박사

THEORY OF DISTURBANCE OBSERVERS : A NEW PERSPECTIVE ON INVERSE MODEL-BASED DESIGN

박경훈 2018년
논문상세정보
' THEORY OF DISTURBANCE OBSERVERS : A NEW PERSPECTIVE ON INVERSE MODEL-BASED DESIGN' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • cyber physical system
  • disturbance observer
  • internal model principle
  • nominal performance recovery
  • robust control
  • sampled-data system
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
4,718 0

0.0%

' THEORY OF DISTURBANCE OBSERVERS : A NEW PERSPECTIVE ON INVERSE MODEL-BASED DESIGN' 의 참고문헌

  • [ZD96] K. Zhou and J. C. Doyle. Robust and Optimal Control. New Jersey: Prentice-Hall, 1996.
  • [YLC12] J. Yang, S. Li, and W-H. Chen. Nonlinear disturbance observer-based control for multi-input multi-output nonlinear systems subject to mismatching condition. International Journal of Control, 85(8):1071– 1082, 2012.
  • [YKIH97] K. Yamada, S. Komada, M. Ishida, and T. Hori. Analysis and classical control design of servo system using high order disturbance observer. In Proceedings of International Conference on Industrial Electronics, Control, and Instrumentation, pages 4–9, 1997.
  • [YJ15] X. Yu and J. Jiang. A survey of fault-tolerant controllers based on safety-related issues. Annual Reviews in Control, 39:46–57, 2015.
  • [YG14] J. I. Yuz and G. C. Goodwin. Sampled-data Models for Linear and Nonlinear Systems. Springer, 2014.
  • [YCL+17] J. Yang, W-H. Chen, S. Li, L. Guo, and Y. Yan. Disturbance/uncertainty estimation and attenuation techniques in PMSM drives-A survey. IEEE Transactions on Industrial Electronics, 64(4):3273–3285, 2017.
  • [YCC05] K. Yang, Y. Choi, and W.K. Chung. On the tracking performance improvement of optical disk drive servo systems using error-based disturbance observer. IEEE Transactions on Industrial Electronics, 52(1):270–279, 2005.
  • [YCC03] K. Yang, Y. Choi, and W. K. Chung. Performance analysis of discrete-time disturbance observer for second-order systems. In Proceedings of IEEE Conference on Decision and Control, pages 4877– 4882, 2003.
  • [Xie10] W. Xie. High frequency measurement noise rejection based on disturbance observer. Journal of the Franklin Institute, 347(10):1825–1836, 2010.
  • [XH15] W. Xue and Y. Huang. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 58:133–154, 2015.
  • [WTS00] M.T. White, M. Tomizuka, and C. Smith. Improved track following in magnetic disk drives using a disturbance observer. IEEE/ASME Transactions on Mechatronics, 5(1):3–11, 2000.
  • [WT04] C-C. Wang and M. Tomizuka. Design of robustly stable disturbance observers based on closed loop consideration using H∞ optimization and its applications to motion control system. In Proceedings of American Control Conference, pages 3764–3769, 2004.
  • [WB92] B. Wie and D. S. Bernstein. Benchmark problems for robust control design. Journal of Guidance, Control, and Dynamics, 15(5):1057– 1059, 1992.
  • [Utk92] V. I. Utkin. Sliding Modes in Control and Optimization. Springer- Verlag, 1992.
  • [UH91] T. Umeno and Y. Hori. Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Transactions on Industrial Electronics, 38(5):363–368, 1991.
  • [Tan10] W. Tan. Unified tuning of PID load frequency controller for power systems via IMC. IEEE Transactions on Power Systems, 25(1):341– 350, 2010.
  • [TSSJ15b] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson. Secure control systems: A quantitative risk management approach. IEEE Control Systems, 35(1):24–45, 2015.
  • [TSSJ15a] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson. A secure control framework for resource-limited adversaries. Automatica, 51:135–148, 2015.
  • [TSSJ12] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson. Revealing stealthy attacks in control systems. In Proceedings of Annual Allerton Conference on Communication, Control, and Computing, pages 1806–1813, 2012.
  • [TLT00] A. Tesfaye, H. S. Lee, and M. Tomizuka. A sensitivity optimization approach to design of a disturbance observer in digital motion control systems. IEEE/ASME Transactions on Mechatronics, 5(1):32–38, 2000.
  • [TCJ02] G. Tao, S. Chen, and S.M. Joshi. An adaptive actuator failure compensation controller using output feedback. IEEE Transactions on Automatic Control, 47(3):506–511, 2002.
  • [SvD02] E. Schrijver and J. van Dijk. Disturbance observers for rigid mechanical systems: Equivalence, stability, and design. Journal of Dynamic Systems, Measurement, and Control, 124(4):539–548, 2002.
  • [Saf12] M. G. Safonov. Origins of robust cotrol: Early history and future speculations. Annual Review in Control, 36(2):173–181, 2012.
  • [SWY14] J. Su, L. Wang, and J. N. Yun. A design of disturbance observer in standard ⟨ control framework. International Journal of Robust and Nonlinear Control, 25(16):2894–2910, 2014.
  • [SPJ+16] H. Shim, G. Park, Y. Joo, J. Back, and N. H. Jo. Yet another tutorial of disturbance observer: Robust stabilization and recovery of nominal performance. Control Theory Technology, 14(3):237–249, 2016.
  • [SO15] E. Sariyildiz and K. Ohnishi. Stability and robustness of disturbanceobserver- based motion control systems. IEEE Transactions on Industrial Electronics, 62(1):414–422, 2015.
  • [SO13b] E. Sariyildiz and K. Ohnishi. A guide to design disturbance observer. Journal of Dynamic Systems, Measurement, and Control, 136(2):021011, 2013.
  • [SO13a] E. Sariyildiz and K. Ohnishi. Bandwidth constraints of disturbance observer in the presence of real parametric uncertainties. European Journal of Control, 19(3):199–205, 2013.
  • [SO12] E. Sariyildiz and K. Ohnishi. Robust stability and performance analysis of the control systems with higher order disturbance observer: Frequency approach. In Proceedings of International Conference on Human System Interactions, pages 67–74, 2012.
  • [SNP+17] Y. Shoukry, P. Nuzzo, A. Puggelli, A. L. Sangiovanni-Vincentelli, S. A. Seshia, and P. Tabuada. Secure state estimation for cyberphysical systems under sensor attacks: A satisfiability modulo theory approach. IEEE Transactions on Automatic Control, 62(10):4917– 4932, 2017.
  • [SJ09] H. Shim and N. H. Jo. An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer. Automatica, 45(1):296–299, 2009.
  • [SJ07] H. Shim and Y. Joo. State space analysis of disturbance observer and a robust stability condition. In Proceedings of IEEE Conference on Decision and Control, pages 2193–2198, 2007.
  • [SI00] A. Serrani and A. Isidori. Global robust output regulation for a class of nonlinear systems. Systems & Control Letters, 39(2):133–139, 2000.
  • [SEFL14] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant. Sliding Mode Control and Observation. Birkh user, 2014.
  • [Rid12] T. Rid. Cyber war will not take place. Journal of Strategic Studies, 35(1):5–32, 2012.
  • [RDC04] J. R. Ryoo, T-Y. Doh, and M. J. Chung. Robust disturbance observer for the track-following control system of an optical disk drive. Control Engineering Practice, 12(5):577–585, 2004.
  • [PVM90] J.A. Profeta, W.G. Vogt, and M.H. Mickle. Disturbance estimation and compensation in linear systems. IEEE Transactions on Aerospace and Electronic Systems, 26(2):225–231, 1990.
  • [PT14] I. Petersen and R. Tempo. Robust control of uncertain systems: Classical results and recent developments. Automatica, 50(5):1315– 1335, 2014.
  • [PS] G. Park and H. Shim. Guaranteeing almost fault-free tracking performance from transient to steady-state: A disturbance observer approach. under review, Science China Information Sciences.
  • [PSL+16] G. Park, H. Shim, C. Lee, Y. Eun, and K. H. Johansson. When adversary encounters uncertain cyber-physical systems: Robust zeroBIBLIOGRAPHY dynamics attack with disclosure resources. In Proceedings of IEEE Conference on Decision and Control, pages 5085–5090, 2016.
  • [PSJ] G. Park, H. Shim, and Y. Joo. Recovering nominal tracking performance in asymptotic sense for uncertain linear systems. under review, SIAM Journal on Control and Optimization.
  • [PS15] G. Park and H. Shim. A generalized framework for robust stability analysis of discrete-time disturbance observer for sampled-data systems: A fast sampling approach. In Proceedings of International Conference on Control, Automation and Systems, pages 295–300, 2015.
  • [PN07] C. L. Phillips and H. T. Nagle. Digital Control System Analysis and Design. Prentice-Hall, 2007.
  • [PLS+] G. Park, C. Lee, H. Shim, Y. Eun, and K. H. Johansson. Stealthy adversaries against uncertain cyber-physical systems: Threat of robust zero-dynamics attack. under review, IEEE Transactions on Automatic Control.
  • [PK17] G. Park and H. Kim. Adaptive rejection to nominal response for uncertain mechanical systems and its application to optical disk drive. IEEE Transactions on Industrial Electronics, 2017. available on-line.
  • [PJSB12] G. Park, Y. Joo, H. Shim, and J. Back. Rejection of polynomial-intime disturbances via disturbance observer with guaranteed robust stability. In Proceedings of IEEE Conference on Decision and Control, pages 949–954, 2012.
  • [PJLS15] G. Park, Y. Joo, C. Lee, and H. Shim. On robust stability of disturbance observer for sampled-data systems under fast sampling: An almost necessary and sufficient condition. In Proceedings of IEEE Conference on Decision and Control, pages 7536–7541, 2015.
  • [PDB13] F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identification in cyber-physical systems. IEEE Transactions on Automatic Control, 58(11):2715–2729, 2013.
  • [OSM96] K. Ohnishi, M. Shibata, and T. Murakami. Motion control for advanced mechatronics. IEEE/ASME Transactions on Mechatronics, 1(1):56–67, 1996.
  • [OMI+06] K. Ohishi, T. Miyazaki, K. Inomata, H. Yanagisawa, D. Koide, and H. Tokumaru. Robust tracking servo system considering force disturbance for the optical disk recording system. IEEE Transactions on Industrial Electronics, 53(3):838–847, 2006.
  • [OC99] Y. Oh and W. K. Chung. Disturbance-observer-based motion control of redundant manipulators using inertially decoupled dynamics. IEEE/ASME Transactions on Mechatronics, 4(2):133–146, 1999.
  • [NOM87] M. Nakao, K. Ohnishi, and K. Miyachi. A robust decentralized joint control based on interference estimation. In Proceedings of IEEE International Conference on Robotics and Automation, pages 326– 331, 1987.
  • [MS09] Y. Mo and B. Sinopoli. Secure control against replay attacks. In Proceedings of Annual Allerton Conference on Communication, Control, and Computing, pages 911–918, 2009.
  • [MMT17] A. Mohammadi, H. J. Marquez, and M. Tavakoli. Nonlinear disturbance observers: Design and applications to euler-lagrange systems. IEEE Control Systems, 37(4):50–72, 2017.
  • [Lu09] Y-S. Lu. Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives. IEEE Transactions on Industrial Electronics, 56(9):3743–3750, 2009.
  • [Lee08] E. A. Lee. Cyber physical systems: Design challenges. In Proceedings of IEEE International Symposium on Object and Component- Oriented Real-Time Distributed Computing, pages 363–369, 2008.
  • [LYCC14] S. Li, J. Yang, W. H. Chen, and X. Chen. Disturbance Observer-based Control: Methods and Applications. CRC Press, 2014.
  • [LY13] S. Li and J. Yang. Robust autopilot design for bank-to-turn missiles using disturbance observers. IEEE Transactions on Aerospace and Electronic Systems, 49(1):558–579, 2013.
  • [LWLW17] C. Liu, J. Wu, C. Long, and Y. Wang. Dynamic state recovery for cyber-physical systems under switching location attacks. IEEE Transactions on Control of Network Systems, 4(1):14–22, 2017.
  • [LSE15] C. Lee, H. Shim, and Y. Eun. Secure and robust state estimation under sensor attacks, measurement noises, and process disturbances: Observer-based combinatorial approach. In Proceedings of European Control Conference, pages 1872–1877, 2015.
  • [LMK16] J. Lee, R. Mukherjee, and H. K. Khalil. Output feedback performance recovery in the presence of uncertainties. Systtem & Control Letters, 90:31–37, 2016.
  • [LLC+17] D-Y. Li, P. Li, W-C. Cai, Y-D. Song, and H-J. Chen. Adaptive fault tolerant control of wind turbines with guaranteed transient performance considering active power control of wind farms. IEEE Transactions on Industrial Electronics, 2017. available on-line.
  • [LJS12] C. Lee, Y. Joo, and H. Shim. Analysis of discrete-time disturbance observer and a new q-filter design using delay function. In Proceedings of International Conference on Control, Automation and Systems, pages 556–561, 2012.
  • [LBK15] J. Lee, B. Bagheri, and H-A. Kao. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3:18–23, 2015.
  • [Kwa93] H. Kwakernaak. Robust control and H∞-optimization-Tutorial paper. Automatica, 29(2):255–273, 1993.
  • [Kun94] P. Kundur. Power System Stability and Control. McGraw-Hill, 1994.
  • [Kim05] K-S. Kim. Analysis of optical data storage systems—Tracking performance with eccentricity. IEEE Transactions on Industrial Electronics, 52(4):1056–1062, 2005.
  • [Kha96] H. K. Khalil. Nonlinear Systems. New Jersey: Prentice-Hall, 3rd edition, 1996.
  • [KT13] K. Kong and M. Tomizuka. Nominal model manipulation for enhancement of stability robustness for disturbance observer-based control systems. Proceedings of International Journal of Control, Automation and Systems, 11(1):12–20, 2013.
  • [KSJ14] H. Kim, H. Shim, and N. H. Jo. Adaptive add-on output regulator for rejection of sinusoidal disturbances and application to optical disc drives. IEEE Transactions on Industrial Electronics, 61(10):5490– 5499, 2014.
  • [KRK10] K-S. Kim, K-H. Rew, and S. Kim. Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Transactions on Automatic Control, 55(8):1905–1911, 2010.
  • [KR13] K-S. Kim and K-H. Rew. Reduced order disturbance observer for discrete-time linear systems. Automatica, 49(4):968–975, 2013.
  • [KPSJ16] H. Kim, G. Park, H. Shim, and N. H. Jo. Arbitrarily large gain/phase margin can be achieved by DOB-based controller. In Proceedings of International Conference on Control, Automation and Systems, pages 447–450, 2016.
  • [KPSE16] J. Kim, G. Park, H. Shim, and Y. Eun. Zero-stealthy attack for sampled-data control systems: The case of faster actuation than sensing. In Proceedings of IEEE Conference on Decision and Control, 2016.
  • [KKO99] P. Kokotovic, H. K. Khalil, and J. O’reilly. Singular perturbation methods in control: Analysis and design. Society for Industrial and Applied Mathematics, 1999.
  • [KKO07] H. Kobayashi, S. Katsura, and K. Ohnishi. An analysis of parameter variations of disturbance observer for motion control. IEEE Transactions on Industrial Electronics, 54(6):3413–3421, 2007.
  • [KK99] C. J. Kempf and S. Kobayashi. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology, 7(5):513–526, 1999.
  • [KC03] B. K. Kim and W. K. Chung. Advanced disturbance observer design for mechanical positioning systems. IEEE Transactions on Industrial Electronics, 50(6):1207–1216, 2003.
  • [KBP14] J-S. Kim, J. Back, and G. Park. Design of Q-filters for disturbance observers via BMI approach. In Proceedings of International Conference on Control, Automation, and Systems, pages 1197–1200, 2014.
  • [Joh76] C.D. Johnson. Theory of disturbance-accommodating controllers. In Control and Dynamic Systems, pages 387–489. Elsevier, 1976.
  • [Joh71] C. Johnson. Accomodation of external disturbances in linear regulator and servomechanism problems. IEEE Transactions on Automatic Control, 16(6):635–644, 1971.
  • [Joh08] C. D. Johnson. Real-time disturbance-observers: Origin and evolution of the idea - Part 1: The early years. In Proceedings of Southeastern Symposium on System Theory, pages 88–91, 2008.
  • [JPBS16] Y. Joo, G. Park, J. Back, and H. Shim. Embedding internal model in disturbance observer with robust stability. IEEE Transactions on Automatatic Control, 61(10):3128–3133, 2016.
  • [JJS14] N. H. Jo, Y. Joo, and H. Shim. A study of disturbance observers with unknown relative degree of the plant. Automatica, 50(6):1730–1734, 2014.
  • [JF13] T. A. Johansen and T. I. Fossen. Control allocation–A survey. Automatica, 49(5):1087–1103, 2013.
  • [JD99] Q. Jou and S. Devasia. Preview-based stable-inversion for output tracking. In Proceedings of American Control Conference, pages 3544–3548, 1999.
  • [IS96] P. A. Iaonnou and J. Sun. Robust Adaptive Control. Prentice-Hall, 1996.
  • [Hua04] J. Huang. Nonlinear Output Regulation: Theory and Applications. Society for Industrial and Applied Mathematics, 2004.
  • [Hop66] F. C. Hoppensteadt. Singular perturbations on the infinite interval. Transactions of the American Mathematical Society, 123(2):521–521, feb 1966.
  • [Han09] J. Han. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3):900–906, 2009.
  • [HZ16] A. Hoehn and P. Zhang. Detection of covert attacks and zero dynamics attacks in cyber-physical systems. In Proceedings of American Control Conference, pages 302–307, 2016.
  • [HYA93] T. Hagiwara, T. Yuasa, and M. Araki. Stability of the limiting zeros of sampled-data systems with zero-and first-order holds. International Journal of Control, 58(6):1325–1346, 1993.
  • [HMS96] L.R. Hunt, G. Meyer, and R. Su. Noncausal inverses for linear systems. IEEE Transactions on Automatic Control, 41(4):608–611, 1996.
  • [Gor09] S. Gorman. Electricity grid in U.S. penetrated by spies. Wall Street Journal, 2009.
  • [Gao14] Zhiqiang Gao. On the centrality of disturbance rejection in automatic control. ISA Transactions, 53(4):850–857, 2014.
  • [GY11] S. Gayaka and B. Yao. Accommodation of unknown actuator faults using output feedback-based adaptive robust control. International Journal of Adaptive Control and Signal Processing, 25(11):965–982, 2011.
  • [GSJS17] Z. Guo, D. Shi, K. H. Johansson, and L. Shi. Optimal linear cyberattack on remote state estimation. IEEE Transactions on Control of Network Systems, 4(1):4–13, 2017.
  • [GG01] B. A. Guvenc and L. Guvenc. Robustness of disturbance observers in the presence of structured real parametric uncertainty. In Proceedings of American Control Conference, pages 4222–4227, 2001.
  • [GC05] L. Guo and W-H. Chen. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3):109–125, 2005.
  • [Fla83] F. J. Flanigan. Complex Variables. Dover Publication, 1983.
  • [FW76] B. A. Francis and W. M. Wonham. The internal model principle of control theory. Automatica, 12(5):457–465, 1976.
  • [FTD14] H. Fawzi, P. Tabuada, and S. Diggavi. Secure estimation and control for cyber-physical systems under adversarial attacks. IEEE Transactions on Automatic Control, 59(6):1454–1467, 2014.
  • [FPW98] G. F. Franklin, J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems. Addison-wesley, 1998.
  • [FKS13] J. Fiala, M. Kocvara, and M. Stingl. PENLAB-A MATLAB solver for nonlinear semidefinite optimization. 2013.
  • [FK08] L. B. Freidovich and H. K. Khalil. Performance recovery of feedbacklinearization- based designs. IEEE Transactions on Automatic Control, 53(10):2324–2334, 2008.
  • [FG12] A. Feuer and G. C. Goodwin. Sampling in Digital Signal Processing and Control. Springer, 2012.
  • [Che04] W-H. Chen. Disturbance observer based control for nonlinear systems. IEEE/ASME Transactions on Mechatronics, 9(4):706–710, 2004.
  • [CYGL15] W-H. Chen, J. Yang, L. Guo, and S. Li. Disturbance-observer-based control and related methods–An overview. IEEE Transactions on Industrial Electronics, 63(2):1083–1095, 2015.
  • [CYC+03] Y. Choi, K. Yang, W. K. Chung, H. R. Kim, and I. H. Suh. On the robustness and performance of disturbance observers for second-order systems. IEEE Transactions on Automatic Control, 48(2):315–320, 2003.
  • [CT14] X. Chen and M. Tomizuka. Optimal decoupled disturbance observers for dual-input single-output systems. Journal of Dynamic Systems, Measurement, and Control, 136(5):051018, 2014.
  • [CT12] X. Chen and M. Tomizuka. A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives. IEEE Transactions on Control Systems Technology, 20(2):408–415, 2012.
  • [CM15] A. Chakravarty and C. Mahanta. Actuator fault-tolerant control (FTC) design with post-fault transient improvement for application to aircraft control. International Journal of Robust and Nonlinear Control, 26(10):2049–2074, 2015.
  • [CLTT17] S-L. Chen, X. Li, C. S. Teo, and K. K. Tan. Composite jerk feedforward and disturbance observer for robust tracking of flexible systems. Automatica, 80:253–260, 2017.
  • [CH08] C. Cao and N. Hovakimyan. Design and analysis of a novel L1 adaptive control architecture with guaranteed transient performance. IEEE Transactions on Automatic Control, 53(2):586–591, 2008.
  • [CCY96] Y. Choi, W. K. Chung, and Y. Youm. Disturbance observer in H∞ frameworks. In Proceedings of International Conference on Industrial Electronics, Control, and Instructution, pages 1394–1400, 1996.
  • [CCKH16] J. Choi, H. Choi, K. Kong, and D. J. Hyun. An adaptive disturbance observer for precision control of time-varying systems. In Proceedings of IFAC Symposium on Mechatronics Systems, volume 49, pages 240– 245, 2016.
  • [CBGO00] W-H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O’Reilly. A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 47(4):932–938, 2000.
  • [Bro01] R. Brockett. New issue in the mathematics of control. Mathematics Unlimited-2001 and beyond, pages 189–220, 2001.
  • [BZ03] L. J. Brown and Q. Zhang. Identification of periodic signals with uncertain frequency. IEEE Transactions on Signal Processing, 51(6):1538–1545, 2003.
  • [BT99] R. Bickel and M. Tomizuka. Passivity-based versus disturbance observer based robot control: Equivalence and stability. Journal of Dynamic Systems, Measurement, and Control, 121(1):41, 1999.
  • [BSP14] D. Bustan, S. K. H. Sani, and N. Pariz. Adaptive fault-tolerant spacecraft attitude control design with transient response control. IEEE/ASME Transactions on Mechatronics, 19(4):1404–1411, 2014.
  • [BS14] J. Back and H. Shim. Reduced-order implementation of disturbance observers for robust tracking of non-linear systems. IET Control Theory & Applications, 8(17):1940–1948, 2014.
  • [BS09] J. Back and H. Shim. An inner-loop controller guaranteeing robust transient performance for uncertain MIMO nonlinear systems. IEEE Transactions on Automatic Control, 54(7):1601–1607, 2009.
  • [BS08] J. Back and H. Shim. Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: A nonlinear version of disturbance observer. Automatica, 44(10):2528–2537, 2008.
  • [BHLO06] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton. HIFOO–a MATLAB package for fixed-order controller design and H∞ optimization. In Proceedings of IFAC Symposium on Robust Control Design, 2006.
  • [BFN+14] C. M. Belcastro, J. Foster, R. L. Newman, L. Groff, D. A. Crider, and D. H. Klyde. Preliminary analysis of aircraft loss of control accidents: Worst case precursor combinations and temporal sequencing. In Proceedings of AIAA Guidance, Navigation, and Control Conference, 2014.
  • [BCK95] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel. Robust Control: The Parametric Approach. Prentice-Hall, 1995.
  • [Ats10] T. Atsumi. Disturbance suppression beyond nyquist frequency in hard disk drives. Mechatronics, 20(1):67–73, 2010.
  • [ALWW16] H. An, J. Liu, C. Wang, and L. Wu. Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles. IEEE Transactions on Industrial Electronics, 63(5):3038–3049, 2016.
  • [ HS84] K. J. str m, P. Hagander, and J. Sternby. Zeros of sampled systems. Automatica, 20(1):31–38, 1984.