박사

동중국해의 해양 환경 변동 특성에 의한 음파 전달 변동 및 잔향음 경향 변화

박중용 2018년
논문상세정보
' 동중국해의 해양 환경 변동 특성에 의한 음파 전달 변동 및 잔향음 경향 변화' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 내부 고립파
  • 내부 조석
  • 모드 연성
  • 수중음향채널
  • 음향 변동
  • 잔향음
  • 천해
  • 해류
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
24 0

0.0%

' 동중국해의 해양 환경 변동 특성에 의한 음파 전달 변동 및 잔향음 경향 변화' 의 참고문헌

  • 동중국해 북부 해역에서 관측된 비선형 단주기 내부파 의 특성.
    남성현 이승우 년 추계 한국해양학회 [2017]
  • Zhou, J.X., X.Z. Zhang, and P.H. Rogers, "Resonant interaction of sound wave with internal solitons in the coastal zone." J. Acoust. Soc. Am. 90(4): 2042-2054 (1991).
  • Zhang, R. and G. Jin, "Normal-mode theory of average reverberation intensity in shallow water." J. Sound Vib. 119(2): 215-223 (1987).
  • Yang, T., "Temporal coherence of sound transmissions in deep water revisited." J. Acoust. Soc. Am. 124(1): 113-127 (2008).
  • Yang, T., "Properties of underwater acoustic communication channels in shallow water." J. Acoust. Soc. Am. 131(1): 129-145 (2012).
  • Yang, T., "Measurements of temporal coherence of sound transmissions through shallow water." J. Acoust. Soc. Am. 120(5): 2595-2614 (2006).
  • Yang, T., "Acoustic mode coupling induced by nonlinear internal waves: Evaluation of the mode coupling matrices and applications." J. Acoust. Soc. Am. 135(2): 610-625 (2014).
  • Worthmann, B.M., H. Song, and D.R. Dowling, "High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing a." J. Acoust. Soc. Am. 138(6): 3549-3562 (2015).
  • Worcester, P.F., "Reciprocal acoustic transmission in a midocean environment." J. Acoust. Soc. Am. 62(4): 895-905 (1977).
  • Worcester, P., R. Spindel, and B. Howe, "Reciprocal acoustic transmissions: Instrumentation for mesoscale monitoring of ocean currents." IEEE. J. Ocean. Eng. 10(2): 123-137 (1985).
  • Westwood, E.K., C. Tindle, and N. Chapman, "A normal mode model for acousto‐elastic ocean environments." J. Acoust. Soc. Am. 100(6): 3631-3645 (1996).
  • Wenz, G.M., "Acoustic ambient noise in the ocean: Spectra and sources." J. Acoust. Soc. Am. 34(12): 1936-1956 (1962).
  • Wang, Y., H. Hachiya, T. Nakamura, and H. Fujimori, "Precise measurement of travel time difference for acoustic reciprocal transmission." Jpn. J. Appl. Phys. 42(5B): 3206-3211 (2003).
  • Urick, R.J., Principles of underwater sound, 3rd ed. (Peninsular Publishing, 1983).
  • Tiemann, C.O., P.F. Worcester, and B.D. Cornuelle, "Acoustic scattering by internal solitary waves in the Strait of Gibraltar." J. Acoust. Soc. Am. 109(1): 143-154 (2001).
  • Tiemann, C.O., P.F. Worcester, and B.D. Cornuelle, "Acoustic remote sensing of internal solitary waves and internal tides in the Strait of Gibraltar." J. Acoust. Soc. Am. 110(2): 798-811 (2001).
  • Tielb rger, D., S. Finette, and S. Wolf, "Acoustic propagation through an internal wave field in a shallow water waveguide." J. Acoust. Soc. Am. 101(2): 789-808 (1997).
  • Sperry, B.J., J.F. Lynch, G. Gawarkiewicz, C.-S. Chiu, and A. Newhall, "Characteristics of acoustic propagation to the eastern vertical line array receiver during the summer 1996 New England shelfbreak PRIMER experiment." IEEE. J. Ocean. Eng. 28(4): 729-749 (2003).
  • Song, H., W.S. Hodgkiss, S. Kim, B. Kim, S. Cho, Y. Park, and S. Nam, Shallow-water Acoustic Variability Experiment 2015 (SAVEX15) Trip Report. 2015.
  • Song, H., C. Cho, W. Hodgkiss, S. Nam, S.-M. Kim, and B.-N. Kim, "Underwater sound channel in the northeastern East China Sea." Ocean Eng. 147: 370-374 (2018).
  • Song, H. and W. Hodgkiss, "Efficient use of bandwidth for underwater acoustic communication." J. Acoust. Soc. Am. 134(2): 905-908 (2013).
  • Song, A., M. Badiey, A.E. Newhall, J.F. Lynch, H.A. DeFerrari, and B.G. Katsnelson, "Passive time reversal acoustic communications through shallow-water internal waves." IEEE. J. Ocean. Eng. 35(4): 756-765 (2010).
  • Smith, C.M., Effects of propagating internal waves on shallow-water acoustic propagation during the transverse acoustic variability experiment of 2008, in Dept. Acoust. 2010, Penn State Univ.: PA, USA.
  • Shmelev, A.A., J.F. Lynch, Y.-T. Lin, and H. Schmidt, "Threedimensional coupled mode analysis of internal-wave acoustic ducts." J. Acoust. Soc. Am. 135(5): 2497-2512 (2014).
  • Sabra, K.G. and D.R. Dowling, "Effect of ocean currents on the performance of a time-reversing array in shallow water." J. Acoust. Soc. Am. 114(6): 3125-3135 (2003).
  • Roux, P., W.A. Kuperman, W.S. Hodgkiss, H.C. Song, T. Akal, and M. Stevenson, "A nonreciprocal implementation of time reversal in the ocean." J. Acoust. Soc. Am. 116(2): 1009-1015 (2004).
  • Rouseff, D., D. Tang, K.L. Williams, Z. Wang, and J.N. Moum, "Midfrequency sound propagation through internal waves at short range with synoptic oceanographic observations." J. Acoust. Soc. Am. 124(3): EL73-EL77 (2008).
  • Rouseff, D., A. Turgut, S.N. Wolf, S. Finette, M.H. Orr, B.H. Pasewark, J.R. Apel, M. Badiey, C.-s. Chiu, and R.H. Headrick, "Coherence of acoustic modes propagating through shallow water internal waves." J. Acoust. Soc. Am. 111(4): 1655-1666 (2002).
  • Romanowicz, B., D. Stakes, J.P. Montagner, P. Tarits, R. Uhrhammer, M. Begnaud, E. Stutzmann, M. Pasyanos, J.-F. Karczewski, and S. Etchemendy, "MOISE: A pilot experiment towards long term sea-floor geophysical observatories." Earth, planets and space. 50(11-12): 927-937 (1998).
  • Reeder, D.B., L.Y. Chiu, and C.-F. Chen, "Experimental evidence of horizontal refraction by nonlinear internal waves of elevation in shallow water in the south china sea: 3D versus Nx2D acoustic propagation modeling." J. Comput. Acoust. 18(03): 267-278 (2010).
  • Preston, J.R. and D.D. Ellis. "A Matlab and normal mode based adiabatic range-dependent reverberation model." in 4th International Conference on Underwater Acoustic Measurements: Technologies and Results, Kos, Greece. 2011.
  • Preisig, J.C. and T.F. Duda, "Coupled acoustic mode propagation through continental-shelf internal solitary waves." IEEE. J. Ocean. Eng. 22(2): 256-269 (1997).
  • Porter, M.B., The KRAKEN normal mode program. 1991, SACLANT Undersea Research Centre: La Spezia, Italy.
  • Perkins, J.S. and E.I. Thorsos, "Overview of the reverberation modeling workshops." J. Acoust. Soc. Am. 122(5): 3074-3074 (2007).
  • Park, K.-A., K. Chang, H. Na, U. Jung, K.-I.C. Forcing, C. Zhang, C. Park, D. Kang, S. Ju, and S. Lee, Oceanography of the East Sea (Japan Sea). 2016, Springer, Switzerland.
  • Oba, R. and S. Finette, "Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction." J. Acoust. Soc. Am. 111(2): 769-784 (2002).
  • Nam, S.H., D.J. Kim, S.W. Lee, B.K. Kim, K.M. Kang, and Y.-K. Cho, "Nonlinear internal wave spirals in the northern East China Sea (in revision)." Scientific Reports. (2017).
  • Nam, S., D.j. Kim, H.R. Kim, and Y.G. Kim, "Typhoon‐induced, highly nonlinear internal solitary waves off the east coast of Korea." Geophys. Res. Lett. 34(1): (2007).
  • Nam, S. and J.H. Park, "Semidiurnal internal tides off the east coast of Korea inferred from synthetic aperture radar images." Geophys. Res. Lett. 35(5): (2008).
  • McMahon, K.G., L. Reilly-Raska, W.L. Siegmann, J.F. Lynch, and T.F. Duda, "Horizontal Lloyd mirror patterns from straight and curved nonlinear internal waves." J. Acoust. Soc. Am. 131(2): 1689-1700 (2012).
  • Lynch, J.F., Y.-T. Lin, T.F. Duda, and A.E. Newhall, "Acoustic ducting, reflection, refraction, and dispersion by curved nonlinear internal waves in shallow water." IEEE. J. Ocean. Eng. 35(1): 12-27 (2010).
  • Lynch, J.F., G. Jin, R. Pawlowicz, D. Ray, A.J. Plueddemann, C.S. Chiu, J.H. Miller, R.H. Bourke, A.R. Parsons, and R. Muench, "Acoustic travel‐time perturbations due to shallow‐water internal waves and internal tides in the Barents Sea Polar Front: Theory and experiment." J. Acoust. Soc. Am. 99(2): 803-821 (1996).
  • Lynch, J., A. Newhall, B. Sperry, G. Gawarkiewicz, A. Fredricks, P. Tyack, C. Chiu, and P. Abbot, "Spatial and temporal variations in acoustic propagation characteristics at the New England shelfbreak front." IEEE. J. Ocean. Eng. 28(1): 129-150 (2003).
  • Luo, J., M. Badiey, E. Karjadi, B. Katsnelson, A. Tskhoidze, J. Lynch, and J. Moum, "Observation of sound focusing and defocusing due to propagating nonlinear internal waves." J. Acoust. Soc. Am. 124(3): EL66-EL72 (2008).
  • Luo, J. and M. Badiey, "Frequency dependent beating patterns and amplitude increase during the approach of an internal wave packet." J. Acoust. Soc. Am. 131(2): EL145-EL149 (2012).
  • Lunkov, A., "Interference structure of low-frequency reverberation signals in shallow water." Acoust. Phys. 61: 547-555 (2015).
  • Lingevitch, J.F. and K.D. LePage, "Parabolic equation simulations of reverberation statistics from non-Gaussian-distributed bottom roughness." IEEE. J. Ocean. Eng. 35(2): 199-208 (2010).
  • Lin, Y.-T., T.F. Duda, and J.F. Lynch, "Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area." J. Acoust. Soc. Am. 126(4): 1752-1765 (2009).
  • Lin, Y.-T., K.G. McMahon, J.F. Lynch, and W.L. Siegmann, "Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas." J. Acoust. Soc. Am. 133(1): 37-49 (2013).
  • Lee, S.C., S. Kim, J.W. Choi, D. Kang, J.S. Park, and K. Park, "Possibility of False Target Signals Induced by Reverberation Due to Internal Waves in Shallow Water." J. Acoust. Soc. Kr. 34(2): 98-107 (2015).
  • Lee, K., Y. Chu, and W. Seong, "Geometrical ray-bundle reverberation modeling." J. Comput. Acoust. 21(03): 1350011-1-1350011-17 (2013).
  • Lee, I. and J.T. Liu, "Rectification of the heading and tilting of sediment trap arrays due to strong tidal currents in a submarine canyon." Geophys. Res. Lett. 33(8): (2006).
  • LePage, K.D., "Modeling propagation and reverberation sensitivity to oceanographic and seabed variability." IEEE. J. Ocean. Eng. 31(2): 402-412 (2006).
  • LePage, K.D., "Bottom reverberation in shallow water: Coherent properties as a function of bandwidth, waveguide characteristics, and scatterer distributions." J. Acoust. Soc. Am. 106(6): 3240-3254 (1999).
  • LePage, K.D., "Bistatic reverberation modeling for range‐dependent waveguides." J. Acoust. Soc. Am. 112(5): 2253-2254 (2002).
  • LePage, K.D. and B.E. McDonald, "Environmental effects of waveguide uncertainty on coherent aspects of propagation, scattering, and reverberation." IEEE. J. Ocean. Eng. 31(2): 413-420 (2006).
  • Keenan, R.E. "An introduction to GRAB eigenrays and CASS reverberation and signal excess." in OCEANS 2000 MTS/IEEE Conference and Exhibition. 2000. IEEE.
  • Katsnelson, B., V. Grigorev, and J.F. Lynch, "Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves." J. Acoust. Soc. Am. 124(3): EL78-EL84 (2008).
  • Jensen, F.B., W.A. Kuperman, M.B. Porter, and H. Schmidt, Computational ocean acoustics. (Springer Science & Business Media, 2011).
  • Jensen, F. "Numerical models of sound propagation in real oceans." in OCEANS 82. 1982. IEEE.
  • Isakson, M.J., B. Goldsberry, and N.P. Chotiros, "A three-dimensional, longitudinally-invariant finite element model for acoustic propagation in shallow water waveguides." J. Acoust. Soc. Am. 136(3): EL206- EL211 (2014).
  • Isakson, M.J. and N.P. Chotiros, "Finite element modeling of reverberation and transmission loss in shallow water waveguides with rough boundaries." J. Acoust. Soc. Am. 129(3): 1273-1279 (2011).
  • Henyey, F.S. and D. Tang, "Reverberation clutter induced by nonlinear internal waves in shallow water." J. Acoust. Soc. Am. 134(4): EL289- EL293 (2013).
  • Headrick, R.H., J.F. Lynch, J.N. Kemp, A.E. Newhall, K. von der Heydt, J. Apel, M. Badiey, C.-s. Chiu, S. Finette, and M. Orr, "Modeling mode arrivals in the 1995 SWARM experiment acoustic transmissions." J. Acoust. Soc. Am. 107(1): 221-236 (2000).
  • Headrick, R.H., J.F. Lynch, J.N. Kemp, A.E. Newhall, K. von der Heydt, J. Apel, M. Badiey, C.-s. Chiu, S. Finette, and M. Orr, "Acoustic normal mode fluctuation statistics in the 1995 SWARM internal wave scattering experiment." J. Acoust. Soc. Am. 107(1): 201-220 (2000).
  • Harrison, C.H., "Closed form bistatic reverberation and target echoes with variable bathymetry and sound speed." IEEE. J. Ocean. Eng. 30(4): 660-675 (2005).
  • Harrison, C., "Closed-form expressions for ocean reverberation and signal excess with mode stripping and Lambert’s law." J. Acoust. Soc. Am. 114(5): 2744-2756 (2003).
  • Gong, Z., T. Chen, P. Ratilal, and N.C. Makris, "Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves." J. Acoust. Soc. Am. 134(5): 3476-3485 (2013).
  • Gerkema, T. and J. Zimmerman, "An introduction to internal waves." Lecture Notes, Royal NIOZ, Texel. (2008).
  • Garrett, C., "Internal tides and ocean mixing." Science. 301(5641): 1858-1859 (2003).
  • Gao, B., N. Wang, and H.Z. Wang, "Investigation of Sea Surface Effect on Shallow Water Reverberation by Coupled Mode Method." J. Comput. Acoust. 25(02): 1750017-1-1750017-12 (2017).
  • Freitag, P., M. McPhaden, C. Meinig, and P. Plimpton. "Mooring motion bias of point-Doppler current meter measurements." in Current Measurement Technology, 2003. Proceedings of the IEEE/OES Seventh Working Conference on. 2003. IEEE.
  • Essen, H.-H., F. Schirmer, and S. Sirkes, "Acoustic remote sensing of internal waves in shallow water." International Journal of Remote Sensing. 4(1): 33-47 (1983).
  • Ellis, D.D., "A Shallow-Water Normal-Mode Reverberation Model." J. Acoust. Soc. Am. 97(5): 2804-2814 (1995).
  • Ellis, D.D. "Solutions to range-dependent reverberation and sonar workshop problems using an adiabatic normal mode model." in Proc. 4th International Conf. and Exhibition on Underwater Acoustic Measurements: Technologies and Results. 2011.
  • Duda, T.F., J.F. Lynch, J.D. Irish, R.C. Beardsley, S.R. Ramp, C.-S. Chiu, T.Y. Tang, and Y.-J. Yang, "Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea." IEEE. J. Ocean. Eng. 29(4): 1105-1130 (2004).
  • Duda, T.F., J.F. Lynch, A.E. Newhall, L. Wu, and C.-S. Chiu, "Fluctuation of 400-Hz sound intensity in the 2001 ASIAEX South China Sea experiment." IEEE. J. Ocean. Eng. 29(4): 1264-1279 (2004).
  • Duda, T.F. and J.C. Preisig, "A modeling study of acoustic propagation through moving shallow-water solitary wave packets." IEEE. J. Ocean. Eng. 24(1): 16-32 (1999).
  • Dozier, L. and F. Tappert, "Statistics of normal mode amplitudes in a random ocean. I. Theory." J. Acoust. Soc. Am. 63(2): 353-365 (1978).
  • Dashen, R., W.H. Munk, and K.M. Watson, Sound transmission through a fluctuating ocean. (Cambridge University Press, 2010).
  • Creamer, D.B., "Scintillating shallow‐water waveguides." J. Acoust. Soc. Am. 99(5): 2825-2838 (1996).
  • Colosi, J.A., T.F. Duda, and A.K. Morozov, "Statistics of lowfrequency normal-mode amplitudes in an ocean with random soundspeed perturbations: Shallow-water environments." J. Acoust. Soc. Am. 131(2): 1749-1761 (2012).
  • Colosi, J.A., Sound Propagation through the Stochastic Ocean. (Cambridge University Press, 2016).
  • Colosi, J.A., "Acoustic mode coupling induced by shallow water nonlinear internal waves: Sensitivity to environmental conditions and space-time scales of internal waves." J. Acoust. Soc. Am. 124(3): 1452-1464 (2008).
  • Colosi, J.A. and A.K. Morozov, "Statistics of normal mode amplitudes in an ocean with random sound-speed perturbations: Cross-mode coherence and mean intensity." J. Acoust. Soc. Am. 126(3): 1026- 1035 (2009).
  • Choo, Y., W. Seong, and W. Hong, "Modeling and Analysis of Monostatic Seafloor Reverberation from Bottom Consisting of Two Slopes." J. Comput. Acoust. 22(02): 1450005-1-1450005-15 (2014).
  • Choo, Y., W. Seong, and K. Lee, "Efficient algorithm for long-range monostatic reverberation in shallow water using geometrical raybundle." J. Comput. Acoust. 24(02): 1650002-1-1650002-12 (2016).
  • Cho, C., S. Nam, and H. Song, "Seasonal variation of speed and width from kinematic parameters of mode‐1 nonlinear internal waves in the northeastern East China Sea." J. Geophys. Res. Oceans. 121(8): 5942- 5958 (2016).
  • Cho, C. and H. Song, "Impact of array tilt on source-range estimation in shallow water using the array invariant." J. Acoust. Soc. Am. 141(4): 2849-2856 (2017).
  • Chiu, C.-S., S.R. Ramp, C.W. Miller, J.F. Lynch, T.F. Duda, and T.Y. Tang, "Acoustic intensity fluctuations induced by South China Sea internal tides and solitons." IEEE. J. Ocean. Eng. 29(4): 1249-1263 (2004).
  • Characteristics of mode 1 and mode 2 nonlinear internal waves observed during the SAVEX-15.
    Lee, S.W. S.H. Nam in 제 32회 수중음향학 학술발표회 [2017]
  • Byun, G., C. Cho, H.C. Song, J.S. Kim, and S.-H. Byun, "Calibration of array tilt using a source of opportunity (in revision)." J. Acoust. Soc. Am. (2017 ).
  • Bucker, H. and H.E. Morris, "Normal‐Mode Reverberation in Channels or Ducts." J. Acoust. Soc. Am. 44(3): 827-828 (1968).
  • Badiey, M., B.G. Katsnelson, Y.-T. Lin, and J.F. Lynch, "Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves." J. Acoust. Soc. Am. 129(4): EL141-EL147 (2011).
  • Badiey, M., B.G. Katsnelson, J.F. Lynch, and S. Pereselkov, "Frequency dependence and intensity fluctuations due to shallow water internal waves." J. Acoust. Soc. Am. 122(2): 747-760 (2007).
  • Badiey, M., B.G. Katsnelson, J.F. Lynch, S. Pereselkov, and W.L. Siegmann, "Measurement and modeling of three-dimensional sound intensity variations due to shallow-water internal waves." J. Acoust. Soc. Am. 117(2): 613-625 (2005).
  • Apel, J.R., L.A. Ostrovsky, Y.A. Stepanyants, and J.F. Lynch, "Internal solitons in the ocean and their effect on underwater sound." J. Acoust. Soc. Am. 121(2): 695-722 (2007).
  • Apel, J.R., "A new analytical model for internal solitons in the ocean." Journal of Physical Oceanography. 33(11): 2247-2269 (2003).