박사

Anti-inflammatory effect of equol : Biochemical mechanisms related to inhibition of NLRP3 inflammasome activation and suppression of inflammation-associated diseases = NLRP3 inflammasome activation에 대한 equol의 억제활성과 생화학적 기전해석 및 염증관련 질환 억제효과

양혜 2018년
논문상세정보
' Anti-inflammatory effect of equol : Biochemical mechanisms related to inhibition of NLRP3 inflammasome activation and suppression of inflammation-associated diseases = NLRP3 inflammasome activation에 대한 equol의 억제활성과 생화학적 기전해석 및 염증관련 질환 억제효과' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • caspase-1
  • equol
  • il-1β
  • inflammasome
  • nlrp3
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
130 0

0.0%

' Anti-inflammatory effect of equol : Biochemical mechanisms related to inhibition of NLRP3 inflammasome activation and suppression of inflammation-associated diseases = NLRP3 inflammasome activation에 대한 equol의 억제활성과 생화학적 기전해석 및 염증관련 질환 억제효과' 의 참고문헌

  • Zhou, R., et al., A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011. 469(7329): p. 221-5.
  • Zhong, Z., et al., NF-kappaB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell, 2016. 164(5): p. 896-910.
  • Zhang, N., et al., Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice. Mediators Inflamm, 2014. 2014: p. 370530.
  • Yang, W.S., et al., Dipterocarpus tuberculatus ethanol extract strongly suppresses in vitro macrophage-mediated inflammatory responses and in vivo acute gastritis. J Ethnopharmacol, 2013. 146(3): p. 873-80.
  • Xia, M., et al., Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. Am J Pathol, 2014. 184(5): p. 1617-28.
  • Wu, J., et al., Possible role of equol status in the effects of isoflavone on bone and fat mass in postmenopausal Japanese women: a double-blind, randomized, controlled trial. Menopause, 2007. 14(5): p. 866-874 10.1097/gme.0b013e3180305299.
  • Weischenfeldt, J. and B. Porse, Bone Marrow-Derived Macrophages (BMM): Isolation and Applications. CSH Protoc, 2008. 2008: p. pdb prot5080.
  • Walsh, J.G., D.A. Muruve, and C. Power, Inflammasomes in the CNS.
  • Tousen, Y., et al., Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women: a pilot randomized, placebo-controlled trial. Menopause, 2011. 18(5): p. 563-574 10.1097/gme.0b013e3181f85aa7.
  • Strowig, T., et al., Inflammasomes in health and disease. Nature, 2012. 481(7381): p. 278-86.
  • Stacchiotti, A., G. Favero, and R. Rezzani, Endoplasmic Reticulum Stress in the Endothelium: A Contribution to Athero-Susceptibility. 2013.
  • Shi, C.S., et al., Activation of autophagy by inflammatory signals limits IL- 1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol, 2012. 13(3): p. 255-63.
  • Shao, B.Z., et al., NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol, 2015. 6: p. 262.
  • Setchell, K.D. and C. Clerici, Equol: pharmacokinetics and biological actions. J Nutr, 2010. 140(7): p. 1363S-8S.
  • Setchell, K.D. and C. Clerici, Equol: history, chemistry, and formation. J Nutr, 2010. 140(7): p. 1355S-62S.
  • Saitoh, T., et al., Loss of the autophagy protein Atg16L1 enhances endotoxininduced IL-1beta production. Nature, 2008. 456(7219): p. 264-8.
  • Qu, Y., et al., P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. J Immunol, 2009. 182(8): p. 5052-62.
  • Nakahira, K., et al., Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflamma some. Nat Immunol, 2011. 12(3): p. 222-30.
  • Misawa, T., et al., Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome.
  • Man, S.M. and T.D. Kanneganti, Regulation of inflammasome activation. Immunol Rev, 2015. 265(1): p. 6-21.
  • Lund, T.D., et al., Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol Reprod, 2004. 70(4): p. 1188-95.
  • Lu, P.D., H.P. Harding, and D. Ron, Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol, 2004. 167(1): p. 27-33.
  • Lawrence, T., D.A. Willoughby, and D.W. Gilroy, Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol, 2002. 2(10): p. 787-95.
  • Lawlor, K.E. and J.E. Vince, Ambiguities in NLRP3 inflammasome regulation: is there a role for mitochondria? Biochim Biophys Acta, 2014. 1840(4): p. 1433-40.
  • Lamkanfi, M. and V.M. Dixit, Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol, 2012. 28: p. 137-61.
  • Lamkanfi, M. and T.D. Kanneganti, Nlrp3: an immune sensor of cellular stress and infection. Int J Biochem Cell Biol, 2010. 42(6): p. 792-5.
  • He, Y., H. Hara, and G. Nunez, Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci, 2016. 41(12): p. 1012-1021.
  • Guo, H., J.B. Callaway, and J.P. Ting, Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med, 2015. 21(7): p. 677-87.
  • Frankenfeld, C.L., et al., Mammographic density in relation to daidzeinmetabolizing phenotypes in overweight, postmenopausal women. Cancer Epidemiol Biomarkers Prev, 2004. 13(7): p. 1156-62.
  • Frankenfeld, C.L., et al., High concordance of daidzein-metabolizing phenotypes in individuals measured 1 to 3 years apart. British Journal of Nutrition, 2007. 94(06): p. 873.
  • Didierlaurent, A., et al., Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol Cell Biol, 2006. 26(3): p. 735-42.
  • Criollo, A., et al., The IKK complex contributes to the induction of autophagy. EMBO J, 2010. 29(3): p. 619-31.
  • Creagh, E.M. and L.A. O'Neill, TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol, 2006. 27(8): p. 352-7.
  • Choi, E.J. and G.H. Kim, The antioxidant activity of daidzein metabolites, Odesmethylangolensin and equol, in HepG2 cells. Mol Med Rep, 2014. 9(1): p. 328-32.
  • Boyden, E.D. and W.F. Dietrich, Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet, 2006. 38(2): p. 240-4.
  • Bauernfeind, F.G., et al., Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol, 2009. 183(2): p. 787-91.
  • B'Chir, W., et al., The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res, 2013. 41(16): p. 7683-99.
  • Anand, P.K., R.K. Malireddi, and T.D. Kanneganti, Role of the nlrp3 inflammasome in microbial infection. Front Microbiol, 2011. 2: p. 12.
  • Akaza, H., et al., Comparisons of percent equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn J Clin Oncol, 2004. 34(2): p. 86-9.
  • <The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones..pdf>.
  • <NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta.pdf>.
  • <Effect of P2X7 Receptor Activation.pdf>.
  • <Critical role for calcium mobilization in activation of the NLRP3 inflammasome..pdf>.