박사

Drug development for neurodegenerative diseases through protein aggregation inhibitors = 단백질 응집 저해 물질을 통한 퇴행성 뇌질환 치료 약물 개발 연구

이도현 2018년
논문상세정보
' Drug development for neurodegenerative diseases through protein aggregation inhibitors = 단백질 응집 저해 물질을 통한 퇴행성 뇌질환 치료 약물 개발 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Neurodegenerative disease
  • Protein aggregation
  • alzheimer's disease
  • blood-brain barrier
  • drugdevelopment
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
214 0

0.0%

' Drug development for neurodegenerative diseases through protein aggregation inhibitors = 단백질 응집 저해 물질을 통한 퇴행성 뇌질환 치료 약물 개발 연구' 의 참고문헌

  • Yap, I. K. et al. Metabolome-wide association study identifies multiple biomarkers that discriminate north and south Chinese populations at differing risks of cardiovascular disease: INTERMAP study. J Proteome Res 9, 6647-6654, doi:10.1021/pr100798r (2010).
  • Yan, S. D. et al. An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease. Nature 389, 689-695, doi:10.1038/39522 (1997).
  • Wischik, C. M., Harrington, C. R. & Storey, J. M. Tau-aggregation inhibitor therapy for Alzheimer's disease. Biochem Pharmacol 88, 529-539, doi:10.1016/j.bcp.2013.12.008 (2014).
  • Watanabe, T., Shiino, A. & Akiguchi, I. Absolute quantification in proton magnetic resonance spectroscopy is useful to differentiate amnesic mild cognitive impairment from Alzheimer's disease and healthy aging. Dement Geriatr Cogn Disord 30, 71-77, doi:10.1159/000318750 (2010).
  • Wang, J., Gu, B. J., Masters, C. L. & Wang, Y. J. A systemic view of Alzheimer disease - insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 13, 612-623, doi:10.1038/nrneurol.2017.111 (2017).
  • Walker, J. M. et al. Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer's disease mouse model. J Alzheimers Dis 44, 561-572, doi:10.3233/JAD-140981 (2015).
  • Walker, F. O. Huntington's disease. Lancet 369, 218-228, doi:10.1016/S0140-6736(07)60111-1 (2007).
  • Tsuji, A., Sakata, A. & Tamai, I. [Tissue distribution of the multidrugresistance gene product P-glycoprotein and its physiological function]. Nihon Rinsho 55, 1059-1063 (1997).
  • Tebbenkamp, A. T. & Borchelt, D. R. Protein aggregate characterization in models of neurodegenerative disease. Methods Mol Biol 566, 85-91, doi:10.1007/978-1-59745-562-6_6 (2009).
  • Tatzelt, J., Prusiner, S. B. & Welch, W. J. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15, 6363-6373 (1996).
  • Tan, Z. S. et al. Plasma total cholesterol level as a risk factor for Alzheimer disease: the Framingham Study. Arch Intern Med 163, 1053-1057, doi:10.1001/archinte.163.9.1053 (2003).
  • Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8, 1155-1162, doi:10.1038/ncb1477 (2006).
  • Tak, H. et al. Bimolecular fluorescence complementation; lighting-up tautau interaction in living cells. PLoS One 8, e81682, doi:10.1371/journal.pone.0081682 (2013).
  • Sudoh, S. et al. Presenilin 1 mutations linked to familial Alzheimer's disease increase the intracellular levels of amyloid beta-protein 1-42 and its N-terminally truncated variant(s) which are generated at distinct sites. J Neurochem 71, 1535-1543 (1998).
  • Stalmans, S. et al. Cell-Penetrating Peptides Selectively Cross the Blood- Brain Barrier In Vivo. PLoS One 10, e0139652, doi:10.1371/journal.pone.0139652 (2015).
  • Soto, C. et al. beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer's therapy. Nature Medicine 4, 822-826, doi:DOI 10.1038/nm0798-822 (1998).
  • Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4, 49-60, doi:10.1038/nrn1007 (2003).
  • Shen, D. et al. Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys 60, 173-185, doi:10.1007/s12013-010-9138- 4 (2011).
  • Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81, 741-766 (2001).
  • Schinkel, A. H. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36, 179-194 (1999).
  • Schenk, D. Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning. Nat Rev Neurosci 3, 824-828, doi:10.1038/nrn938 (2002).
  • Scearce-Levie, K. Monitoring spatial learning and memory in Alzheimer's disease mouse models using the Morris Water Maze. Methods Mol Biol 670, 191-205, doi:10.1007/978-1-60761-744-0_14 (2011).
  • Scacchi, R. et al. Apolipoprotein E (APOE) allele frequencies in late-onset sporadic Alzheimer's disease (AD), mixed dementia and vascular dementia: lack of association of epsilon 4 allele with AD in Italian octogenarian patients. Neurosci Lett 201, 231-234 (1995).
  • Salloway, S. et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 77, 1253-1262, doi:10.1212/WNL.0b013e3182309fa5 (2011).
  • Sadigh-Eteghad, S., Talebi, M. & Farhoudi, M. Association of apolipoprotein E epsilon 4 allele with sporadic late onset Alzheimer`s disease. A meta-analysis. Neurosciences (Riyadh) 17, 321-326 (2012).
  • Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl, S10-17, doi:10.1038/nm1066 (2004).
  • Roos, R. A. Huntington's disease: a clinical review. Orphanet J Rare Dis 5, 40, doi:10.1186/1750-1172-5-40 (2010).
  • Przedborski, S., Vila, M. & Jackson-Lewis, V. Neurodegeneration: what is it and where are we? J Clin Invest 111, 3-10, doi:10.1172/JCI17522 (2003).
  • Prince, M.et al. World Alzheimer Report 2015 : An analysis of prevalence, incidence, cost and trends. (Alzheimers Disease International, London, 2015).
  • Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67, 27-37, doi:10.1111/j.1747-0285.2005.00318.x (2006).
  • Philo, J. S. & Arakawa, T. Mechanisms of protein aggregation. Curr Pharm Biotechnol 10, 348-351 (2009).
  • Paresce, D. M., Ghosh, R. N. & Maxfield, F. R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor. Neuron 17, 553-565 (1996).
  • Pardridge, W. M. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3, 90-105, 151, doi:10.1124/mi.3.2.90 (2003).
  • Olabarria, M., Noristani, H. N., Verkhratsky, A. & Rodriguez, J. J. Concomitant Astroglial Atrophy and Astrogliosis in a Triple Transgenic Animal Model of Alzheimer's Disease. Glia 58, 831-838, doi:10.1002/glia.20967 (2010).
  • Ohyagi, Y. Intracellular amyloid beta-protein as a therapeutic target for treating Alzheimer's disease. Curr Alzheimer Res 5, 555-561 (2008).
  • Oakley, H. et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 26, 10129-10140, doi:10.1523/JNEUROSCI.1202-06.2006 (2006).
  • Mudher, A. & Lovestone, S. Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci 25, 22-26 (2002).
  • Morris, A. M., Watzky, M. A. & Finke, R. G. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1794, 375-397, doi:10.1016/j.bbapap.2008.10.016 (2009).
  • Mori, T. et al. Tannic Acid Is a Natural beta-Secretase Inhibitor That Prevents Cognitive Impairment and Mitigates Alzheimer-like Pathology in Transgenic Mice. Journal of Biological Chemistry 287, 6912-6927, doi:10.1074/jbc.M111.294025 (2012).
  • Miroy, G. J. et al. Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc Natl Acad Sci U S A 93, 15051-15056 (1996).
  • Milbury, P. E. & Kalt, W. Xenobiotic metabolism and berry flavonoid transport across the blood-brain barrier. J Agric Food Chem 58, 3950-3956, doi:10.1021/jf903529m (2010).
  • Middeldorp, J. et al. Preclinical Assessment of Young Blood Plasma for Alzheimer Disease. JAMA Neurol 73, 1325-1333, doi:10.1001/jamaneurol.2016.3185 (2016).
  • Michaelis, T. et al. Identification of Scyllo-inositol in proton NMR spectra of human brain in vivo. NMR Biomed 6, 105-109 (1993).
  • Merkler, A. E. & Iadecola, C. Rollercoaster Blood Pressure: An Alzheimer Disease Risk Factor? Circulation 136, 526-528, doi:10.1161/CIRCULATIONAHA.117.029618 (2017).
  • Meredith, S. C. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins. Ann N Y Acad Sci 1066, 181-221, doi:10.1196/annals.1363.030 (2005).
  • Melmed, S., Lewin, L. M. & Bank, H. Myo-inositol clearance in renal failure and in patients with normal kidney function. Am J Med Sci 274, 55- 59 (1977).
  • McLaurin, J., Golomb, R., Jurewicz, A., Antel, J. P. & Fraser, P. E. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity. J Biol Chem 275, 18495-18502, doi:10.1074/jbc.M906994199 (2000).
  • McLaurin, J. et al. Cyclohexanehexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 12, 801-808, doi:10.1038/nm1423 (2006).
  • Maiti, K. K., Jeon, O. Y., Lee, W. S. & Chung, S. K. Design, synthesis, and delivery properties of novel guanidine-containing molecular transporters built on dimeric inositol scaffolds. Chemistry Eur J 13, 762-775, doi:10.1002/chem.200600898 (2007).
  • Maiti, K. K. et al. Guanidine-containing molecular transporters: sorbitolbased transporters show high intracellular selectivity toward mitochondria. Angew Chem Int Ed Engl 46, 5880-5884, doi:10.1002/anie.200701346 (2007).
  • Maiti, K. K. et al. Design, synthesis, and membrane-translocation studies of inositol-based transporters. Angew Chem Int Ed Engl 45, 2907-2912, doi:10.1002/anie.200600312 (2006).
  • Ma, K., Thomason, L. A. & McLaurin, J. scyllo-Inositol, preclinical, and clinical data for Alzheimer's disease. Adv Pharmacol 64, 177-212, doi:10.1016/B978-0-12-394816-8.00006-4 (2012).
  • Lyall, D. M. et al. Alzheimer disease genetic risk factor APOE e4 and cognitive abilities in 111,739 UK Biobank participants. Age Ageing 45, 511- 517, doi:10.1093/ageing/afw068 (2016).
  • Luhrs, T. et al. 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. P Natl Acad Sci USA 102, 17342-17347, doi:10.1073/pnas.0506723102 (2005).
  • Liu, Y. et al. LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide. Brain 128, 1778-1789, doi:10.1093/brain/awh531 (2005).
  • Lim, S., Haque, M. M., Kim, D., Kim, D. J. & Kim, Y. K. Cell-based Models To Investigate Tau Aggregation. Comput Struct Biotechnol J 12, 7- 13, doi:10.1016/j.csbj.2014.09.011 (2014).
  • Li, W. et al. A nonhuman primate model of Alzheimer's disease generated by intracranial injection of amyloid-beta42 and thiorphan. Metab Brain Dis 25, 277-284, doi:10.1007/s11011-010-9207-9 (2010).
  • Li, Q., Liu, Y. & Sun, M. Autophagy and Alzheimer's Disease. Cell Mol Neurobiol, doi:10.1007/s10571-016-0386-8 (2016).
  • Li, M., Chen, L., Lee, D. H., Yu, L. C. & Zhang, Y. The role of intracellular amyloid beta in Alzheimer's disease. Prog Neurobiol 83, 131-139, doi:10.1016/j.pneurobio.2007.08.002 (2007).
  • Li, J., O, W., Li, W., Jiang, Z. G. & Ghanbari, H. A. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 14, 24438-24475, doi:10.3390/ijms141224438 (2013).
  • Lehallier, B. et al. Combined Plasma and Cerebrospinal Fluid Signature for the Prediction of Midterm Progression From Mild Cognitive Impairment to Alzheimer Disease. JAMA Neurol 73, 203-212, doi:10.1001/jamaneurol.2015.3135 (2016).
  • Lee, W. S. et al. Synthesis and cellular uptake properties of guanidinecontaining molecular transporters built on the sucrose scaffold. Mol Biosyst 5, 822-825, doi:10.1039/b901846h (2009).
  • Lee, M. J., Lee, J. H. & Rubinsztein, D. C. Tau degradation: The ubiquitinproteasome system versus the autophagy-lysosome system. Prog Neurobiol 105, 49-59, doi:10.1016/j.pneurobio.2013.03.001 (2013).
  • Lee, L. L., Ha, H., Chang, Y. T. & DeLisa, M. P. Discovery of amyloid-beta aggregation inhibitors using an engineered assay for intracellular protein folding and solubility. Protein Sci 18, 277-286, doi:10.1002/pro.33 (2009).
  • Lee, E.et al. Glycogen synthase kinase 3beta suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity. Sci Rep 6, 29097, doi:10.1038/srep29097 (2016).
  • Ledford, H. Engineered antibodies cross blood–brain barrier. Nature, doi:doi:10.1038/news.2011.319 (2011).
  • LeVine, H. The challenge of inhibiting Abeta polymerization. Curr Med Chem 9, 1121-1133 (2002).
  • Lai, A. Y., Lan, C. P., Hasan, S., Brown, M. E. & McLaurin, J. scyllo- Inositol promotes robust mutant Huntingtin protein degradation. J Biol Chem 289, 3666-3676, doi:10.1074/jbc.M113.501635 (2014).
  • Lai, A. Y. & McLaurin, J. Inhibition of amyloid-beta peptide aggregation rescues the autophagic deficits in the TgCRND8 mouse model of Alzheimer disease. Biochim Biophys Acta 1822, 1629-1637, doi:10.1016/j.bbadis.2012.07.003 (2012).
  • LaFerla, F. M., Green, K. N. & Oddo, S. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 8, 499-509, doi:10.1038/nrn2168 (2007).
  • Kruger, U., Wang, Y., Kumar, S. & Mandelkow, E. M. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33, 2291-2305, doi:10.1016/j.neurobiolaging.2011.11.009 (2012).
  • Kocahan, S. & Dogan, Z. Mechanisms of Alzheimer's Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors. Clin Psychopharmacol Neurosci 15, 1-8, doi:10.9758/cpn.2017.15.1.1 (2017).
  • Kim, S.et al. Vaccinia-related kinase 2 mediates accumulation of polyglutamine aggregates via negative regulation of the chaperonin TRiC. Mol Cell Biol 34, 643-652, doi:10.1128/MCB.00756-13 (2014).
  • Kim, S.et al. Vaccinia-Related Kinase 2 Controls the Stability of the Eukaryotic Chaperonin TRiC/CCT by Inhibiting the Deubiquitinating Enzyme USP25. Mol Cell Biol 35, 1754-1762, doi:10.1128/MCB.01325-14 (2015).
  • Kim, S. & Kim, K. T. Therapeutic Approaches for Inhibition of Protein Aggregation in Huntington's Disease. Exp Neurobiol 23, 36-44, doi:10.5607/en.2014.23.1.36 (2014).
  • Kim, H. Y. et al. EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid-beta oligomers and plaques. Nat Commun 6, 8997, doi:10.1038/ncomms9997 (2015).
  • Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci U S A 96, 11404-11409 (1999).
  • Jin, J. et al. Preparation of blood-brain barrier-permeable paclitaxel-carrier conjugate and its chemotherapeutic activity in the mouse glioblastoma model. Medchemcomm 2, 270-273, doi:10.1039/c0md00235f (2011).
  • Jiang, Q. et al. ApoE promotes the proteolytic degradation of Abeta. Neuron 58, 681-693, doi:10.1016/j.neuron.2008.04.010 (2008).
  • Im, J., Biswas, G., Kim, W., Kim, K. T. & Chung, S. K. A Blood-brain Barrier Permeable Derivative of 5-Fluorouracil: Preparation, Intracellular Localization, and Mouse Tissue Distribution. B Korean Chem Soc 32, 873- 879, doi:10.5012/bkcs.2011.32.3.873 (2011).
  • Im, J. et al. Preparation and evaluation of BBB-permeable trehalose derivatives as potential therapeutic agents for Huntington's disease. Medchemcomm 4, 310-316, doi:10.1039/c2md20112g (2013).
  • Iannuzzi, C., Irace, G. & Sirangelo, I. Differential effects of glycation on protein aggregation and amyloid formation. Front Mol Biosci 1, 9, doi:10.3389/fmolb.2014.00009 (2014).
  • Huang, Y. A., Zhou, B., Wernig, M. & Sudhof, T. C. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Abeta Secretion. Cell 168, 427-441 e421, doi:10.1016/j.cell.2016.12.044 (2017).
  • Hsiao, K. et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99-102 (1996).
  • Hoyer, S. Age as risk factor for sporadic dementia of the Alzheimer type? Ann N Y Acad Sci 719, 248-256 (1994).
  • Holub, B. J. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr 6, 563-597, doi:10.1146/annurev.nu.06.070186.003023 (1986).
  • Hersh, D. S. et al. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 22, 1177-1193 (2016).
  • Heneka, M. T. Inflammation in Alzheimer's disease. Clin Neurosci Res 6, 247-260, doi:10.1016/j.cnr.2006.09.005 (2006).
  • Heitz, F., Morris, M. C. & Divita, G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157, 195-206, doi:10.1111/j.1476-5381.2009.00057.x (2009).
  • Hartmann, T. Intracellular biology of Alzheimer's disease amyloid beta peptide. Eur Arch Psychiatry Clin Neurosci 249, 291-298 (1999).
  • Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332, doi:10.1038/nature10317 (2011).
  • Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci 12, 383-388 (1991).
  • Hager, K. et al. Kinetics and specificity of the renal Na+/myo-inositol cotransporter expressed in Xenopus oocytes. J Membr Biol 143, 103-113 (1995).
  • Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8, 101-112, doi:10.1038/nrm2101 (2007).
  • Gurley, C. et al. Microglia and Astrocyte Activation by Toll-Like Receptor Ligands: Modulation by PPAR-gamma Agonists. PPAR Res 2008, 453120, doi:10.1155/2008/453120 (2008).
  • Gupta, R. & Sen, N. Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev Neurosci 27, 93-100, doi:10.1515/revneuro-2015-0017 (2016).
  • Gu, Y., Nieves, J. W., Luchsinger, J. A. & Scarmeas, N. Dietary inflammation factor rating system and risk of Alzheimer disease in elders. Alzheimer Dis Assoc Disord 25, 149-154, doi:10.1097/WAD.0b013e3181ff3c6a (2011).
  • Grelle, G. et al. Black Tea Theaflavins Inhibit Formation of Toxic Amyloidbeta and alpha-Synuclein Fibrils. Biochemistry 50, 10624-10636, doi:10.1021/bi2012383 (2011).
  • Gao, H. M. & Hong, J. S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29, 357-365, doi:10.1016/j.it.2008.05.002 (2008).
  • Frank, S. Treatment of Huntington's Disease. Neurotherapeutics 11, 153- 160, doi:10.1007/s13311-013-0244-z (2014).
  • Forman, M. S., Trojanowski, J. Q. & Lee, V. M. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10, 1055-1063, doi:10.1038/nm1113 (2004).
  • Forbes, W. F. & Hill, G. B. Is exposure to aluminum a risk factor for the development of Alzheimer disease?--Yes. Arch Neurol 55, 740-741 (1998).
  • Fink, A. L. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3, R9-23, doi:10.1016/S1359-0278(98)00002-9 (1998).
  • Figiel, M., Szlachcic, W. J., Switonski, P. M., Gabka, A. & Krzyzosiak, W. J. Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 46, 393-429, doi:10.1007/s12035-012-8315-4 (2012).
  • Fenili, D., Weng, Y. Q., Aubert, I., Nitz, M. & McLaurin, J. Sodium/myo- Inositol transporters: substrate transport requirements and regional brain expression in the TgCRND8 mouse model of amyloid pathology. PLoS One 6, e24032, doi:10.1371/journal.pone.0024032 (2011).
  • Fenili, D., Brown, M., Rappaport, R. & McLaurin, J. Properties of scylloinositol as a therapeutic treatment of AD-like pathology. J Mol Med (Berl) 85, 603-611, doi:10.1007/s00109-007-0156-7 (2007).
  • Fay, D. S., Fluet, A., Johnson, C. J. & Link, C. D. In vivo aggregation of beta-amyloid peptide variants. J Neurochem 71, 1616-1625 (1998).
  • Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res Bull 49, 377-391 (1999).
  • Faria, A. et al. Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cell Mol Biol Lett 15, 234-241, doi:10.2478/s11658-010-0006-4 (2010).
  • Crehan, H., Hardy, J. & Pocock, J. Microglia, Alzheimer's disease, and complement. Int J Alzheimers Dis 2012, 983640, doi:10.1155/2012/983640 (2012).
  • Ciechanover, A. & Kwon, Y. T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47, e147, doi:10.1038/emm.2014.117 (2015).
  • Chung, S. K., Maiti, K. K. & Lee, W. S. Recent advances in cell-penetrating, non-peptide molecular carriers. Int J Pharm 354, 16-22, doi:10.1016/j.ijpharm.2007.08.016 (2008).
  • Chung, S. K. et al. Synthesis of all possible regioisomers of scyllo-inositol phosphate. Bioorg Med Chem 7, 2577-2589 (1999).
  • Choi, S. H. et al. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515, 274-278, doi:10.1038/nature13800 (2014).
  • Choi, J. K., Carreras, I., Dedeoglu, A. & Jenkins, B. G. Detection of increased scyllo-inositol in brain with magnetic resonance spectroscopy after dietary supplementation in Alzheimer's disease mouse models. Neuropharmacology 59, 353-357, doi:10.1016/j.neuropharm.2010.03.011 (2010).
  • Chiti, F. Relative Importance of Hydrophobicity, Net Charge, and Secondary Structure Propensities in Protein Aggregation. Vol. 4 pp 43-59 (Springer, Boston, MA, 2006).
  • Chen, Y. & Liu, L. Modern methods for delivery of drugs across the bloodbrain barrier. Adv Drug Deliv Rev 64, 640-665, doi:10.1016/j.addr.2011.11.010 (2012).
  • Chen, G. F. et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38, 1205-1235, doi:10.1038/aps.2017.28 (2017).
  • Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 3, a004374, doi:10.1101/cshperspect.a004374 (2011).
  • Chang, X. et al. (-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer's disease model mice by upregulating neprilysin expression. Exp Cell Res 334, 136-145, doi:10.1016/j.yexcr.2015.04.004 (2015).
  • Cardoso, F. L., Brites, D. & Brito, M. A. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64, 328-363, doi:10.1016/j.brainresrev.2010.05.003 (2010).
  • Bertram, L. & Tanzi, R. E. The genetic epidemiology of neurodegenerative disease. J Clin Invest 115, 1449-1457, doi:10.1172/JCI24761 (2005).
  • Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitinproteasome system by protein aggregation. Science 292, 1552-1555, doi:10.1126/science.292.5521.1552 (2001).
  • Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzeriat, K. & Escartin, C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9, 278, doi:10.3389/fncel.2015.00278 (2015).
  • Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817-827 (1994).
  • Bayer, T. A. & Wirths, O. Intracellular accumulation of amyloid-Beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease. Front Aging Neurosci 2, 8, doi:10.3389/fnagi.2010.00008 (2010).
  • Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J. & Landreth, G. E. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. Journal of Neuroscience 23, 2665-2674 (2003).
  • Ballard, C. et al. Alzheimer's disease. Lancet 377, 1019-1031, doi:10.1016/S0140-6736(10)61349-9 (2011).
  • Avila, J., Santa-Maria, I., Perez, M., Hernandez, F. & Moreno, F. Tau phosphorylation, aggregation, and cell toxicity. J Biomed Biotechnol 2006, 74539, doi:10.1155/JBB/2006/74539 (2006).
  • Ahmed, M. et al. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17, 561-U556, doi:10.1038/nsmb.1799 (2010).
  • Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7, 41-53, doi:10.1038/nrn1824 (2006).
  • ALZFORUM. <http://www.alzforum.org>