박사

Transcriptome Analysis of Flowering Time Genes Affected by Drought Stress in Maize

송기태 2018년
논문상세정보
' Transcriptome Analysis of Flowering Time Genes Affected by Drought Stress in Maize' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 생활과학
  • drought
  • expressionprofiling
  • flowering time
  • maize
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,782 0

0.0%

' Transcriptome Analysis of Flowering Time Genes Affected by Drought Stress in Maize' 의 참고문헌

  • Żmieńko, A., Samelak, A., Kozłowski, P. & Figlerowicz, M. (2013). Copy Number Polymorphism in Plant Genomes. Theoretical and Applied Genetics, 127(1), 1– 18.
  • Ziyomo, C. & Bernardo, R. (2013). Drought Tolerance in Maize: Indirect Selection Through Secondary Traits Versus Genomewide Selection. Crop Science, 53(4), 1269.
  • Zhuang, Y., Ren, G., Yue, G., Li, Z., Qu, X., Hou, G., et al. (2007). Effects of Water- Deficit Stress on the Transcriptomes of Developing Immature Ear and Tassel in Maize. Plant Cell Reports, 26(12), 2137–2147.
  • Zheng, J., Zhao, J., Tao, Y., Wang, J., Liu, Y., Fu, J., et al. (2004). Isolation and Analysis of Water Stress Induced Genes in Maize Seedlings by Subtractive PCR and cDNA Macroarray. Plant Molecular Biology, 55(6), 807–823.
  • Zhao, S., Luo, Y., Zhang, Z., Xu, M., Wang, W., Zhao, Y., et al. (2014). ZmSOC1, a MADS-Box Transcription Factor from Zea mays, Promotes Flowering in Arabidopsis. International Journal of Molecular Sciences, 15(11), 19987–20003.
  • Zhao, J., Chen, H., Ren, D., Tang, H., Qiu, R., Feng, J., et al. (2015). Genetic Interactions Between Diverged Alleles of Early Heading Date 1 (Ehd1) and Heading Date 3a (Hd3a) / RICE FLOWERING LOCUS T1 (RFT1) Control Differential Heading and Contribute to Regional Adaptation in Rice (Oryza Sativa). New Phytologist, 208(3), 936–948.
  • Zhang, X., Liu, X., Zhang, D., Tang, H., Sun, B., Li, C., et al. (2017). Genome-Wide Identification of Gene Expression in Contrasting Maize Inbred Lines Under Field Drought Conditions Reveals the Significance of Transcription Factors in Drought Tolerance. PLOS ONE, 12(7), e0179477.
  • Zhan, J., Thakare, D., Ma, C., Lloyd, A., Nixon, N. M., Arakaki, A. M., et al. (2015). RNA Sequencing of Laser-Capture Microdissected Compartments of the Maize Kernel Identifies Regulatory Modules Associated with Endosperm Cell Differentiation. The Plant Cell Online, 27(3), 513–531.
  • Yue, G., Zhuang, Y., Li, Z., Sun, L. & Zhang, J. (2008). Differential Gene Expression Analysis of Maize Leaf at Heading Stage in Response to Water-Deficit Stress. Bioscience Reports, 28(3), 125.
  • Yu, J., Holland, J. B., McMullen, M. D. & Buckler, E. S. (2008). Genetic Design and Statistical Power of Nested Association Mapping in Maize. Genetics, 178(1), 539–551.
  • Yoo, S. Y., Kim, Y., Kim, S. Y., Lee, J. S. & Ahn, J. H. (2007). Control of Flowering Time and Cold Response by a NAC-Domain Protein in Arabidopsis. PLOS ONE, 2(7), e642.
  • Ying, S., Zhang, D.-F., Fu, J., Shi, Y.-S., Song, Y.-C., Wang, T.-Y., et al. (2011). Cloning and Characterization of a Maize bZIP Transcription Factor, ZmbZIP72, Confers Drought and Salt Tolerance in Transgenic Arabidopsis. Planta, 235(2), 253–266.
  • Yilmaz, A., Nishiyama, M. Y., Fuentes, B. G., Souza, G. M., Janies, D., Gray, J., et al. (2009). GRASSIUS: A Platform for Comparative Regulatory Genomics Across the Grasses. Plant Physiology, 149(1), 171–180.
  • Yang, Q., Li, Z., Li, W., Ku, L., Wang, C., Ye, J., et al. (2013). CACTA-Like Transposable Element in ZmCCT Attenuated Photoperiod Sensitivity and Accelerated the Postdomestication Spread of Maize. Proceedings of the National Academy of Sciences, 110(42), 16969–16974.
  • Yan, W.-H., Wang, P., Chen, H.-X., Zhou, H.-J., Li, Q.-P., Wang, C.-R., et al. (2011). A Major QTL, Ghd8, Plays Pleiotropic Roles in Regulating Grain Productivity, Plant Height, and Heading Date in Rice. Molecular plant, 4(2), 319–330.
  • Yamaguchi-Shinozaki, K. & Shinozaki, K. (2006). Transcriptional Regulatory Networks in Cellular Responses and Tolerance to Dehydration and Cold Stresses. Annual Review of Plant Biology, 57(1), 781–803.
  • Xue, Y., Warburton, M. L., Sawkins, M., Zhang, X., Setter, T., Xu, Y., et al. (2013). Genome-Wide Association Analysis for Nine Agronomic Traits in Maize Under Well-Watered and Water-Stressed Conditions. Theoretical and Applied Genetics, 126(10), 2587–2596.
  • Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., et al. (2008). Natural Variation in Ghd7 Is an Important Regulator of Heading Date and Yield Potential in Rice. Nature Genetics, 40(6), 761–767.
  • Xu, Z.-S., Chen, M., Li, L.-C. & Ma, Y.-Z. (2008). Functions of the ERF Transcription Factor Family in Plants. Botany, 86(9), 969–977.
  • Xu, J., Yuan, Y., Xu, Y., Zhang, G., Guo, X., Wu, F., et al. (2014). Identification of Candidate Genes for Drought Tolerance by Whole-Genome Resequencing in Maize. BMC Plant Biology, 14(1), 83.
  • Wong, A. Y. M. & Colasanti, J. (2006). Maize Floral Regulator Protein INDETERMINATE 1 Is Localized to Developing Leaves and Is Not Altered by Light or the Sink/Source Transition. Journal of Experimental Botany, 58(3), 403– 414.
  • Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A., et al. (2006). CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis. The Plant Cell Online, 18(11), 2971–2984.
  • Weng, X., Wang, L., Wang, J., Hu, Y., Du, H., Xu, C., et al. (2014). Grain Number, Plant Height, and Heading Date 7 Is a Central Regulator of Growth, Development, and Stress Response. Plant Physiology, 164(2), 735–747.
  • Weirauch, M. T., Yang, A., Albu, M., Cote, A. G., Montenegro-Montero, A., Drewe, P., et al. (2014). Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell, 158(6), 1431–1443.
  • Weingartner, M., Subert, C. & Sauer, N. (2011). LATE, a C2H2 Zinc-Finger Protein That Acts as Floral Repressor. The Plant Journal, 68(4), 681–692.
  • Wang, Z., Gerstein, M. & Snyder, M. (2009). RNA-Seq: a Revolutionary Tool for Transcriptomics. Nature Reviews Genetics, 10(1), 57–63.
  • Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., et al. (2013). Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis Thaliana. Science, 339(6120), 704–707.
  • Vitting-Seerup, K., Porse, B., Sandelin, A. & Waage, J. (2014). spliceR: an R Package for Classification of Alternative Splicing and Prediction of Coding Potential from RNA-Seq Data. BMC Bioinformatics, 15(1), 81.
  • Verma, V., Ravindran, P. & Kumar, P. P. (2016). Plant Hormone-Mediated Regulation of Stress Responses. BMC Plant Biology, 16(1), 541.
  • Urano, K., Maruyama, K., Ogata, Y., Morishita, Y., Takeda, M., Sakurai, N., et al. (2009). Characterization of the ABA-Regulated Global Responses to Dehydration in Arabidopsis by Metabolomics. The Plant Journal, 57(6), 1065– 1078.
  • Udomprasert, N., Kijjanon, J. & Nat, K. C.-I. K. J. (2005). Effects of Water Deficit at Tasseling on Photosynthesis, Development, and Yield of Corn. Kasetsart J. (Nat. Sci.), 39(4).
  • Tripathi, P., Rabara, R. C. & Rushton, P. J. (2013). A Systems Biology Perspective on the Role of WRKY Transcription Factors in Drought Responses in Plants. Planta, 239(2), 255–266.
  • Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L. & Pachter, L. (2012). Differential Analysis of Gene Regulation at Transcript Resolution with RNA-Seq. Nature Biotechnology, 31(1), 46–53.
  • Thirunavukkarasu, N., Hossain, F., Arora, K., Sharma, R., Shiriga, K., Mittal, S., et al. (2014). Functional Mechanisms of Drought Tolerance in Subtropical Maize (Zea mays L.) Identified Using Genome-Wide Association Mapping. BMC Genomics, 15(1), 1182.
  • Thatcher, S. R., Danilevskaya, O. N., Meng, X., Beatty, M., Zastrow-Hayes, G., Harris, C., et al. (2015). Genome-Wide Analysis of Alternative Splicing During Development and Drought Stress in Maize. Plant Physiology, 170(1), 586–599.
  • Tadege, M., Sheldon, C. C., Helliwell, C. A., Upadhyaya, N. M., Dennis, E. S. & Peacock, W. J. (2003). Reciprocal Control of Flowering Time by OsSOC1 in Transgenic Arabidopsis and by FLC in Transgenic Rice. Plant Biotechnology Journal, 1(5), 361–369.
  • Su, Z., Ma, X., Guo, H., Sukiran, N. L., Guo, B., Assmann, S. M., et al. (2013). Flower Development Under Drought Stress: Morphological and Transcriptomic Analyses Reveal Acute Responses and Long-Term Acclimation in Arabidopsis. The Plant Cell Online, 25(10), 3785–3807.
  • Staiger, D. & Brown, J. W. S. (2013). Alternative Splicing at the Intersection of Biological Timing, Development, and Stress Responses. The Plant Cell Online, 25(10), 3640–3656.
  • Srikanth, A. & Schmid, M. (2011). Regulation of Flowering Time: All Roads Lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013–2037.
  • Song, K., Kim, K.-H., Chul Kim, H., Moon, J.-C., Kim, J. Y., Baek, S.-B., et al. (2015). Evaluation of Drought Tolerance in Maize Seedling Using Leaf Rolling. 60, 8–16.
  • Song, K., Kim, H. C., Shin, S., Kim, K.-H., Moon, J.-C., Kim, J. Y., et al. (2017). Transcriptome Analysis of Flowering Time Genes Under Drought Stress in Maize Leaves. Frontiers in plant science, 8, 453.
  • Sonenberg, N. & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731–745.
  • Shinozaki, K. & Yamaguchi-Shinozaki, K. (2006). Gene Networks Involved in Drought Stress Response and Tolerance. Journal of Experimental Botany, 58(2), 221–227.
  • Shen, Y., Zhou, Z., Wang, Z., Li, W., Fang, C., Wu, M., et al. (2014). Global Dissection of Alternative Splicing in Paleopolyploid Soybean. The Plant Cell Online, 26(3), 996–1008.
  • Shan, X., Li, Y., Jiang, Y., Jiang, Z., Hao, W. & Yuan, Y. (2013). Transcriptome Profile Analysis of Maize Seedlings in Response to High-Salinity, Drought and Cold Stresses by Deep Sequencing. Plant Molecular Biology Reporter, 31(6), 1485– 1491.
  • Setter, T. L., Yan, J., Warburton, M., Ribaut, J.-M., Xu, Y., Sawkins, M., et al. (2010). Genetic Association Mapping Identifies Single Nucleotide Polymorphisms in Genes That Affect Abscisic Acid Levels in Maize Floral Tissues During Drought. Journal of Experimental Botany, 62(2), 701–716.
  • Seeve, C. M., Cho, I. J., Hearne, L. B., Srivastava, G. P., Joshi, T., Smith, D. O., et al. (2017). Water-Deficit-Induced Changes in Transcription Factor Expression in Maize Seedlings. Plant, Cell & Environment, 40(5), 686–701.
  • Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Kr ber, S., et al. (2006). The Transcription Factor FLC Confers a Flowering Response to Vernalization by Repressing Meristem Competence and Systemic Signaling in Arabidopsis. Genes & development, 20(7), 898–912.
  • Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al. (2009). The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 326(5956), 1112–1115.
  • Sari-Gorla, M., Krajewski, P., Di Fonzo, N., Villa, M. & Frova, C. (1999). Genetic Analysis of Drought Tolerance in Maize by Molecular Markers. II. Plant Height and Flowering. Theoretical and Applied Genetics, 99(1-2), 289–295.
  • Samach, A. (2000). Distinct Roles of CONSTANS Target Genes in Reproductive Development of Arabidopsis. Science, 288(5471), 1613–1616.
  • Ryu, C. H., Lee, S., Cho, L. H., Kim, S. L., Lee, Y. S., Choi, S. C., et al. (2009). OsMADS50 and OsMADS56 function Antagonistically in Regulating Long Day (LD)-Dependent Flowering in Rice. Plant, Cell & Environment, 32(10), 1412– 1427.
  • Richter, R., Behringer, C., Zourelidou, M. & Schwechheimer, C. (2013). Convergence of Auxin and Gibberellin Signaling on the Regulation of the GATA Transcription Factors GNC and GNL in Arabidopsis Thaliana. Proceedings of the National Academy of Sciences of the United States of America, 110(32), 13192– 13197.
  • Richter, R., Behringer, C., M ller, I. K. & Schwechheimer, C. (2010). The GATAType Transcription Factors GNC and GNL/CGA1 Repress Gibberellin Signaling Downstream from DELLA Proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & development, 24(18), 2093–2104.
  • Reyes, J. C. (2004). The GATA Family of Transcription Factors in Arabidopsis and Rice. Plant Physiology, 134(4), 1718–1732.
  • Reed, J. W., Nagatani, A., Elich, T. D., Fagan, M. & Chory, J. (1994). Phytochrome a and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiology, 104(4), 1139–1149.
  • Putterill, J., Robson, F., Lee, K., Simon, R. & Coupland, G. (1995). The CONSTANS Gene of Arabidopsis Promotes Flowering and Encodes a Protein Showing Similarities to Zinc Finger Transcription Factors. Cell, 80(6), 847–857.
  • Prasch, C. M., Ott, K. V., Bauer, H., Ache, P., Hedrich, R. & Sonnewald, U. (2015). SS-Amylase1 Mutant Arabidopsis plants Show Improved Drought Tolerance Due to Reduced Starch Breakdown in Guard Cells. Journal of Experimental Botany, 66(19), 6059–6067.
  • Poroyko, V., Spollen, W. G., Hejlek, L. G., Hernandez, A. G., LeNoble, M. E., Davis, G., et al. (2006). Comparing Regional Transcript Profiles from Maize Primary Roots Under Well-Watered and Low Water Potential Conditions. Journal of Experimental Botany, 58(2), 279–289.
  • Pin, P. A. & Nilsson, O. (2012). The Multifaceted Roles of FLOWERING LOCUS T in Plant Development. Plant, Cell & Environment, 35(10), 1742–1755.
  • Paterson, A. H., Bowers, J. E. & Chapman, B. A. (2004). Ancient Polyploidization Predating Divergence of the Cereals, and Its Consequences for Comparative Genomics. Proceedings of the National Academy of Sciences, 101(26), 9903– 9908.
  • P rez-Delgado, C. M., Moyano, T. C., Garc a-Calder n, M., Canales, J., Guti rrez, R. A., M rquez, A. J., et al. (2016). Use of Transcriptomics and Co-Expression Networks to Analyze the Interconnections Between Nitrogen Assimilation and Photorespiratory Metabolism. Journal of Experimental Botany, 67(10), 3095– 3108.
  • Opitz, N., Paschold, A., Marcon, C., Malik, W., Lanz, C., Piepho, H.-P., et al. (2014). Transcriptomic Complexity in Young Maize Primary Roots in Response to Low Water Potentials. BMC Genomics, 15(1), 741.
  • Olsen, A. N., Ernst, H. A., Leggio, L. L. & Skriver, K. (2005). NAC Transcription Factors: Structurally Distinct, Functionally Diverse. Trends in plant science, 10(2), 79–87.
  • Muszynski, M. G., Dam, T., Li, B., Shirbroun, D. M., Hou, Z., Bruggemann, E., et al. (2006). Delayed Flowering 1 Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize. Plant Physiology, 142(4), 1523–1536.
  • Mizoi, J., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2012). AP2/ERF Family Transcription Factors in Plant Abiotic Stress Responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819(2), 86–96.
  • Miller, T. A., Muslin, E. H. & Dorweiler, J. E. (2008). A Maize CONSTANS-Like Gene, Conz1, Exhibits Distinct Diurnal Expression Patterns in Varied Photoperiods. Planta, 227(6), 1377–1388.
  • Miao, Z., Han, Z., Zhang, T., Chen, S. & Ma, C. (2017). A Systems Approach to a Spatio-Temporal Understanding of the Drought Stress Response in Maize. Scientific Reports, 7(1), 139.
  • Messina, C. D., Podlich, D., Dong, Z., Samples, M. & Cooper, M. (2010). Yield–Trait Performance Landscapes: from Theory to Application in Breeding Maize for Drought Tolerance. Journal of Experimental Botany, 62(3), 855–868.
  • Meng, X., Muszynski, M. G. & Danilevskaya, O. N. (2011). The FT-Like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize. The Plant Cell Online, 23(3), 942–960.
  • McMullen, M. D., Kresovich, S., Villeda, H. S., Bradbury, P., Li, H., Sun, Q., et al. (2009). Genetic Properties of the Maize Nested Association Mapping Population. Science, 325(5941), 737–740.
  • Matsubara, K., Yamanouchi, U., Wang, Z.-X., Minobe, Y., Izawa, T. & Yano, M. (2008). Ehd2, a Rice Ortholog of the Maize INDETERMINATE1 Gene, Promotes Flowering by Up-Regulating Ehd1. Plant Physiology, 148(3), 1425–1435.
  • Mascheretti, I., Turner, K., Brivio, R. S., Hand, A., Colasanti, J. & Rossi, V. (2015). Florigen-Encoding Genes of Day-Neutral and Photoperiod-Sensitive Maize Are Regulated by Different Chromatin Modifications at the Floral Transition. Plant Physiology, 168(4), 1351–1363.
  • Maruyama, K., Todaka, D., Mizoi, J., Yoshida, T., Kidokoro, S., Matsukura, S., et al. (2012). Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Research, 19(1), 37–49.
  • Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. (2008). RNASeq: An Assessment of Technical Reproducibility and Comparison with Gene Expression Arrays. Genome Research, 18(9), 1509–1517.
  • Marino, R., Ponnaiah, M., Krajewski, P., Frova, C., Gianfranceschi, L., P , M. E., et al. (2008). Addressing Drought Tolerance in Maize by Transcriptional Profiling and Mapping. Molecular Genetics and Genomics, 281(2), 163–179.
  • Malcomber, S. T., Preston, J. C., Reinheimer, R., Kossuth, J. & Kellogg, E. A. (2006). Developmental Gene Evolution and the Origin of Grass Inflorescence Diversity, in: Developmental Genetics of the Flower, (pp. 425–481). Advances in Botanical Research. Elsevier.
  • Maere, S., Heymans, K. & Kuiper, M. (2005). BiNGO: a Cytoscape Plugin to Assess Overrepresentation of Gene Ontology Categories in Biological Networks. Bioinformatics, 21(16), 3448–3449.
  • Ma, C., Xin, M., Feldmann, K. A. & Wang, X. (2014). Machine Learning-Based Differential Network Analysis: A Study of Stress-Responsive Transcriptomes in Arabidopsis. The Plant Cell Online, 26(2), 520–537.
  • Lu, M., Ying, S., Zhang, D.-F., Shi, Y.-S., Song, Y.-C., Wang, T.-Y., et al. (2012). A Maize Stress-Responsive NAC Transcription Factor, ZmSNAC1, Confers Enhanced Tolerance to Dehydration in Transgenic Arabidopsis. Plant Cell Reports, 31(9), 1701–1711.
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408.
  • Liu, Y, Zhou, M., Gao, Z., Ren, W., Yang, F., He, H., et al. (2015). RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize. PLOS ONE, 10(11), e0143128.
  • Liu, Y, Li, X., Li, K., Liu, H. & Lin, C. (2013). Multiple bHLH Proteins Form Heterodimers to Mediate CRY2-Dependent Regulation of Flowering time in Arabidopsis. PLoS Genetics, 9(10), e1003861.
  • Li, Y. X., Li, C., Bradbury, P. J., Liu, X., Lu, F., Romay, C. M., et al. (2016). Identification of Genetic Variants Associated with Maize Flowering Time Using an Extremely Large Multi-Genetic Background Population. The Plant Journal, 86(5), 391–402.
  • Li, W., Lin, W. D., Ray, P., Lan, P. & Schmidt, W. (2013). Genome-Wide Detection of Condition-Sensitive Alternative Splicing in Arabidopsis Roots. Plant Physiology, 162(3), 1750–1763.
  • Lescot, M., D hais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic acids research, 30(1), 325–327.
  • Lee, S., Kim, J., Han, J. J., Han, M. J. & An, G. (2004). Functional Analyses of the Flowering Time Gene OsMADS50, the Putative SUPPRESSOR of OVEREXPRESSION of CO 1 / AGAMOUS-LIKE 20 (SOC1/AGL20) Ortholog in Rice. The Plant Journal, 38(5), 754–764.
  • Lackner, D. H., Schmidt, M. W., Wu, S., Wolf, D. A. & Bahler, J. (2012). Regulation of Transcriptome, Translation, and Proteome in Response to Environmental Stress in Fission Yeast. Genome biology, 13(4), R25.
  • Krasensky, J. & Jonak, C. (2012). Drought, Salt, and Temperature Stress-Induced Metabolic Rearrangements and Regulatory Networks. Journal of Experimental Botany, 63(4), 1593–1608.
  • Kooyers, N. J. (2015). The Evolution of Drought Escape and Avoidance in Natural Herbaceous Populations. Plant Science, 234, 155–162.
  • Kong, F., Liu, B., Xia, Z., Sato, S., Kim, B. M., Watanabe, S., et al. (2010). Two Coordinately Regulated Homologs of FLOWERING LOCUS T Are Involved in the Control of Photoperiodic Flowering in Soybean. Plant Physiology, 154(3), 1220–1231.
  • Komiya, R., Yokoi, S. & Shimamoto, K. (2009). A Gene Network for Long-Day Flowering Activates RFT1 Encoding a Mobile Flowering Signal in Rice. Development, 136(20), 3443–3450.
  • Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., et al. (2002). Hd3a, a Rice Ortholog of the Arabidopsis FT Gene, Promotes Transition to Flowering Downstream of Hd1 Under Short-Day Conditions. Plant and Cell Physiology, 43(10), 1096–1105.
  • Kizis, D. & Pag s, M. (2002). Maize DRE-Binding Proteins DBF1 and DBF2 Are Involved in Rab17 Regulation Through the Drought-Responsive Element in an ABA-Dependent Pathway. The Plant Journal, 30(6), 679–689.
  • Kim, S., Choi, K., Park, C., Hwang, H. J. & Lee, I. (2006). SUPPRESSOR of FRIGIDA4, Encoding a C2H2-Type Zinc Finger Protein, Represses Flowering by Transcriptional Activation of Arabidopsis FLOWERING LOCUS C. The Plant Cell Online, 18(11), 2985–2998.
  • Kim, H. C., Moon, J.-C., Kim, J. Y., Song, K., Kim, K.-H. & Lee, B.-M. (2017). Evaluation of Drought Tolerance Using Anthesis-Silking Interval in Maize. Korean Journal of Crop Science, 62(1), 24–31.
  • Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36.
  • Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J. A., van der Lee, R., et al. (2018). JASPAR 2018: Update of the Open-Access Database of Transcription Factor Binding Profiles and Its Web Framework. Nucleic acids research, 46(D1), D260–D266.
  • Kakumanu, A., Ambavaram, M. M. R., Klumas, C., Krishnan, A., Batlang, U., Myers, E., et al. (2012). Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissue Revealed by RNA-Seq. Plant Physiology, 160(2), 846–867.
  • Jung, J.-H., Seo, P. J., Kang, S. K. & Park, C.-M. (2011). miR172 Signals Are Incorporated Into the miR156 Signaling Pathway at the SPL3/4/5 Genes in Arabidopsis Developmental Transitions. Plant Molecular Biology, 76(1-2), 35– 45.
  • Jung, C. & M ller, A. E. (2009). Flowering Time Control and Applications in Plant Breeding. Trends in plant science, 14(10), 563–573.
  • Johnson, E., Bradley, M., Harberd, N. P. & Whitelam, G. C. (1994). Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome a Is Required for the Perception of Daylength Extensions). Plant Physiology, 105(1), 141–149.
  • Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., et al. (2011). Ancestral Polyploidy in Seed Plants and Angiosperms. Nature, 473(7345), 97–100.
  • Jiang, T., Fountain, J., Davis, G., Kemerait, R., Scully, B., Lee, R. D., et al. (2011). Root Morphology and Gene Expression Analysis in Response to Drought Stress in Maize (Zea mays). Plant Molecular Biology Reporter, 30(2), 360–369.
  • Jain, M. (2012). Next-Generation Sequencing Technologies for Gene Expression Profiling in Plants. Briefings in Functional Genomics, 11(1), 63–70.
  • Izawa, T., Takahashi, Y. & Yano, M. (2003). Comparative Biology Comes into Bloom: Genomic and Genetic Comparison of Flowering Pathways in Rice and Arabidopsis. Current Opinion in Plant Biology, 6(2), 113–120.
  • Itoh, H., Nonoue, Y., Yano, M. & Izawa, T. (2010). A Pair of Floral Regulators Sets Critical Day Length for Hd3a Florigen Expression in Rice. Nature Genetics, 42(7), 635–638.
  • Ito, S., Song, Y. H., Josephson-Day, A. R., Miller, R. J., Breton, G., Olmstead, R. G., et al. (2012). FLOWERING BHLH Transcriptional Activators Control Expression of the Photoperiodic Flowering Regulator CONSTANS in Arabidopsis. Proceedings of the National Academy of Sciences, 109(9), 3582–3587.
  • Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A. & Coupland, G. (2016). Multi-Layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 37(3), 254–266.
  • Hung, H. Y., Shannon, L. M., Tian, F., Bradbury, P. J., Chen, C., Flint-Garcia, S. A., et al. (2012). ZmCCT and the Genetic Basis of Day-Length Adaptation Underlying the Postdomestication Spread of Maize. Proceedings of the National Academy of Sciences, 109(28), E1913–E1921.
  • Hung, H. Y., Shannon, L. M., Tian, F., Bradbury, P. J., Chen, C., Flint-Garcia, S. A., McMullen, M. D., Ware, D., Buckler, E. S., Doebley, J. F. & Holland, J. B. (2012). ZmCCT and the Genetic Basis of Day-Length Adaptation Underlying the Postdomestication Spread of Maize. Proceedings of the National Academy of Sciences, 109(28), E1913–E1921.
  • Humbert, S., Subedi, S., Cohn, J., Zeng, B., Bi, Y.-M., Chen, X., et al. (2013). Genome-Wide Expression Profiling of Maize in Response to Individual and Combined Water and Nitrogen Stresses. BMC Genomics, 14(1), 3.
  • Hu, W., Hu, G. & Han, B. (2009). Genome-Wide Survey and Expression Profiling of Heat Shock Proteins and Heat Shock Factors Revealed Overlapped and Stress Specific Response Under Abiotic Stresses in Rice. Plant Science, 176(4), 583– 590.
  • Higo, K., Ugawa, Y., Iwamoto, M. & Korenaga, T. (1999). Plant Cis-Acting Regulatory DNA Elements (PLACE) Database: 1999. Nucleic acids research, 27(1), 297–300.
  • Hepworth, S. R. (2002). Antagonistic Regulation of Flowering time Gene SOC1 by CONSTANS and FLC via Separate Promoter Motifs. The EMBO Journal, 21(16), 4327–4337.
  • Hayama, R., Yokoi, S., Tamaki, S., Yano, M. & Shimamoto, K. (2003). Adaptation of Photoperiodic Control Pathways Produces Short-Day Flowering in Rice. Nature, 422(6933), 719–722.
  • Hansey, C. N., Vaillancourt, B., Sekhon, R. S., de Leon, N., Kaeppler, S. M. & Buell, C. R. (2012). Maize (Zea mays L.) Genome Diversity as Revealed by RNASequencing. PLOS ONE, 7(3), e33071.
  • Han, Y., Zhang, X., Wang, Y. & Ming, F. (2013). The Suppression of WRKY44 by GIGANTEA-miR172 Pathway Is Involved in Drought Response of Arabidopsis Thaliana. PLOS ONE, 8(11), e73541.
  • Hall, A. J., Chimenti, C., Trapani, N., Vilella, F. & de Hunau, R. C. (1984). Yield in Water-Stressed Maize Genotypes: Association with Traits Measured in Seedlings and in Flowering Plants. Field Crops Research, 9, 41–57.
  • Grant, C. E., Bailey, T. L. & Noble, W. S. (2011). FIMO: Scanning for Occurrences of a Given Motif. Bioinformatics, 27(7), 1017–1018.
  • Goretti, D., Martignago, D., Landini, M., Brambilla, V., G mez-Ariza, J., Gnesutta, N., et al. (2017). Transcriptional and Post-Transcriptional Mechanisms Limit Heading Date 1 (Hd1) Function to Adapt Rice to High Latitudes. PLoS Genetics, 13(1), e1006530.
  • Golldack, D., Li, C., Mohan, H. & Probst, N. (2014). Tolerance to Drought and Salt Stress in Plants: Unraveling the Signaling Networks. Frontiers in plant science, 5(49), 369.
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812–818.
  • Garg, R., Shankar, R., Thakkar, B., Kudapa, H., Krishnamurthy, L., Mantri, N., et al. (2016). Transcriptome Analyses Reveal Genotype- and Developmental Stage- Specific Molecular Responses to Drought and Salinity Stresses in Chickpea. Scientific Reports, 6(1), 163.
  • Gao, H., Zheng, X.-M., Fei, G., Chen, J., Jin, M., Ren, Y., et al. (2013). Ehd4 Encodes a Novel and Oryza-Genus-Specific Regulator of Photoperiodic Flowering in Rice. PLoS Genetics, 9(2), e1003281.
  • Gao, H., Jin, M., Zheng, X.-M., Chen, J., Yuan, D., Xin, Y., et al. (2014). Days to Heading 7, a Major Quantitative Locus Determining Photoperiod Sensitivity and Regional Adaptation in Rice. Proceedings of the National Academy of Sciences, 111(46), 16337–16342.
  • G mez-Ariza, J., Galbiati, F., Goretti, D., Brambilla, V., Shrestha, R., Pappolla, A., et al. (2015). Loss of Floral Repressor Function Adapts Rice to Higher Latitudes in Europe. Journal of Experimental Botany, 66(7), 2027–2039.
  • Frey, F. P., Urbany, C., H ttel, B., Reinhardt, R. & Stich, B. (2015). Genome-Wide Expression Profiling and Phenotypic Evaluation of European Maize Inbreds at Seedling Stage in Response to Heat Stress. BMC Genomics, 16(1), 123.
  • Franks, S. J., Sim, S. & Weis, A. E. (2007). Rapid Evolution of Flowering Time by an Annual Plant in Response to a Climate Fluctuation. Proceedings of the National Academy of Sciences, 104(4), 1278–1282.
  • Franks, S. J. (2011). Plasticity and Evolution in Drought Avoidance and Escape in the Annual Plant Brassica Rapa. New Phytologist, 190(1), 249–257.
  • Fornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., R hl, M., Jarillo, J. A., et al. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 17(1), 75–86.
  • Fonseca, A. E. & Westgate, M. E. (2005). Relationship Between Desiccation and Viability of Maize Pollen. Field Crops Research, 94(2-3), 114–125.
  • Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., et al. (2010). Genome-Wide Mapping of Alternative Splicing in Arabidopsis Thaliana. Genome Research, 20(1), 45–58.
  • Feurtado, J. A., Huang, D., Wicki-Stordeur, L., Hemstock, L. E., Potentier, M. S., Tsang, E. W. T., et al. (2012). The Arabidopsis C2H2 Zinc Finger INDETERMINATE DOMAIN1/ENHYDROUS Promotes the Transition to Germination by Regulating Light and Hormonal Signaling During Seed Maturation. The Plant Cell Online, 23(5), 1772–1794.
  • Endo-Higashi, N. & Izawa, T. (2011). Flowering Time Genes Heading Date 1 and Early Heading Date 1 Together Control Panicle Development in Rice. Plant and Cell Physiology, 52(6), 1083–1094.
  • Edmeades, G. O., Bola os, J., Lafitte, H. R., Listman, G. M. (1995). Progress in Breeding for Drought Tolerance in Maize. Entwicklung und laendlicher Raum.
  • Edmeades, G. O., Bola os, J., Hern ndez, M. & Bello, S. (1993). Causes for Silk Delay in a Lowland Tropical Maize Population. Crop Science, 33(5), 1029.
  • Edmeades, G. O., B nziger, M., Elings, A., Chapman, S. C. & Ribaut, J. M. (1997). Recent Advances in Breeding for Drought Tolerance in Maize, in: Applications of Systems Approaches at the Field Level, (pp. 63–78). Systems Approaches for Sustainable Agricultural Development.
  • Dong, Z., Danilevskaya, O., Abadie, T., Messina, C., Coles, N. & Cooper, M. (2012). A Gene Regulatory Network Model for Floral Transition of the Shoot Apex in Maize and Its Dynamic Modeling. PLOS ONE, 7(8), e43450.
  • Dehal, P. & Boore, J. L. (2005). Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate. PLoS Biology, 3(10), e314.
  • DeBolt, S. (2010). Copy Number Variation Shapes Genome Diversity in Arabidopsis Over Immediate Family Generational Scales. Genome Biology and Evolution, 2, 441–453.
  • Davidson, R. M., Hansey, C. N., Gowda, M., Childs, K. L., Lin, H., Vaillancourt, B., et al. (2011). Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes. The Plant Genome, 4(3), 191.
  • Datta, S. (2006). Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth. The Plant Cell Online, 18(1), 70–84.
  • Danilevskaya, O. N., Meng, X., Hou, Z., Ananiev, E. V. & Simmons, C. R. (2007). A Genomic and Expression Compendium of the Expanded PEBP Gene Family from Maize. Plant Physiology, 146(1), 250–264.
  • Cui, L. (2006). Widespread Genome Duplications Throughout the History of Flowering Plants. Genome Research, 16(6), 738–749.
  • Corrales, A.-R., Nebauer, S. G., Carrillo, L., Fern ndez-Nohales, P., Marqu s, J., Renau-Morata, B., et al. (2014). Characterization of Tomato Cycling Dof Factors Reveals Conserved and New Functions in the Control of Flowering Time and Abiotic Stress Responses. Journal of Experimental Botany, 65(4), 995–1012.
  • Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. (2014). Breeding Drought- Tolerant Maize Hybrids for the US Corn-Belt: Discovery to Product. Journal of Experimental Botany, 65(21), 6191–6204.
  • Coneva, V., Zhu, T. & Colasanti, J. (2007). Expression Differences Between Normal and Indeterminate1 Maize Suggest Downstream Targets of ID1, a Floral Transition Regulator in Maize. Journal of Experimental Botany, 58(13), 3679– 3693.
  • Conesa, A. & G tz, S. (2008). Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. International Journal of Plant Genomics, 2008(3), 1–12.
  • Colasanti, J., Yuan, Z. & Sundaresan, V. (1998). The Indeterminate Gene Encodes a Zinc Finger Protein and Regulates a Leaf-Generated Signal Required for the Transition to Flowering in Maize. Cell, 93(4), 593–603.
  • Colasanti, J. & Coneva, V. (2009). Mechanisms of Floral Induction in Grasses: Something Borrowed, Something New. Plant Physiology, 149(1), 56–62.
  • Coelho, C. P., Costa Netto, A. P., Colasanti, J. & Chalfun-J nior, A. (2013). A Proposed Model for the Flowering Signaling Pathway of Sugarcane Under Photoperiodic Control. Genet. Mol., 12(2), 1347–1359.
  • Chow, C.-N., Zheng, H.-Q., Wu, N.-Y., Chien, C.-H., Huang, H.-D., Lee, T.-Y., et al. (2016). PlantPAN 2.0: an Update of Plant Promoter Analysis Navigator for Reconstructing Transcriptional Regulatory Networks in Plants. Nucleic acids research, 44(D1), D1154–60.
  • Chen, C., DeClerck, G., Tian, F., Spooner, W., McCouch, S. & Buckler, E. (2012). PICARA, an Analytical Pipeline Providing Probabilistic Inference About A priori Candidates Genes Underlying Genome-Wide Association QTL in Plants. PLOS ONE, 7(11), e46596.
  • Chapman, S. C. & Edmeades, G. O. (1999). Selection Improves Drought Tolerance in Tropical Maize Populations. Crop Science, 39(5), 1315.
  • Chao, Y., Zhang, T., Yang, Q., Kang, J., Sun, Y., Gruber, M. Y., et al. (2014). Expression of the Alfalfa CCCH-Type Zinc Finger Protein Gene MsZFN Delays Flowering Time in Transgenic Arabidopsis Thaliana. Plant Science, 215-216, 92–99.
  • Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., et al. (2008). Drought Tolerance Improvement in Crop Plants: An Integrated View from Breeding to Genomics. Field Crops Research, 105(1-2), 1–14.
  • Carretero-Paulet, L., Galstyan, A., Roig-Villanova, I., Mart nez-Garc a, J. F., Bilbao- Castro, J. R. & Robertson, D. L. (2010). Genome-Wide Classification and Evolutionary Analysis of the bHLH Family of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and Algae. Plant Physiology, 153(3), 1398– 1412.
  • C rcova, J. & Otegui, M. E. (2001). Ear Temperature and Pollination Timing Effects on Maize Kernel Set. Crop Science, 41(6), 1809.
  • Byrne, P. F., Bola os, J., Edmeades, G. O. & Eaton, D. L. (1995). Gains from Selection Under Drought Versus Multilocation Testing in Related Tropical Maize Populations. Crop Science, 35(1), 63.
  • Buckler, E. S., Holland, J. B., Bradbury, P. J., Acharya, C. B., Brown, P. J., Browne, C., et al. (2009). The Genetic Architecture of Maize Flowering Time. Science, 325(5941), 714–718.
  • Bruce, W. B., Edmeades, G. O. & Barker, T. C. (2002). Molecular and Physiological Approaches to Maize Improvement for Drought Tolerance. Journal of Experimental Botany, 53(366), 13–25.
  • Brambilla, V., G mez-Ariza, J., Cerise, M. & Fornara, F. (2017). The Importance of Being on Time: Regulatory Networks Controlling Photoperiodic Flowering in Cereals. Frontiers in plant science, 8, 3615.
  • Bouchet, S., Servin, B., Bertin, P., Madur, D., Combes, V., Dumas, F., et al. (2013). Adaptation of Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus. PLOS ONE, 8(8), e71377.
  • Bola os, J. & Edmeades, G. O. (1996). The Importance of the Anthesis-Silking Interval in Breeding for Drought Tolerance in Tropical Maize. Field Crops Research, 48(1), 65–80.
  • Blum, A. (1996). Crop Responses to Drought and the Interpretation of Adaptation. Plant Growth Regulation, 20(2), 135–148.
  • Bernal, M., Estiarte, M. & Pe uelas, J. (2011). Drought Advances Spring Growth Phenology of the Mediterranean Shrub Erica Multiflora. Plant Biology, 13(2), 252–257.
  • Benjamini, Y. & Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing Under Dependency. Annals of statistics, 29(4), 1165–1188.
  • Benjamini, Y. & Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing Under Dependency. Annals of statistics, 1, 1165-1188.
  • Bari, R. & Jones, J. D. G. (2008). Role of Plant Hormones in Plant Defense Responses. Plant Molecular Biology, 69(4), 473–488.
  • Banerjee, A. & Roychoudhury, A. (2015). WRKY Proteins: Signaling and Regulation of Expression During Abiotic Stress Responses. The Scientific World Journal, 2015(6), 1–17.
  • Bai, Z., Chen, J., Liao, Y., Wang, M., Liu, R., Ge, S., et al. (2016). The Impact and Origin of Copy Number Variations in the Oryza Species. BMC Genomics, 17(1), 203.
  • Andrade, F. H., Vega, C., Uhart, S., Cirilo, A., Cantarero, M. & Valentinuz, O. (1999). Kernel Number Determination in Maize. Crop Science, 39(2), 453.
  • Anders, S., McCarthy, D. J., Chen, Y., Okoniewski, M., Smyth, G. K., Huber, W., et al. (2013). Count-Based Differential Expression Analysis of RNA Sequencing Data Using R and Bioconductor. Nature protocols, 8(9), 1765–1786.
  • Ambawat S, Sharma P, Yadav NR, Yadav RC. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants 19(3): 307-321.
  • Alter, P., Bircheneder, S., Zhou, L.-Z., Schl ter, U., Gahrtz, M., Sonnewald, U., et al. (2016). Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1. Plant Physiology, 172(1), 389–404.
  • Agarwal, P. K. & Jha, B. (2010). Transcription Factors in Plants and ABA Dependent and Independent Abiotic Stress Signaling. Biologia Plantarum, 54(2), 201–212.