박사

Polyurethane nanoweb-based textile ECG electrode treated with single-walled carbon nanotube and silver nanowire

Lee, Eugene 2018년
' Polyurethane nanoweb-based textile ECG electrode treated with single-walled carbon nanotube and silver nanowire' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Electrical conductivity
  • Electrocardiogram (ECG)
  • Polyurethane (PU) Nanoweb
  • Silver nanowire (AgNW)
  • Single-walled carbon nanotube (SWCNT)
  • Smart textile
  • Textile electrode
  • wearable technology
  • 단일벽 탄소나노튜브 (SWCNT)
  • 스마트 텍스타일
  • 심전도 (ECG)
  • 웨어러블 테크놀로지
  • 은나노와이어 (AgNW)
  • 전기전도성
  • 텍스타일 전극
  • 폴리우레탄 나노웹 (PU Nanoweb)
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
160 0

0.0%

' Polyurethane nanoweb-based textile ECG electrode treated with single-walled carbon nanotube and silver nanowire' 의 참고문헌

  • Zhou, W., Liu, W., Liu, S., Zhang, C., Shen, Z., & Zhang, G. (2017). Characterization of Impedance Properties of Metal Dry Bioelectrodes with Surface Microstructure Arrays. Sensors and Actuators A: Physical, 263, 252-258.
  • Zhang, X., Zhang, J., Quan, J., Wang, N., & Zhu, Y. (2016). Surfaceenhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles. Analyst, 141(19), 5527-5534.
  • Yuan, W., Jiang, G., Che, J., Qi, X., Xu, R., Chang, M. W., Chen, Y., Lim, S. Y., Dai, J., & Chan-Park, M. B. (2008). Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly (amidoamine) and their antimicrobial effects. The Journal of Physical Chemistry C, 112(48), 18754-18759.
  • Yin, Y., Ji, Z., Zhang, W., Wang, N., Fu, F., Liu, R., You, F., Shi, X., & Dong, X. (2010). Comparison of three kinds of electrode–skin interfaces for electrical impedance scanning. Annals of biomedical engineering, 38(6), 2032-2039.
  • Yao, S., & Zhu, Y. (2016). Nanomaterial-enabled dry electrodes for electrophysiological sensing: A review. JOM, 68(4), 1145-1155.
  • Yanilmaz, M., Kalaoglu, F., Karakas, H., & Sarac, A. S. (2012). Preparation and characterization of electrospun polyurethane– polypyrrole nanofibers and films. Journal of Applied Polymer Science, 125(5), 4100-4108.
  • Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C. Y., Chee, K. J., & Lee, P. S. (2014). Highly stretchable piezoresistive graphene– nanocellulose nanopaper for strain sensors. Advanced Materials. 26(13), 2022-2027.
  • Wu, H., Hu, L., Rowell, M. W., Kong, D., Cha, J. J., McDonough, J. R., Zhu, J., Yang, Y., McGehee, M. D., & Cui, Y. (2010). Electrospun metal nanofiber webs as high-performance transparent electrode. Nano letters, 10(10), 4242-4248.
  • Wu, C., Kim, T. W., Li, F., & Guo, T. (2016). Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core–shell nanocomposites. ACS nano, 10(7), 6449-6457.
  • Woo, E. J., Hua, P., Webster, J. G., Tompkins, W. J., & Pallas-Areny, R. (1992). Skin impedance measurements using simple and compound electrodes. Medical and Biological Engineering and Computing, 30(1), 97-102.
  • Wen, B., Cao, M. S., Hou, Z. L., Song, W. L., Zhang, L., Lu, M. M., Jin, H. B., Fang, X. Y., Wang, W. Z., Yuan, J. (2013). Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 65, 124-139.
  • Wang, T. L., & Tseng, C. G. (2007). Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane. Journal of Applied Polymer Science, 105(3), 1642-1650.
  • Trovati, G., Sanches, E. A., Neto, S. C., Mascarenhas, Y. P., & Chierice, G. O. (2010). Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science, 115(1), 263-268.
  • Sung, J. H., Kim, H. S., Jin, H. J., Choi, H. J., & Chin, I. J. (2004). Nanofibrous membranes prepared by multiwalled carbon nanotube/poly (methyl methacrylate) composites. Macromolecules, 37(26), 9899- 9902.
  • Song, W. L., Cao, M. S., Hou, Z. L., Fang, X. Y., Shi, X. L., & Yuan, J. (2009). High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Applied Physics Letters, 94(23), 233110.
  • Singha, K. (2012). A review on coating & lamination in textiles: processes and applications. American Journal of Polymer Science, 2(3), 39-49.
  • Searle, A., & Kirkup, L. (2000). A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiological measurement, 21(2), 271.
  • Scilingo, E. P., Gemignani, A., Paradiso, R., Taccini, N., Ghelarducci, B., & De Rossi, D. (2005). Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. IEEE Transactions on information technology in biomedicine, 9(3), 345-352.
  • Sakamaki, K., Akagi, K., Shirakawa, H., & Kyotani, H. (1997). Relationship between crystallinity and electrical conductivity of highly conducting polyacetylene film. Synthetic metals, 84(1-3), 365-366.
  • Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in polymer science, 35(7), 837-867.
  • Sahoo, N. G., Jung, Y. C., Yoo, H. J., & Cho, J. W. (2006). Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromolecular chemistry and physics, 207(19), 1773-1780.
  • Rapin, M., Proen a, M., Braun, F., Meier, C., Sol , J., Ferrario, D., Grossenbacher, O., Porchet, J-A., & Ch telat, O. (2015). Cooperative dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring. Physiological measurement, 36(4), 767.
  • Rahman, M. M., Hussain, M. M., & Asiri, A. M. (2016). A novel approach towards hydrazine sensor development using SrO CNT nanocomposites. RSC Advances, 6(70), 65338-65348.
  • Paszkiewicz, S., Szymczyk, A., Sui, X. M., Wagner, H. D., Linares, A., Cirera, A., Varea, A., Ezquerra, T. A., & Rosłaniec, Z. (2017). Electrical conductivity and transparency of polymer hybrid nanocomposites based on poly (trimethylene terephthalate) containing single walled carbon nanotubes and expanded graphite. Journal of Applied Polymer Science, 134(1), 1-9.
  • Park, H. J., Park, M., Chang, J. Y., & Lee, H. (2008). The effect of pretreatment methods on morphology and size distribution of multi-walled carbon nanotubes. Nanotechnology. 19(33), 335702
  • Oh, T. I., Yoon, S., Kim, T. E., Wi, H., Kim, K. J., Woo, E. J., & Sadleir, R. J. (2013). Nanofiber web textile dry electrodes for long-term biopotential recording. IEEE transactions on biomedical circuits and systems, 7(2), 204-211.
  • Oh, T. I., Kim, T. E., Yoon, S., Kim, K. J., Woo, E. J., & Sadleir, R. J. (2012). Flexible electrode belt for EIT using nanofiber web dry electrodes. Physiological measurement, 33(10), 1603-1616.
  • Moreno, I., Navascues, N., Arruebo, M., Irusta, S., & Santamaria, J. (2013). Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites. Nanotechnology. 24(27), 275603.
  • McAdams, E. T., Jossinet, J., Lackermeier, A., & Risacher, F. (1996). Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography. Medical and Biological Engineering and Computing, 34(6), 397-408.
  • Marozas, V., Petrenas, A., Daukantas, S., & Lukosevicius, A. (2011). A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings. Journal of electrocardiology, 44(2), 189-194.
  • Maier, C., Dickhaus, H., Bauch, M., & Penzel, T. (2003, September). Comparison of heart rhythm and morphological ECG features in recognition of sleep apnea from the ECG. In Computers in Cardiology, 2003 (pp. 311-314). IEEE.
  • Maheshwari, N. (2016). Silver Nanowire Coatings for Electrically Conductive Textiles, Master's thesis, University of Waterloo, Canada.
  • Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367.
  • Liu, H., Dong, M., Huang, W., Gao, J., Dai, K., Guo, J., Zheng, G., Liu, C., Shen, C., & Guo, Z. (2017). Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. Journal of Materials Chemistry C, 5(1), 73-83.
  • Liu, B., Tang, H., Luo, Z., Zhang, W., Tu, Q., & Jin, X. (2017). Wearable carbon nanotubes-based polymer electrodes for ambulatory electrocardiographic measurements. Sensors and Actuators A: Physical, 265, 79-85.
  • Liu, B., Li, C., Liu, Q., Dong, J., Guo, C., Wu, H., Zhou, H., Fan, X., Guo, X., & Wang, C. (2015). Hybrid film of silver nanowires and carbon nanotubes as a transparent conductive layer in light-emitting diodes. Applied Physics Letters. 106(3), 033101.
  • Lim, T. H., Lee, S. H., & Yeo, S. Y. (2017). Highly conductive polymer/metal/carbon nanotube composite fiber prepared by the meltspinning process. Textile Research Journal, 87(5), 593-606.
  • Liao, Y., Zhang, C., Zhang, Y., Strong, V., Tang, J., Li, X. G., ... & Kaner, R. B. (2011). Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano letters, 11(3), 954-959.
  • Liang, J., Li, L., Niu, X., Yu, Z., & Pei, Q. (2013). Elastomeric polymer light-emitting devices and displays. Nature Photonics. 7(10), 817-824.
  • Lee, K., & Cho, G. (2014). The optimum coating condition by response surface methodology for maximizing vapor-permeable water resistance and minimizing frictional sound of combat uniform fabric. Textile Research Journal, 84(7), 684-693.
  • Lee, J., & Cho, G. (2014). Prediction models for audible distance using mechanical and psychoacoustic parameters of combat uniform fabrics. Fibers and Polymers, 15(3), 653-658.
  • Lee, J. I., & Jung, H. T. (2008). Technical status of carbon nanotubes composites. Korean Chemical Engineering Research, 46(1), 7-14.
  • Lee, J. H., Lee, S. M., Byeon, H. J., Hong, J. S., Park, K. S., & Lee, S. H. (2014). CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording. Journal of neural engineering, 11(4), 046014.
  • Lee, J. B., & Khang, D. Y. (2012). Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors. Composites Science and Technology, 72(11), 1257-1263.
  • Lee, E., Kim, I., Liu, H., & Cho, G. (2017). Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes. Fibers and Polymers, 18(9), 1749-1753.
  • Lee, E. (2016). Study on the E- textile for strain sensor Dip-coated with AgNW / Graphene Flake electrically conductive nano structure hybrid, Master Dissertation, Ewha Womans University, Seoul.
  • Laforgue, A., & Robitaille, L. (2010). Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization. Macromolecules, 43(9), 4194-4200.
  • Laforgue, A., & Robitaille, L. (2008). Fabrication of poly-3- hexylthiophene/polyethylene oxide nanofibers using electrospinning. Synthetic metals, 158(14), 577-584.
  • Kim, T. A., Lee, S. S., Kim, H., & Park, M. (2012). Acid-treated SWCNT/polyurethane nanoweb as a stretchable and transparent Conductor. RSC Advances, 2(28), 10717-10724.
  • Kim, I., Lee, E., Jang, E., & Cho, G. (2018). Characteristics of polyurethane nanowebs treated with silver nanowire solutions as strain sensors. Textile Research Journal, 88(11), 1215-1225.
  • Kim, I., & Cho, G. (2018). Polyurethane nanofiber strain sensors via Insitu polymerization of polypyrrole and application to monitoring joint flexion. Smart Materials and Structures, 27(7), 1-14.
  • Kim, I, (2017). Polyurethane nanoweb strain sensors via in situ polymerization of polypyrrole and their application to monitoring joint flexion, Master Dissertation, Yonsei University, Seoul.
  • Kim, H. S., Jin, H. J., Myung, S. J., Kang, M., & Chin, I. J. (2006). Carbon Nanotube‐adsorbed electrospun nanofibrous membranes of nylon 6. Macromolecular rapid communications, 27(2), 146-151.
  • Kim, H. R., Fujimori, K., Kim, B. S., & Kim, I. S. (2012). Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Composites Science and Technology, 72(11), 1233-1239.
  • Khan, M. E., Khan, M. M., & Cho, M. H. (2015). Biogenic synthesis of a Ag-graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New Journal of Chemistry, 39(10), 8121-8129.
  • Kang, I., Schulz, M. J., Kim, J. H., Shanov, V., & Shi, D. (2006). A carbon nanotube strain sensor for structural health monitoring. Smart materials and structures, 15(3), 737.
  • Jung, Y. C., Sahoo, N. G., & Cho, J. W. (2006). Polymeric nanocomposites of polyurethane block copolymers and functionalized multi‐walled carbon nanotubes as crosslinkers. Macromolecular Rapid Communications, 27(2), 126-131.
  • Jin, L., Kim, K. J., Song, E. H., Ahn, Y. J., Jeong, Y. J., Oh, T. I., & Woo, E. J. (2016). Highly precise nanofiber web-based dry electrodes for vital signal monitoring. RSC Advances, 6(46), 40045-40057.
  • Jin, E., & Cho, G. (2013). Effect of frictional sound of combat uniform fabrics on Autonomic Nervous System (ANS) responses. Fibers and Polymers, 14(3), 500-505.
  • Jang, E., Kim, I., Lee, E., & Cho, G. (2017). PU nanoweb transmission lines coated with non-oxidized graphene for smart clothing, Proceedings of the fiber society 2017 spring conference, Aachen, 17- 19 May 2017. Germany: Fiber Society.
  • Jang, E. (2017). Development of electronic smart textiles via aqueous dispersed non-oxidized graphene coating based on polyurethane nanofiber web, Master Dissertation, Yonsei University, Seoul.
  • Hunter, R. J. (2001). Foundations of colloid science. Oxford: Oxford university press.
  • Hingorani, P., Natekar, M., Deshmukh, S., Karnad, D. R., Kothari, S., Narula, D., & Lokhandwala, Y. (2012). Morphological abnormalities in baseline ECGs in healthy normal volunteers participating in phase I studies. The Indian journal of medical research, 135(3), 322.
  • Hiemenz, P. C., & Hiemenz, P. C. (1986). Principles of colloid and surface chemistry (Vol. 9). New York: M. Dekker.
  • He, Y., Chen, W., Gao, C., Zhou, J., Li, X., & Xie, E. (2013). An overview of carbon materials for flexible electrochemical capacitors. Nanoscale. 5(19), 8799-8820.
  • Haynes, W. M. (2014). CRC Handbook of Chemistry and Physics. Florida: CRC press.
  • Hatch, K. L. (1992). Textile science. Minnesota: West Publishing Company.
  • Han, H. R., Chung, S. E., & Park, C. H. (2013). Shape memory and breathable waterproof properties of polyurethane nanowebs. Textile Research Journal, 83(1), 76-82.
  • Gruetzmann, A., Hansen, S., & M ller, J. (2007). Novel dry electrodes for ECG monitoring. Physiological measurement, 28(11), 1375.
  • Granato, F., Bianco, A., Bertarelli, C., & Zerbi, G. (2009). Composite polyamide 6/polypyrrole conductive nanofibers. Macromolecular rapid communications, 30(6), 453-458.
  • Goldberger, A. L. (2006). Clinical Electrocardiography: A Simplified Approach. New York: Elsevier.
  • Gao, C., Jin, Y. Z., Kong, H., Whitby, R. L. D., Acquah, S. F. A., Chen, G. Y., Qian, H. Hartschuh, A., Silva, S. R. P., Henley, S., Fearon, P., Kroto, H. W., & Walton, D. R. M. (2005). Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. The Journal of Physical Chemistry B, 109(24), 11925-11932.
  • Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 61(20), 14095- 14107.
  • Ding, B., Wang, M., Wang, X., Yu, J., & Sun, G. (2010). Electrospun nanomaterials for ultrasensitive sensors. Materials Today, 13(11), 16- 27.
  • Cho, S., & Cho, G. (2012). Minimizing frictional sound of PU-Nanoweb and PTFE film laminated vapor permeable water repellent fabrics. Fibers and Polymers, 13(1), 123-129.
  • Cho, G., Jeong, K., Paik, M. J., Kwun, Y., & Sung, M. (2011). Performance evaluation of textile-based electrodes and motion sensors for smart clothing. IEEE Sensors Journal, 11(12), 3183-3193.
  • Cho, G. (2011). Clothing Sensibility Science. Seoul: Dongseomunhwawon.
  • Cheng, Z., Liu, L., Xu, S., Lu, M., & Wang, X. (2015). Temperature dependence of electrical and thermal conduction in single silver nanowire. Scientific reports, 5.
  • Chen, L., Pang, X. J., Qu, M. Z., Zhang, Q. T., Wang, B., Zhang, B. L., & Yu, Z. L. (2006). Fabrication and characterization of polycarbonate/carbon nanotubes composites. Composites Part A: Applied Science and Manufacturing, 37(9), 1485-1489.
  • Cao, M. S., Song, W.L., Hou, Z.L., Wen, B., & Yuan, J. (2010). The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 48(3), 788-796.
  • C mert, A., & Hyttinen, J. (2014). Impedance spectroscopy of changes in skin-electrode impedance induced by motion. Biomedical engineering online, 13(1), 149.
  • Aqel, A., El-Nour, K. M. A., Ammar, R. A., & Al-Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 5(1), 1-23.
  • Akter, T., & Kim, W. S. (2012). Reversibly stretchable transparent conductive coatings of spraydeposited silver nanowires. ACS applied materials & interfaces. 4(4), 1855-1859.
  • Ajayan, P. M., & Tour, J. M. (2007). Materials science: nanotube composites. Nature, 447(7148), 1066-1068.
  • Ahn, Y. J., Yoon, S., & Kim, K. J. (2012). Preparation of conductive nanoweb through electrospinning followed by electroless silver-plating and its application as dry-type electrode for ECG measurement. Textile Science and Engineering, 49(1), 47-55.
  • Agrafioti, F., Hatzinakos, D., & Anderson, A. K. (2012). ECG pattern analysis for emotion detection. IEEE Transactions on Affective Computing, 3(1), 102-115.
  • Adamson, A. W., & Gast, A. P. (1967). Physical chemistry of surfaces, 6th Edition. New Jersey: Wiley-Interscience.