박사

에너지 저장 장치 응용을 위한 슈퍼커패시터 전극 소재의 전기화학적 특성 연구 및 제조 방법 = Study on electrochemical characteristics and fabrication method of supercapacitor electrode materials for energy storage device applications

이원길 2018년
논문상세정보
' 에너지 저장 장치 응용을 위한 슈퍼커패시터 전극 소재의 전기화학적 특성 연구 및 제조 방법 = Study on electrochemical characteristics and fabrication method of supercapacitor electrode materials for energy storage device applications' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 슈퍼커패시터
  • 전극소재
  • 전기화학
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
103 0

0.0%

' 에너지 저장 장치 응용을 위한 슈퍼커패시터 전극 소재의 전기화학적 특성 연구 및 제조 방법 = Study on electrochemical characteristics and fabrication method of supercapacitor electrode materials for energy storage device applications' 의 참고문헌

  • 한구과학기술정보연구원, 슈퍼캐패시터
    부품소재 종합정보망 [2007]
  • 초고용량 커패시터 산업 및 시장 전망
    남정호 녹색기술동향보고서, 167, , 159 [2014]
  • 차세대 에너지 저장기기 리 튬이온 커패시터 기술 동향
    고병철 배준호 이철승 조진우 조현동 KEIT PD Issue Report, 16-7, Issue 1, 2016, 13-23. [2016]
  • 슈퍼커패시터의 시장 및 기술개발 동향, 전자통신동 향분석
    유인규 전황수 한국전자통신연구원, 제29권, 제5호, , 186-194 [2014]
  • 방사선 기술의 사회적 활용과 인간생활
    양용석 과학기술정책, MAY. JUN, , 43-54 [2007]
  • “슈퍼커패시터(Super Capacitor) 기술 및 정 보 분석
    박종규 배영철 한국과학기술정보연구원 정보분석연구소 [2013]
  • Z. Zhang, L. Yang, S. Luo, M. Tian, K. Tachibana, K. Kamijima, Ionic liquids based on aliphatic tetraalkylammonium dications and TFSI anion as potential electrolytes, J. Power Sources, 167, 2007, 217-222.
  • Z. Wu, W. Ren, D. Wang, F. Li, B. Liu, H. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors, ACS nano, 4, 2010, 5835-5842.
  • Z. Wu, K. Parvez, X. Feng, K. M llen, Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nature communications, 4, 2013, 2487.
  • Z. Weng, Y. Su, D. Wang, F. Li, J. Du, H. Cheng, Graphene– cellulose paper flexible supercapacitors, Advanced Energy Materials, 1, 2011, 917-922.
  • Z. Liu, K. Xu, H. Sun, S. Yin, One‐Step Synthesis of Single‐ Layer MnO2 Nanosheets with Multi‐Role Sodium Dodecyl Sulfate for High‐Performance Pseudocapacitors, Small, 11, 2015, 2182-2191.
  • Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature materials, 10, 2011, 424.
  • Y.J. Kang, S. Chun, S. Lee, B. Kim, J.H. Kim, H. Chung, S. Lee, W. Kim, All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels, ACS nano, 6, 2012, 6400-6406.
  • Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films, ACS nano, 7, 2013, 4042-4049.
  • Y. Wu, R. Balakrishna, M. Reddy, A.S. Nair, B. Chowdari, S. Ramakrishna, Functional properties of electrospun NiO/RuO2 composite carbon nanofibers, J. Alloys Compounds, 517, 2012, 69-74.
  • Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, Y. Chen, Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films, Nano Research, 3, 2010, 661-669.
  • Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics, Adv Mater, 19, 2007, 1897-1916.
  • Y. Li, K. Sheng, W. Yuan, G. Shi, A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide, Chemical Communications, 49, 2013, 291-293.
  • Y. Jin, H. Chen, M. Chen, N. Liu, Q. Li, Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors, ACS applied materials &interfaces, 5, 2013, 3408-3416.
  • Y. Hsu, Y. Chen, Y. Lin, L. Chen, K. Chen, Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light, Journal of Materials Chemistry, 22, 2012, 2733-2739.
  • Y. Hou, L. Chen, A. Hirata, T. Fujita, M. Chen, Non-aqueous nanoporous gold based supercapacitors with high specific energy, Scr. Mater., 116, 2016, 76-81.
  • Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, High-yield production of graphene by liquid-phase exfoliation of graphite, Nature nanotechnology, 3, 2008, 563.
  • Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage, Adv Mater, 24, 2012, 5713-5718.
  • Y. Bai, M. Du, J. Chang, J. Sun, L. Gao, Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes, Journal of Materials Chemistry A, 2, 2014, 3834-3840.
  • X. Zhang, W. Yang, J. Yang, D.G. Evans, Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals, J. Cryst. Growth, 310, 2008, 716-722.
  • X. Zhang, W. Yang, D.G. Evans, Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors, J. Power Sources, 184, 2008, 695-700.
  • X. Yang, J. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high‐performance supercapacitors, Adv Mater, 23, 2011, 2833-2838.
  • X. Wang, B. Liu, Q. Wang, W. Song, X. Hou, D. Chen, Y. Cheng, G. Shen, Three‐Dimensional Hierarchical GeSe2 Nanostructures for High Performance Flexible All‐Solid‐State Supercapacitors, Adv Mater, 25, 2013, 1479-1486.
  • X. Tang, H. Li, Z. Liu, Z. Yang, Z. Wang, Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure, J. Power Sources, 196, 2011, 855-859.
  • X. Peng, X. Liu, D. Diamond, K.T. Lau, Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor, Carbon, 49, 2011, 3488-3496.
  • X. Liu, P. Shang, Y. Zhang, X. Wang, Z. Fan, B. Wang, Y. Zheng, Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes, Journal of Materials Chemistry A, 2, 2014, 15273-15278.
  • X. Li, L. Zhi, Graphene hybridization for energy storage applications, Chem. Soc. Rev., 47, 2018, 3189-3216.
  • X. Li, I. Zhitomirsky, Electrodeposition of polypyrrole–carbon nanotube composites for electrochemical supercapacitors, J. Power Sources, 221, 2013, 49-56.
  • X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature nanotechnology, 6, 2011, 232.
  • X. Du, P. Guo, H. Song, X. Chen, Graphene nanosheets as electrode material for electric double-layer capacitors, Electrochim. Acta, 55, 2010, 4812-4819.
  • Wikipedia, Supercapacitor, www.wikipedia.org.
  • Wikipedia, Conductive polymer, www.wikipedia.org.
  • W.L. Armarego, Purification of laboratory chemicals, Butterworth-Heinemann 2017.
  • W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40, 2011, 1697-1721.
  • W. Lu, A.G. Fadeev, B. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for pi-conjugated polymer electrochemical devices, Science, 297, 2002, 983-987.
  • W. Li, R. Zeng, Z. Sun, D. Tian, S. Dou, Uncoupled surface spin induced exchange bias in α-MnO 2 nanowires, Scientific reports, 4, 2014, 6641.
  • W. Cho, C.G. Yeom, B.C. Kim, K.M. Kim, J.M. Ko, K. Yu, Supercapacitive properties of activated carbon electrode in organic electrolytes containing single-and double-cationic liquid salts, Electrochim. Acta, 89, 2013, 807-813.
  • W. Cho, C. Yeom, J. Ko, Y. Lee, S. Kim, K. Kim, K. Yu, Supercapacitive properties of carbon electrode in an electrolyte containing a newly synthesized two-cation salt, Journal of Electrochemical Science and Technology, 2, 2011, 63-67.
  • W. Chen, T. Wen, H. Teng, Polyaniline-deposited porous carbon electrode for supercapacitor, Electrochim. Acta, 48, 2003, 641-649.
  • W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide, Science, 321, 2008, 1815-1817.
  • V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures, The Journal of Physical Chemistry B, 109, 2005, 20207-20214.
  • V. Ruiz, C. Blanco, E. Raymundo-Pi ero, V. Khomenko, F. B guin, R. Santamar a, Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors, Electrochim. Acta, 52, 2007, 4969-4973.
  • T.A. Centeno, M. Hahn, J. Fern ndez, R. K tz, F. Stoeckli, Correlation between capacitances of porous carbons in acidic and aprotic EDLC electrolytes, Electrochemistry Communications, 9, 2007, 1242-1246.
  • T. Gujar, W. Kim, I. Puspitasari, K. Jung, O. Joo, Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode, Int.J.Electrochem.Sci, 2, 2007, 666-673.
  • T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellv g, P. Norby, Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers, The Journal of Physical Chemistry C, 112, 2008, 13134-13140.
  • T. Gao, H. Fjellv g, P. Norby, A comparison study on Raman scattering properties of α-and β-MnO2, Anal. Chim. Acta, 648, 2009, 235-239.
  • T. Darmanin, F. Guittard, Wettability of conducting polymers: from superhydrophilicity to superoleophobicity, Progress in Polymer Science, 39, 2014, 656-682.
  • T. Chen, L. Dai, Flexible supercapacitors based on carbon nanomaterials, Journal of Materials Chemistry A, 2, 2014, 10756-10775.
  • T. Brousse, M. Toupin, R. Dugas, L. Athou l, O. Crosnier, D. B langer, Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc., 153, 2006, A2171-A2180.
  • S.A. Francis, J.C. Petrosky, J.W. McClory, C.D. Cress, Effects of proton and X-Ray irradiation on graphene field-effect transistors with thin gate dielectrics, IEEE Trans. Nucl. Sci., 61, 2014, 3010-3017.
  • S. Zhan, D. Zhu, M. Qiu, H. Yu, Y. Li, Highly efficient removal of NO with ordered mesoporous manganese oxide at low temperature, RSC Advances, 5, 2015, 29353-29361.
  • S. Suematsu, Y. Oura, H. Tsujimoto, H. Kanno, K. Naoi, Conducting polymer films of cross-linked structure and their QCM analysis, Electrochim. Acta, 45, 2000, 3813-3821.
  • S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442, 2006, 282.
  • S. Pei, H. Cheng, The reduction of graphene oxide, Carbon, 50, 2012, 3210-3228.
  • S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon. 49 (2011) 3019–3023.
  • S. Park, H.C. Floresca, Y. Suh, M.J. Kim, Electron microscopy analyses of natural and highly oriented pyrolytic graphites and the mechanically exfoliated graphenes produced from them, Carbon, 48, 2010, 797-804.
  • S. Mitani, S. Lee, K. Saito, Y. Korai, I. Mochida, Contrast structure and EDLC performances of activated spherical carbons with medium and large surface areas, Electrochim. Acta, 51, 2006, 5487-5493.
  • S. Mathew, K. Gopinadhan, T. Chan, X. Yu, D. Zhan, L. Cao, A. Rusydi, M. Breese, S. Dhar, Z. Shen, Magnetism in MoS2 induced by proton irradiation, Appl. Phys. Lett., 101, 2012, 102103.
  • S. Liu, S. Liu, K. Huang, J. Liu, Y. Li, D. Fang, H. Wang, Y. Xia, A novel Et 4 NBF 4 and LiPF 6 blend salts electrolyte for supercapacitor battery, Journal of Solid State Electrochemistry, 16, 2012, 1631-1634.
  • S. Lee, J. Seo, J. Hong, S.H. Park, J. Lee, B. Min, T. Lee, Proton irradiation energy dependence of defect formation in graphene, Appl. Surf. Sci., 344, 2015, 52-56.
  • S. Guo, S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 40, 2011, 2644-2672.
  • S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, R.B. Kaner, A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents, ACS nano, 4, 2010, 3845-3852.
  • S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, The Journal of Physical Chemistry C, 112, 2008, 4406-4417.
  • S. Chou, J. Wang, S. Chew, H. Liu, S. Dou, Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors, Electrochemistry Communications, 10, 2008, 1724-1727.
  • S. Chen, W. Xing, J. Duan, X. Hu, S.Z. Qiao, Nanostructured morphology control for efficient supercapacitor electrodes, Journal of materials chemistry a, 1, 2013, 2941-2954.
  • S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide− MnO2 nanocomposites for supercapacitors, ACS nano, 4, 2010, 2822-2830.
  • S. Ahn, B. Kim, Y. Lin, F. Ren, S.J. Pearton, G. Yang, J. Kim, I.I. Kravchenko, Effect of proton irradiation dose on InAlN/GaN metal-oxide semiconductor high electron mobility transistors with Al2O3 gate oxide, Journal of Vacuum Science &Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 34, 2016, 051202.
  • R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Large-scale synthesis of coaxial carbon nanotube/Ni (OH) 2 composites for asymmetric supercapacitor application, Nano Energy, 11, 2015, 211-218.
  • R. Ramya, R. Sivasubramanian, M. Sangaranarayanan, Conducting polymers-based electrochemical supercapacitors— progress and prospects, Electrochim. Acta, 101, 2013, 109-129.
  • R. K tz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45, 2000, 2483-2498.
  • R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, R.L. Shepherd, J. Chen, S. Aminorroaya‐Yamini, K. Konstantinov, A.I. Minett, J.M. Razal, G.G. Wallace, Scalable one‐step wet‐spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles, Advanced Functional Materials, 23, 2013, 5345-5354.
  • R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, S.E. Moulton, J.M. Razal, G.G. Wallace, Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures, Acs Nano, 7, 2013, 3981-3990.
  • R. Gupta, S. Sen, Calculation of multiplet structure of core p-vacancy levels, Physical Review B, 10, 1974, 71.
  • R. Garcia-Molina, I. Abril, P. de Vera, I. Kyriakou, D. Emfietzoglou, A study of the energy deposition profile of proton beams in materials of hadron therapeutic interest, Applied Radiation and Isotopes, 83, 2014, 109-114.
  • R. Chen, P. Zavalij, M.S. Whittingham, Hydrothermal Synthesis and Characterization of K x MnO2⊙ y H2O, Chemistry of Materials, 8, 1996, 1275-1280.
  • R. Bi, X. Wu, F. Cao, L. Jiang, Y. Guo, L. Wan, Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance, The Journal of Physical Chemistry C, 114, 2010, 2448-2451.
  • Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 2012, 210-224.
  • Q. Maqbool, C. Singh, P. Jash, A. Paul, A. Srivastava, Nano “Koosh Balls” of Mesoporous MnO2: Improved Supercapacitor Performance through Superior Ion Transport, Chemistry-A European Journal, 23, 2017, 4216-4226.
  • Q. Cao, H. Kim, N. Pimparkar, J.P. Kulkarni, C. Wang, M. Shim, K. Roy, M.A. Alam, J.A. Rogers, Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates, Nature, 454, 2008, 495.
  • P. Wasserscheid, T. Welton, Ionic liquids in synthesis, John Wiley &Sons 2008.
  • P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature materials, 7, 2008, 845.
  • P. Simon, A. Burke, Nanostructured carbons: double-layer capacitance and more, The electrochemical society interface, 17, 2008, 38.
  • P. Khanra, T. Kuila, S.H. Bae, N.H. Kim, J.H. Lee, Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application, Journal of Materials Chemistry, 22, 2012, 24403-24410.
  • P. Hapiot, C. Lagrost, Electrochemical reactivity in room-temperature ionic liquids, Chem. Rev., 108, 2008, 2238-2264.
  • P. Balakrishnan, R. Ramesh, T.P. Kumar, Safety mechanisms in lithium-ion batteries, J. Power Sources, 155, 2006, 401-414.
  • O. Vargas, A. Caballero, L. Hern n, J. Morales, Improved capacitive properties of layered manganese dioxide grown as nanowires, J. Power Sources, 196, 2011, 3350-3354.
  • O. Mykhailiv, M. Imierska, M. Petelczyc, L. Echegoyen, M.E. Plonska‐Brzezinska, Chemical versus Electrochemical Synthesis of Carbon Nano‐onion/Polypyrrole Composites for Supercapacitor Electrodes, Chemistry-A European Journal, 21, 2015, 5783-5793.
  • O. Ghodbane, J. Pascal, F. Favier, Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors, ACS applied materials &interfaces, 1, 2009, 1130-1139.
  • N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics, Nature nanotechnology, 12, 2017, 7-15.
  • N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M. Zhu, High‐ Performance Fiber‐Shaped All‐Solid‐State Asymmetric Supercapacitors Based on Ultrathin MnO2 Nanosheet/Carbon Fiber Cathodes for Wearable Electronics, Advanced Energy Materials, 6, 2016,.
  • N. Karikalan, C. Karuppiah, S. Chen, M. Velmurugan, P. Gnanaprakasam, Three‐Dimensional Fibrous Network of Na0. 21MnO2 for Aqueous Sodium‐Ion Hybrid Supercapacitors, Chemistry-A European Journal, 23, 2017, 2379-2386.
  • N. Jabeen, Q. Xia, S.V. Savilov, S.M. Aldoshin, Y. Yu, H. Xia, Enhanced Pseudocapacitive Performance of α-MnO2 by Cation Preinsertion, ACS applied materials &interfaces, 8, 2016, 33732-33740.
  • N. Aydemir, J. Malmstr m, J. Travas-Sejdic, Conducting polymer based electrochemical biosensors, Physical Chemistry Chemical Physics, 18, 2016, 8264-8277.
  • M.J. McAllister, J. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chemistry of materials, 19, 2007, 4396-4404.
  • M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chemical reviews, 104, 2004, 4245-4269.
  • M. Wang, L. Zhang, W. Huang, Y. Zhou, H. Zhao, J. Lv, J. Tian, X. Kan, J. Shi, Pt/MnO 2 nanosheets: facile synthesis and highly efficient catalyst for ethylene oxidation at low temperature, RSC Advances, 7, 2017, 14809-14815.
  • M. Toupin, T. Brousse, D. B langer, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chemistry of Materials, 16, 2004, 3184-3190.
  • M. Toupin, D. B langer, I.R. Hill, D. Quinn, Performance of experimental carbon blacks in aqueous supercapacitors, J. Power Sources, 140, 2005, 203-210.
  • M. Rasouli, L.S.J. Phee, Energy sources and their development for application in medical devices, Expert review of medical devices, 7, 2010, 693-709.
  • M. Pyo, J.R. Reynolds, L.F. Warren, H.O. Marcy, Long-term redox switching stability of polypyrrole, Synth. Met., 68, 1994, 71-77.
  • M. Pumera, Graphene-based nanomaterials for energy storage, Energy &Environmental Science, 4, 2011, 668-674.
  • M. Nakayama, M. Fukuda, S. Konishi, T. Tonosaki, Effects of reaction parameters on the electrochemical formation of multilayer films composed of manganese oxides and tetra-alkylammonium ions, J. Mater. Res., 21, 2006, 3152-3160.
  • M. Mao, L. Mei, L. Wu, Q. Li, M. Zhang, Facile synthesis of cobalt sulfide/carbon nanotube shell/core composites for high performance supercapacitors, RSC Advances, 4, 2014, 12050-12056.
  • M. Huang, Y. Zhang, F. Li, L. Zhang, R.S. Ruoff, Z. Wen, Q. Liu, Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO 2 nanosheets for asymmetric supercapacitors, Scientific reports, 4, 2014, 3878.
  • M. Habibzadeh, M. Hassanalieragh, A. Ishikawa, T. Soyata, G. Sharma, Hybrid solar-wind energy harvesting for embedded applications: Supercapacitor-based system architectures and design tradeoffs, IEEE Circuits and Systems Magazine, 17, 2018, 29-63.
  • M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes, Electrochim. Acta, 51, 2006, 5567-5580.
  • M. Ding, K. Xu, J. Zheng, T. Jow, γ-Butyrolactone-acetonitrile solution of triethylmethylammonium tetrafluoroborate as an electrolyte for double-layer capacitors, J. Power Sources, 138, 2004, 340-350.
  • M. Bichat, E. Raymundo-Pi ero, F. B guin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon, 48, 2010, 4351-4361.
  • M. Bazzaoui, L. Martins, E. Bazzaoui, J. Martins, New single-step electrosynthesis process of homogeneous and strongly adherent polypyrrole films on iron electrodes in aqueous medium, Electrochim. Acta, 47, 2002, 2953-2962.
  • M. Amano, Energy Storage Devices and Systems, Hitachi chemical Technical Report, 55, 2013, 9-11.
  • L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc., 131, 2009, 11027-11032.
  • L.I. Hill, A. Verbaere, D. Guyomard, MnO2 (α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology, and lithium insertion behavior, J. Power Sources, 119, 2003, 226-231.
  • L.Hu,Y.Cui,Energy and environmentalnanotechnology in conductive paper and textiles, Energy & Environmental Science,5(2012)6423–6435.
  • L.G. Bettini, M. Galluzzi, A. Podest , P. Milani, P. Piseri, Planar thin film supercapacitor based on cluster-assembled nanostructured carbon and ionic liquid electrolyte, Carbon, 59, 2013, 212-220.
  • L. Yuan, X. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure, ACS nano, 6, 2011, 656-661.
  • L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Polypyrrole-coated paper for flexible solid-state energy storage, Energy &Environmental Science, 6, 2013, 470-476.
  • L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, G. Yu, Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors, Nano letters, 13, 2013, 2151-2157.
  • L. Nyholm, G. Nystr m, A. Mihranyan, M. Str mme, Toward flexible polymer and paper‐based energy storage devices, Adv Mater, 23, 2011, 3751-3769.
  • L. Li, C. Nan, J. Lu, Q. Peng, Y. Li, α-MnO 2 nanotubes: high surface area and enhanced lithium battery properties, Chemical Communications, 48, 2012, 6945-6947.
  • L. Kouchachvili, W. Ya ci, E. Entchev, Hybrid battery/ supercapacitor energy storage system for the electric vehicles, J. Power Sources, 374, 2018, 237-248.
  • L. Athou l, F. Moser, R. Dugas, O. Crosnier, D. B langer, T. Brousse, Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, The Journal of Physical Chemistry C, 112, 2008, 7270-7277.
  • K.E. Johnson, What's an ionic liquid? Interface-Electrochemical Society, 16, 2007, 38-41.
  • K.A. Smith, A.I. Savva, C. Deng, J.P. Wharry, S. Hwang, D. Su, Y. Wang, J. Gong, T. Xu, D.P. Butt, Effects of proton irradiation on structural and electrochemical charge storage properties of TiO 2 nanotube electrodes for lithium-ion batteries, Journal of Materials Chemistry A, 5, 2017, 11815-11824.
  • K. Naoi, W. Naoi, S. Aoyagi, J. Miyamoto, T. Kamino, New generation “nanohybrid supercapacitor”, Acc. Chem. Res., 46, 2012, 1075-1083.
  • K. Maksymiuk, Chemical reactivity of polypyrrole and its relevance to polypyrrole based electrochemical sensors, Electroanalysis, 18, 2006, 1537-1551.
  • K. Cheung, D. Bloor, G. Stevens, Characterization of polypyrrole electropolymerized on different electrodes, Polymer, 29, 1988, 1709-1717.
  • J.O. Iroh, G.A. Wood, Control of carbon fiber-polypyrrole interphases by aqueous electrochemical process, Composites Part B: Engineering, 29, 1998, 181-188.
  • J.L. Anderson, R. Ding, A. Ellern, D.W. Armstrong, Structure and properties of high stability geminal dicationic ionic liquids, J. Am. Chem. Soc., 127, 2005, 593-604.
  • J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, Ultrathin planar graphene supercapacitors, Nano letters, 11, 2011, 1423-1427.
  • J. Zhu, Q. Li, W. Bi, L. Bai, X. Zhang, J. Zhou, Y. Xie, Ultra-rapid microwave-assisted synthesis of layered ultrathin birnessite K 0.17 MnO 2 nanosheets for efficient energy storage, Journal of Materials Chemistry A, 1, 2013, 8154-8159.
  • J. Zhou, L. Yu, M. Sun, S. Yang, F. Ye, J. He, Z. Hao, Novel synthesis of birnessite-type MnO2 nanostructure for water treatment and electrochemical capacitor, Ind Eng Chem Res, 52, 2013, 9586-9593.
  • J. Zheng, P. Cygan, T. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 142, 1995, 2699-2703.
  • J. Xiang, L.T. Drzal, Thermal conductivity of exfoliated graphite nanoplatelet paper, Carbon, 49, 2011, 773-778.
  • J. Wang, Y. Yang, Z. Huang, F. Kang, Rational synthesis of MnO 2/conducting polypyrrole@ carbon nanofiber triaxial nano-cables for high-performance supercapacitors, Journal of Materials Chemistry, 22, 2012, 16943-16949.
  • J. Wang, Y. Yang, Z. Huang, F. Kang, A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes, Carbon, 61, 2013, 190-199.
  • J. Wang, X. Mo, D. Ge, Y. Tian, Z. Wang, S. Wang, Polypyrrole nanostructures formed by electrochemical method on graphite impregnated with paraffin, Synth. Met., 156, 2006, 514-518.
  • J. Shen, A. Liu, Y. Tu, H. Wang, R. Jiang, J. Ouyang, Y. Chen, Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors, Electrochim. Acta, 78, 2012, 122-132.
  • J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G.G. Gurzadyan, The origin of fluorescence from graphene oxide, Scientific reports 2 (2012) 792.
  • J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Twisting carbon nanotube fibers for both wireshaped micro‐supercapacitor and micro‐battery, Adv Mater, 25, 2013, 1155-1159.
  • J. Raf , G. Pellegrini, V. Fadeyev, Z. Galloway, H. Sadrozinski, M. Christophersen, B. Phlips, D. Lynn, J. Kierstead, M. Hoeferkamp, Gamma and proton irradiation effects and thermal stability of electrical characteristics of metal-oxide-silicon capacitors with atomic layer deposited Al 2 O 3 dielectric, Solid-State Electronics, 116, 2016, 38-45.
  • J. Kim, S.H. Kang, K. Zhu, J.Y. Kim, N.R. Neale, A.J. Frank, Ni –NiO core–shell inverse opal electrodes for supercapacitors, Chemical Communications, 47, 2011, 5214-5216.
  • J. Kim, A.K. Sharma, Y. Lee, Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors, Mater Lett, 60, 2006, 1697-1701.
  • J. Garthwaite, How ultracapacitors work (and why they fall short), gigaom. com, 2011.07.12,.
  • J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources, 101, 2001, 109-116.
  • J. Chen, K. Sheng, P. Luo, C. Li, G. Shi, Graphene hydrogels deposited in nickel foams for high‐rate electrochemical capacitors, Adv Mater, 24, 2012, 4569-4573.
  • J. Chen, G. Zhang, B. Luo, D. Sun, X. Yan, Q. Xue, Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation, Carbon, 49, 2011, 3141-3147.
  • J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire‐fiber hybrid structures for wearable/flexible energy storage, Angewandte Chemie International Edition, 50, 2011, 1683-1687.
  • I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization, Nature communications, 1, 2010, 73.
  • H. Zhu, J. Luo, H. Yang, J. Liang, G. Rao, J. Li, Z. Du, Birnessite-type MnO2 nanowalls and their magnetic properties, The Journal of Physical Chemistry C, 112, 2008, 17089-17094.
  • H. Tokuda, K. Hayamizu, K. Ishii, Susan, Md Abu Bin Hasan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation, The Journal of Physical Chemistry B, 109, 2005, 6103-6110.
  • H. Kim, B.N. Popov, Synthesis and characterization of MnO2-based mixed oxides as supercapacitors, J. Electrochem. Soc., 150, 2003, D56-D62.
  • H. Huang, X. Wang, Graphene nanoplate-MnO 2 composites for supercapacitors: a controllable oxidation approach, Nanoscale, 3, 2011, 3185-3191.
  • H. Gwon, J. Hong, H. Kim, D. Seo, S. Jeon, K. Kang, Recent progress on flexible lithium rechargeable batteries, Energy &Environmental Science, 7, 2014, 538-551.
  • G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12.
  • G.A. Snook, C. Peng, D.J. Fray, G.Z. Chen, Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films, Electrochemistry communications, 9, 2007, 83-88.
  • G. Zheng, L. Hu, H. Wu, X. Xie, Y. Cui, Paper supercapacitors by a solvent-free drawing method, Energy &Environmental Science, 4, 2011, 3368-3373.
  • G. Zhao, J. Li, L. Jiang, H. Dong, X. Wang, W. Hu, Synthesizing MnO 2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors, Chemical Science, 3, 2012, 433-437.
  • G. Xiong, K. Hembram, R. Reifenberger, T.S. Fisher, MnO2-coated graphitic petals for supercapacitor electrodes, J. Power Sources, 227, 2013, 254-259.
  • G. Street, T. Clarke, M. Krounbi, K. Kanazawa, V. Lee, P. Pfluger, J. Scott, G. Weiser, Preparation and characterization of neutral and oxidized polypyrrole films, Molecular Crystals and Liquid Crystals, 83, 1982, 253-264.
  • G. Delille, B. Francois, G. Malarange, Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia, IEEE Transactions on Sustainable Energy, 3, 2012, 931-939.
  • F. Su, M. Miao, H. Niu, Z. Wei, Gamma-irradiated carbon nanotube yarn as substrate for high-performance fiber supercapacitors, ACS applied materials &interfaces, 6, 2014, 2553-2560.
  • F. B guin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater. 26 (2014) 2219– 2251.
  • E. Kim, Y. Kong, D. Lee, H. Kim, J. Hyun, S. Noh, Temperature changes caused by 13-MeV proton irradiation at the interface of a pyrex glass and a silicon wafer, Journal of the Korean Physical Society, 48, 2006, 859-861.
  • E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles, J. Power Sources, 168, 2007, 2-11.
  • E. Frackowiak, G. Lota, J. Pernak, Room-temperature phosphonium ionic liquids for supercapacitor application, Appl. Phys. Lett., 86, 2005, 164104.
  • E. Frackowiak, F. Beguin, Carbon materials for the electrochemicalstorage of energy in capacitors,Carbon 39 (2001)937-950.
  • E. Coadou, L. Timperman, J. Jacquemin, H. Galiano, C. Hardacre, M. Anouti, Comparative study on performances of trimethyl-sulfonium and trimethyl-ammonium based ionic liquids in molecular solvents as electrolyte for electrochemical double layer capacitors, The Journal of Physical Chemistry C, 117, 2013, 10315-10325.
  • D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, C.D. Lokhande, Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor, Journal of Materials Chemistry, 22, 2012, 3044-3052.
  • D.L. Pavia, G.M. Lampman, G.S. Kriz, J.A. Vyvyan, Introduction to spectroscopy, Cengage Learning 2008.
  • D.A. McKeown, P.L. Hagans, L.P. Carette, A.E. Russell, K.E. Swider, D.R. Rolison, Structure of hydrous ruthenium oxides: implications for charge storage, The Journal of Physical Chemistry B, 103, 1999, 4825-4832.
  • D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, 47, 2009, 145-152.
  • D. Kim, G. Lee, D. Kim, J.S. Ha, Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte, ACS applied materials &interfaces, 7, 2015, 4608-4615.
  • D. Ghosh, S. Giri, A. Mandal, C.K. Das, H , Fe3 codoped polyaniline/MWCNTs nanocomposite: Superior electrode material for supercapacitor application, Appl. Surf. Sci., 276, 2013, 120-128.
  • D. Dhawale, D. Dubal, V. Jamadade, R. Salunkhe, C. Lokhande, Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application, Synth. Met., 160, 2010, 519-522.
  • D. Casadei, G. Grandi, C. Rossi, A supercapacitor-based power conditioning system for power quality improvement and uninterruptible power supply, Industrial Electronics, 4, 2002, 1247-1252.
  • C.J. Raj, B.C. Kim, W. Cho, W. Lee, Y. Seo, K. Yu, Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets, J. Alloys Compounds, 586, 2014, 191-196.
  • C.J. Raj, B.C. Kim, W. Cho, S. Park, H.T. Jeong, K. Yoo, K.H. Yu, Rapid hydrothermal synthesis of cobalt oxyhydroxide nanorods for supercapacitor applications, J Electroanal Chem, 747, 2015, 130-135.
  • C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano letters, 13, 2013, 2078-2085.
  • C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y. Lan, J. Bao, J. Zhu, Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors, ACS nano, 8, 2014, 3761-3770.
  • C. Yang, P. Liu, T. Wang, Well-Defined core− shell carbon black/polypyrrole nanocomposites for electrochemical energy storage, ACS applied materials &interfaces, 3, 2011, 1109-1114.
  • C. Peng, S. Zhang, D. Jewell, G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors, Progress in Natural science, 18, 2008, 777-788.
  • C. Pearson, C. Thwaite, N. Russel, Small cell lithium-ion batteries: the responsive solution for space energy storage, 3, 2005,.
  • C. Liu, F. Li, L. Ma, H. Cheng, Advanced materials for energy storage, Adv Mater, 22, 2010,.
  • C. Li, H. Bai, G. Shi, Conducting polymer nanomaterials: electrosynthesis and applications, Chem. Soc. Rev., 38, 2009, 2397-2409.
  • C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC), Electrochim. Acta, 92, 2013, 183-187.
  • C. Julien, M. Massot, S. Rangan, M. Lemal, D. Guyomard, Study of structural defects in γ‐MnO2 by Raman spectroscopy, J. Raman Spectrosc., 33, 2002, 223-228.
  • C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, J. Pereira-Ramos, Raman spectra of birnessite manganese dioxides, Solid State Ionics, 159, 2003, 345-356.
  • C. Guanggui, D. Jianning, Z. Zhongqiang, L. Zhiyong, P. Huasheng, Study on the preparation and multiproperties of the polypyrrole films doped with different ions, Surf. Interface Anal., 44, 2012, 844-850.
  • C. Fu, Y. Kuang, Z. Huang, X. Wang, Y. Yin, J. Chen, H. Zhou, Supercapacitor based on graphene and ionic liquid electrolyte, Journal of Solid State Electrochemistry, 15, 2011, 2581-2585.
  • C. Choi, J.A. Lee, A.Y. Choi, Y.T. Kim, X. Lepr , M.D. Lima, R.H. Baughman, S.J. Kim, Flexible supercapacitor made of carbon nanotube yarn with internal pores, Adv Mater, 26, 2014, 2059-2065.
  • C. Bora, J. Sharma, S. Dolui, Polypyrrole/sulfonated graphene composite as electrode material for supercapacitor, The Journal of Physical Chemistry C, 118, 2014, 29688-29694.
  • B.C. Kim, C.J. Raj, W. Cho, W. Lee, H.T. Jeong, K.H. Yu, Enhanced electrochemical properties of cobalt doped manganese dioxide nanowires, J. Alloys Compounds, 617, 2014, 491-497.
  • B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang, H. Lv, C. Shen, A. Shellikeri, Y. Zheng, R. Gong, Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium‐Ion Capacitors, Adv Mater, 30, 2018, 1705670.
  • B. Li, J. Cheng, Z. Wang, Y. Li, W. Ni, B. Wang, Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors, J. Power Sources, 376, 2018, 117-124.
  • B. Kim, W. Cho, W. Lee, S. Kim, R. Jalili, S. Park, G.G. Wallace, K. Yu, S. Chang, Capacitive behaviour of thermally reduced graphene oxide in a novel ionic liquid containing di-cationic charge, Synth. Met., 193, 2014, 110-116.
  • B. He, Y. Zhou, W. Zhou, B. Dong, H. Li, Preparation and characterization of ruthenium-doped polypyrrole composites for supercapacitor, Materials Science and Engineering: A, 374, 2004, 322-326.
  • B. Garcia, S. Lavall e, G. Perron, C. Michot, M. Armand, Room temperature molten salts as lithium battery electrolyte, Electrochim. Acta, 49, 2004, 4583-4588.
  • A.S. Liu, M.C. Bezerra, L.Y. Cho, Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium, Materials Research, 12, 2009, 503-507.
  • A.M. Navarro-Su rez, K.L. Van Aken, T. Mathis, T. Makaryan, J. Yan, J. Carretero-Gonz lez, T. Rojo, Y. Gogotsi, Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes, Electrochim. Acta, 259, 2018, 752-761.
  • A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors, Nano letters, 7, 2007, 281-286.
  • A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical review B, 61, 2000, 14095.
  • A.B. McEwen, H.L. Ngo, K. LeCompte, J.L. Goldman, Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, J. Electrochem. Soc., 146, 1999, 1687-1695.
  • A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor, Electrochim. Acta, 88, 2013, 347-357.
  • A. Pandolfo, A. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 2006, 11-27.
  • A. Mollahosseini, E. Noroozian, Electrodeposition of a highly adherent and thermally stable polypyrrole coating on steel from aqueous polyphosphate solution, Synth. Met., 159, 2009, 1247-1254.
  • A. Malinauskas, Chemical deposition of conducting polymers, Polymer, 42, 2001, 3957-3972.
  • A. Lewandowski, A. Olejniczak, M. Galinski, I. Stepniak, Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes, J. Power Sources, 195, 2010, 5814-5819.
  • A. Kumar, R.K. Singh, H.K. Singh, P. Srivastava, R. Singh, Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors, J. Power Sources, 246, 2014, 800-807.
  • A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources 91 (2000) 37-50.
  • A. Adhikari, M. Huang, H. Bakhru, S. Talapatra, P. Ajayan, C. Ryu, Effects of proton irradiation on thermal stability of single-walled carbon nanotubes mat, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 245, 2006, 431-434.