastian, A., Baum, C., Prasad, M.N., Wenzel, W.W., Rinklebe, J., 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews 171, 621-645. doi:10.1016/j.earscirev.2017.06.005.
  • Antoniadis, V., Levizou, E., Shaheen, S.M., Ok, Y.S., Sebastian, A., Baum, C., Prasad, M.N., Wenzel, W.W., Rinklebe, J., 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews 171, 621-645.
  • Antić-Mladenović, S., Rinklebe, J., Frohne, T., St rk, H.J., Wennrich, R., Tomić, Z., Ličina, V., 2011. Impact of controlled redox conditions on nickel in a serpentine soil. Journal of Soils and Sediments 11, 406-415.
  • Angst, T.E., Sohi, S.P., 2013. Establishing release dynamics for plant nutrients from biochar. Global Change Biology Bioenergy 5, 221–226. DOI:10.1111/gcbb.12023.
  • Amelung W, Zech W. 1999. Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma 92: 73–85. DOI:10.1016/S0016- 7061(99)00023-3.
  • Alburquerque, J.A., Calero, J.M., Barr n, V., Torrent, J., del Campillo, M.C., Gallardo, A., Villar, R., 2014. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177, 16–25. DOI:10.1002/jpln.201200652.
  • Akhtar, S.S., Li, G., Andersend, M.N., Liua, F., 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management 138: 37–44. doi:10.1016/j.agwat.2014.02.016.
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19–33. doi:10.1016/j.chemosphere.2013.10.071.
  • Ahmad, M., Ok, S.Y., Kim, B.Y., Ahn, J.H., Lee, Y.H., Zhang, M., Moon, D.H., Al-Wabel, M.I., Lee, S.S., 2016. Impact of soybean stover- and pine needle-derived biochars on Pb and as mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of Environmental Management 166, 131-139.
  • Ahmad, M., Lee, S.S., Rajapaksha, A.U., Vithanage, M., Zhang, M., Cho, J.S., Lee, S.E., Ok, Y.S., 2013. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource technology 143, 615-622.
  • Ahmad, M., Lee, S.S., Lee, S.E., Al-Wabel, M.I., Tsang, D.C. and Ok, Y.S., 2017. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments 17, 717-730.
  • Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J., Yang, J.E., OK, Y.S., 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology 118, 536–544. doi:10.1016/j.biortech.2012.05.042.
  • Agegnehu, G., Bass, A.M., Nelson, P.N., Muirhead, B., Wright, G., Bird, M.I., 2015. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture, Ecosystems and Environment 213, 72–85. doi:10.1016/j.agee.2015.07.027.
  • Agegnehu, G., Bass, A.M., Nelson, P.N., Bird, M.I., 2016. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment 543, 295-306.
  • Agegnehu, G., Bass, A.M., Nelson, P.N., Bird, M.I., 2016. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of The Total Environment 543, 295–306. doi:10.1016/j.scitotenv.2015.11.054.
  • Abiven, S., Schmidt, M.W.I., Lehmann, J., 2014. Biochar by design. Nature Geoscience, 7, 326–– 327. DOI:10.1038/ngeo2154.
  • Abbas, T., Rizwan, M., Ali, S., Zia-ur-Rehman, M., Qayyum, M.F., Abbas, F., Hannan, F., Rinklebe, J., Ok, Y.S., 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety 140, 37-47.
  • A.R. Zimmerman, Abiotic and microbial oxidation of laboratory-produced black carbon (biochar), Environmental science & technology, 44 (2010) 1295-1301.
  • A.J. Eykelbosh, M.S. Johnson, E.G. Couto, Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil, Journal of environmental management, 149 (2015) 9-16.
  • A.H. El-Naggar, A.R. Usman, A. Al-Omran, Y.S. Ok, M. Ahmad, M.I. Al-Wabel, Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar, Chemosphere, 138 (2015) 67-73.
  • A.D. Igalavithana, S.-E. Lee, Y.H. Lee, D.C. Tsang, J. Rinklebe, E.E. Kwon, Y.S. Ok, Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils, Chemosphere, 174 (2017) 593-603.
  • A. Zsolnay, E. Baigar, M. Jimenez, B. Steinweg, F. Saccomandi, Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying, Chemosphere, 38 (1999) 45-50.
  • A. Watzinger, S. Feichtmair, B. Kitzler, F. Zehetner, S. Kloss, B. Wimmer, S. Zechmeister‐Boltenstern, G. Soja, Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C‐labelled biochar as revealed by 13C PLFA analyses: results from a short‐term incubation and pot experiment, European Journal of Soil Science, 65 (2014) 40-51.
  • A. Kabata-Pendias, Trace elements in soils and plants, CRC press, 2010.
  • A. Huguet, L. Vacher, S. Relexans, S. Saubusse, J.-M. Froidefond, E. Parlanti, Properties of fluorescent dissolved organic matter in the Gironde Estuary, Organic Geochemistry, 40 (2009) 706- 719.
  • A. El‐Naggar, Y.M. Awad, X.Y. Tang, C. Liu, N.K. Niazi, S.H. Jien, D.C. Tsang, H. Song, Y.S. Ok, S.S. Lee, Biochar Influences Soil Carbon Pools and Facilitates Interactions with Soil: A Field Investigation, Land Degradation & Development.
  • A. El-Naggar, S.M. Shaheen, Y.S. Ok, J. Rinklebe, Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions, Science of The Total Environment, 624 (2018) 1059-1071.
  • . Andrade-Eiroa, M. Canle, V. Cerd , Environmental applications of excitation-emission spectrofluorimetry: an in-depth review II, Applied Spectroscopy Reviews, 48 (2013) 77-141.