박사

High Temperature Low Cycle Fatigue and Lifetime Prediction of Alloy 617 = Alloy 617 의 고온 저 사이클 피로 및 수명 예측

논문상세정보
' High Temperature Low Cycle Fatigue and Lifetime Prediction of Alloy 617 = Alloy 617 의 고온 저 사이클 피로 및 수명 예측' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Very high temperature reactor
  • alloy 617
  • creep fatigue
  • lifetimeprediction
  • low cycle fatigue
  • weldments
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
31 0

0.0%

' High Temperature Low Cycle Fatigue and Lifetime Prediction of Alloy 617 = Alloy 617 의 고온 저 사이클 피로 및 수명 예측' 의 참고문헌

  • “Next generation nuclear plant steam generator and intermediate heat exchanger materials research and development plan”, Idaho National Laboratory, NGNP Project: September 2010, INL/EXT-08-14107, Rev. 1, Plan-2804, page 36 of 252.
  • Y. L. Lu, L. J. Chen, G. Y. Wang, M. L. Benson, P. K. Liaw, S. A. Thompson, J. W. Blust, P. F. Browning, A. K. Bhattacharya, J. M. Aurrecoechea, D. L. Klarstrom, 2005, “Hold Time Effects on Low Cycle Fatigue Behavior of HAYNES 230 Superalloy at High Temperatures”, Materials Science and Engineering A, 409 (1-2), 282-291.
  • Y. Kchaou, V. Pelosin, G. H naff, N. Haddar, K. Elleuch, 2016, “Low Cycle Fatigue Behavior of SMAW Welded Alloy28 Super Austenitic Stainless Steel at Room Temperature”, Materials Science and Engineering A, 651, 556-566.
  • Xiang Chen, 2012, “High Temperature Creep-Fatigue Behavior of Alloy 617 and Alloy 230”, PhD Dissertation, University of Illinois at Urbana- Champaign.
  • X. Zhang, and C. Oskay, 2016, “Polycrystal Plasticity Modeling of Nickel- Based Superalloy IN 617 Subjected to Cyclic Loading at High Temperature”, Modelling Simul. Mater. Sci. Eng., 24, 055009, 27 pages.
  • X. Chen, Z. Yang, M. A. Sokolov, D. L. Erdman III, K. Mo, J. F. Stubbins, 2013, “Low Cycle Fatigue and Creep-Fatigue Behavior of Ni-Based Alloy 230 at 850oC”, Materials Science and Engineering A, 563, 152-162.
  • W. Ren, and R. Swindeman, 2009, “A Review on Current Status of Alloys 617 and 230 for Gen IV Nuclear Reactor Internals and Heat Exchangers”, Journal of Pressure Vessel Technology, 131 (4), 044002; 15 pages.
  • W. G. Kim, S. N. Yin, W. S. Ryu, J. H. Chang, S. J. Kim, 2008, “Tension and Creep Design Stresses of the “Hastelloy-X” Alloy for High-Temperature Gas Cooled Reactors”, Materials Science and Engineering A, 483-484, 495- 497.
  • W. G. Kim, S. N. Yin, J. Y. Park, S. D. Hong, Y. W. Kim, 2012, “An Improved Methodology for Determining Tensile Design Strengths of Alloy 617”, J. of Mechanical Science and Technology, 26 (2), 379-387.
  • W. G. Kim, J. Y. Park, I. M. W. Ekaputra, S. J. Kim, M. H. Kim, 2013, “Comparative Study on the High-Temperature Tensile and Creep Properties of Alloy 617 Base and Weld Metals”, J. of Mechanical Science and Technology, 27 (8), 2331-2340.
  • W. G. Kim, J. Y. Park, G. G. Lee, S. D. Hong, Y. W. Kim, 2014, “Temperature Effect on the Creep Behavior of Alloy 617 in Air and Helium Environments”, Nuclear Engineering and Design, 271, 291-300.
  • Vani Shankar, K. Mariappan, R. Sandhya, K. Laha, 2016, “Understanding Low Cycle Fatigue and Creep-Fatigue Interaction Behavior of 316 L(N) Stainless Steel Weld Joint”, Int. J. of Fatigue, 82 (Part 3), 487-496.
  • Tae-Su Kim, 2017, “The Influence of Strain Rate on the Low Cycle Fatigue Behavior of Alloy 617 at Room Temperature”, Master Thesis, Pukyong National University.
  • T. C. Totemeier, and H. Tian, 2007, “Creep-Fatigue Environment Interactions in INCONEL 617”, Materials Science and Engineering A, 468- 470, 81-87.
  • T. C. Totemeier, H. Tian, D. E. Clark, J. A. Simpson, 2005, “Microstructure and Strength Characteristics of Alloy 617 Welds”, Idaho National Laboratory Annual Report: June 2005, INL/EXT-05-00488.
  • T. C. Totemeier, 2007, “High-Temperature Creep-Fatigue of Alloy 617 Base Metal and Weldments”, In Proceedings of the 8th International Conference on Creep and Fatigue at Elevated Temperatures, ASME Pressure Vessels and Piping Conference, 9, 255-260.
  • Special Metals Corporation, 2005, “Inconel Alloy 617”, Paper No. SMC-029.
  • S. Suresh, 1998, “Fatigue of Materials”, 2nd edition, Cambridge University Press, pp. 40-214.
  • S. S. Manson, and G. R. Halford, 2009, “Fatigue and Durability of Metals at High Temperatures”, ASM International.
  • S. S. Manson, 1953, “Behavior of Materials under Conditions of Thermal Stress”, NACA, TN 2933.
  • S. Kalpakjian, and S. R. Schmid, 2014, “Manufacturing Engineering and Technology”, 7th edition, Pearson Education South Asia Pte Ltd., 884-907.
  • S. K. Paul, S. Sivaprasad, S. Dhar, S. Tarafder, 2010, “Cyclic Plastic Deformation and Cyclic Hardening/Softening Behavior in 304LN Stainless Steel”, Theoretical and Applied Fracture Mechanics, 54 (1), 63-70.
  • S. J. Kim, R. T. Dewa, W. G. Kim, E. S. Kim, 2015, “Cyclic Stress Response and Fracture Behaviors of Alloy 617 Base Metal and Weld Joint under LCF Loading”, Advances in Materials Science and Engineering, 2015, Article ID 20749, 11 pages.
  • S. J. Kim, P. H. Choi, R. T. Dewa, W. G. Kim, M. H. Kim, 2014, “Low Cycle Fatigue Properties of Alloy 617 Base Metal and Weld Joint at Room Temperature,” Procedia Materials Science, 3, 2201-2206.
  • S. Holdsworth, 2015, “Creep-Fatigue Failure Diagnosis”, Materials, 8 (11), 7757–7769.
  • S. G. Hong, and S. B. Lee, 2005, “Mechanism of Dynamic Strain Aging and Characterization of its Effect on the Low-Cycle Fatigue Behavior in Type 316L Stainless Steel”, Journal of Nuclear Materials, 340 (2-3), 307-314.
  • S. D. Antolovich, 2015, “Microstructural Aspects of Fatigue in Ni-Base Superalloys”, Phil. Trans. R. Soc. A, 373, 20140128.
  • Rando Tungga Dewa, 2015, “Low Cycle Fatigue Behavior of Alloy 617 Welded Joints at 800oC”, Master Thesis, Pukyong National University
  • R. T. Dewa, and S. J. Kim, 2017, “Low Cycle Fatigue Life Assessment of Alloy 617 Weldments at 900℃ by Coffin-Manson and Strain Energy Density-Based Models”, J. of the Korean Society for Power System Engineering, 21 (1), 43-49.
  • R. T. Dewa, S. J. Kim, W. G. Kim, E. S. Kim, 2018, “Evaluation of the Low Cycle Fatigue Failure Properties for GTAW Weldments of Alloy 617 at 950oC”, Engineering Faiure. Analysis, 90, 202-214.
  • R. T. Dewa, S. J. Kim, W. G. Kim, E. S. Kim, 2017, “Effect of Strain Range on the Low Cycle Fatigue in Alloy 617 at High Temperature”, Metals, 7 (2), 54.
  • R. T. Dewa, S. J. Kim, W. G. Kim, E. S. Kim, 2016, “Understanding Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Weldments at 900 C”, Metals, 6 (8), 178.
  • R. T. Dewa, S. J. Kim, W. G. Kim, E. S. Kim, 2016, “Low Cycle Fatigue Behaviors of Alloy 617 (INCONEL 617) Weldments for High Temperature Applications”, Metals, 6 (5), 100.
  • R. T. Dewa, J. H. Park, S. J. Kim, S. Y. Lee, 2018, “High-Temperature Creep-Fatigue Behavior of Alloy 617”, Metals, 8 (2), 103.
  • R. P. Skelton, 1987, “High Temperature Fatigue Properties and Prediction”, Elsevier Applied Science Publishers Ltd., pp. 1-27.
  • Q. Zhang, J. Zhang, P. Zhao, Y. Huang, Z. Yu, X. Fang, 2016, “Low-Cycle Fatigue Behaviors of a New Type of 10% Cr Martensitic Steel and Welded Joint with Ni-Based Weld Metal”, Int. J. of Fatigue, 88, 78-87.
  • Pil-Ho Choi, 2014, “Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Weld Joints”, Master Thesis, Pukyong National University.
  • O. Fatoba, and R. Akid, 2014, “Low Cycle Fatigue Behaviour of API 5L X65 Pipeline Steel at Room Temperature”, Procedia Engineering, 74, 279-286.
  • M. A. Burke, and C. G. Beck, 1984, “The High Temperature Low Cycle Fatigue Behavior of the Nickel Base Alloy IN-617”, Metallurgical Transactions A, 15 (4), 661–670.
  • L. Z. He, Q. Zheng, X. F. Sun, H. R. Guan, Z. Q. Hu, A. K. Tieu, C. Lu, H. T. Zhu, 2005, “High Temperature Low Cycle Fatigue Behavior of Ni-Base Superalloy M963”, Materials Science and Engineering A, 402 (1-2), 33-41.
  • L. J. Carroll, C. Cabet, M. C. Carroll, R. N. Wright, 2013, “The Development of Microstructural Damage During High Temperature Creep-Fatigue of a Nickel Alloy”, Int. J. of Fatigue, 47, 115-125.
  • L. F. Coffin, 1954, “A Study of the Effects of Cyclic Thermal Stress on Ductile Metal”, Transactions of ASME, 76, 931-950.
  • K. Sonoya, and Y. Tomisawa, 1991, “Cracking by Elevated Temperature Embrittlement in the HAZ of Alloy 800H”, Welding International, 5 (6), 425-429.
  • K. Natesan, A. Moisseytsev, S. Majumdar, P.S. Shankar, Sep 2006, “Preliminary Issues Associated with the Next Generation Nuclear Plant Intermediate Heat Exchanger Design”, Annual Report 2006: Argonne National Laboratory, ANL/EXT-06/46.
  • K. B. S. Rao, H.-P. Meurer, H. Schuster, 1988, “Creep-Fatigue Interaction of Inconel 617 at 950 C in Simulated Nuclear Reactor Helium”, Materials Science and Engineering A, 104, 37-51.
  • K. B. S. Rao, H. Schiffers, H. Schuster, and H. Nickel, 1988, “Influence of Time and Temperature Dependent Processes on Strain Controlled Low Cycle Fatigue Behavior of Alloy 617”, Metallurgical Transactions A, 19 (2), 359- 371.
  • K. B. S. Rao, H. Schiffers, H. Schuster, G. R. Halford, 1996, “Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H”, Metal. and Mater. Trans. A, 27A, 255-267.
  • Jeong-Jun Hwang, 2017, “Low Cycle Fatigue Behavior of Alloy 617 Weldments at 850oC”, Master Thesis, Pukyong National University.
  • J. P. Strizak, C. R. Brinkman, P. L. Rittenhouse, May 1981, “High Temperature Low-Cycle Fatigue and Tensile Properties of Hastelloy X and Alloy 617 in Air and HTGR-Helium”, in Proceedings of the IAEA Specialists’ Meeting on ‘High Temperature Metallic Materials for Application in Gas Cooled Reactors’, Oak Ridge National Laboratory, Vienna, Austria.
  • J. N. Dupont, J. C. Lippold, S. D. Kiser, 2009, “Welding Metallurgy and Weldability of Nickel-Base Alloys”, John Wiley & Sons, pp. 379-401.
  • J. L. Kaae, 2009, “High-Temperature Low-Cycle Fatigue of Alloy 800H”, Int. J. of Fatigue, 31 (2), 332-340.
  • J. Kang, F. C. Zhang, X. Y. Long, B. Lv, 2014, “Cyclic Deformation and Fatigue Behaviors of Hadfield Manganese Steel”, Materials Science and Engineering A, 591, 59-68.
  • J. K. Wright, and T. M. Lillo, July 2015, “Progress Report on Alloy 617 Time-Dependent Allowable Stresses”, Idaho National Laboratory, INL/EXT-15-35640.
  • J. K. Wright, L. J. Carroll, R. N. Wright, 2014, “Creep and Creep-Fatigue of Alloy 617 Weldments”, United States, Idaho National Laboratory, Annual Report 2014, INL/EXT-14-32966; doi:10.2172/1168621.
  • J. K. Wright, L. J. Carroll, J.A. Simpson, R. N. Wright, 2013, “Low Cycle Fatigue of Alloy 617 at 850oC and 950oC,” Transactions of the ASMEJournal of Engineering Materials and Technology, 135 (3), Article ID 031005, 8 pages.
  • J. K. Wright, L. J. Carroll, C. Cabet, T. M. Lillo, J. K. Benz, J. A. Simpson, W. R. Lloyd, J. A. Chapman, R. N. Wright, 2012, “Characterization of Elevated Temperature Properties of Heat Exchanger and Steam Generator Alloys”, Nuclear Engineering and Design, 251, 252-260.
  • J. K. Wright, J. A. Simpson, R. N. Wright, L. J. Carroll, T. L. Sham, 2013, “Strain Rate Sensitivity of Alloys 800H and 617”, Proceedings of the 2013 ASME Pressure Vessels & Piping Conference (PVP2013), Paris, France, July 14 - 18, 2013.
  • J. D. Morrow, 1965, “Cyclic Plastic Strain Energy and Fatigue of Metals”, in Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, Philadelphia, pp. 45-84.
  • J. D. Hong, J. H. Lee, C. H. Jang, T. S. Kim, 2014, “Low Cycle Fatigue Behavior of Alloy 690 in Simulated PWR Water—Effects of Dynamic Strain Aging and Hydrogen”, Materials Science and Engineering A, 611, 37-44.
  • Idaho, Oak Ridge, and Argonne National Laboratory, Jan 2005, “Next Generation Nuclear Plant Research and Development Program Plan”, Annual Report 2005, INEEL/EXT-05-02581.
  • I. M. W. Ekaputra, W. G. Kim, J. Y. Park, S. J. Kim, E. S. Kim, 2016, “Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617”, Nuclear Engineering and Technology, 48 (6), 1387-1395.
  • I Made Wicaksana Ekaputra, 2016, “A Study on the Effects of Strain Rate and Temperature on Serrated Yielding Behavior in Alloy 617”, PhD Dissertation, Pukyong National University.
  • H. Y. Lee, Y. W. Kim, K. N. Song, 2008, “Preliminary Application of the Draft Code Case for Alloy 617 for a High Temperature Component”, J. of Mechanical Science and Technology, 22, 856.
  • H. S. Hosseini, M. Shamanian, A. Kermanpur, 2011, “Characterization of Microstructures and Mechanical Properties of Inconel 617/310 Stainless Steel Dissimilar Welds”, Materials Characterization, 62 (4), 425-431.
  • H. Mughrabi, 2015, “Microstructural Mechanisms of Cyclic Deformation, Fatigue Crack Initiation and Early Crack Growth”, Phil. Trans. R. Soc. A, 373, 20140132.
  • G. V. P. Reddy, R. Sandhya, M. Valsan, K. B. S. Rao, 2008, “High Temperature Low Cycle Fatigue Properties of 316(N) Weld Metal and 316L(N)/316(N) Weld Joints”, Int. J. of Fatigue, 30 (3), 538-546.
  • G. R. Halford, 1966, “The Energy Required for Fatigue”, Journal of Materials, 1 (1), 2-18.
  • G. Ken Hicken, 1993, “Gas Tungsten Arc Welding”, ASM Handbook Volume 6: Welding, Brazing, and Soldering, ASM International, pp. 590- 603.
  • G. G. Lee, S. Jung, J. Y. Park, W. G. Kim, S. D. Hong, Y. W. Kim, 2013, “Microstructural Investigation of Alloy 617 Creep-Ruptured at High Temperature in a Helium Environment”, J. Materials Science and Technology, 29 (12), 1177-1183.
  • David W. J. Tanner, 2009, “Life Assessment of Welded INCONEL 718 at High Temperature”, PhD Dissertation, University of Nottingham.
  • C. Cabet, L. J. Carroll, R. N. Wright, 2013, “Low Cycle Fatigue and Creep- Fatigue Behavior of Alloy 617 at High Temperature”, J. of Pressure Vessel Technology, 135 (6), 061401, 7 pages.
  • Arindam Biswas, 2012, “Low Cycle Fatigue Behaviour of Cu-Cr-Zr-Ti Alloy”, Master Thesis, Jadavpur University.
  • ASTM E606, 2002, “Standard practice for strain-controlled fatigue testing: In Annual Book of ASTM Standards”, 3, ASTM International, Baltimore, Md, USA, pp. 569.
  • ASTM E2714, 2002, “Standard Test Method for Creep-Fatigue Testing”, ASTM International, West Conshohocken, PA, USA, 2013.
  • ASTM B168-11, 2002, “Standard Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674) Plate, Sheet, and Strip”, ASTM International, West Conshohocken, PA.
  • ASM Handbook, 1996, “Fatigue and Fracture”, 19, ASM International.