박사

Protease Activatable Peptide Depot for Photodynamic Therapy and Riboflavin-Induced Hyaluronic acid/Peptide Hydrogel for Bio-Applications

박성준 2018년
논문상세정보
' Protease Activatable Peptide Depot for Photodynamic Therapy and Riboflavin-Induced Hyaluronic acid/Peptide Hydrogel for Bio-Applications' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 화학공학과 관련공학
  • Activatable photosensitizer
  • Hyaluronic acid hydrogel
  • Internalizing RGD (iRGD)
  • Photo-crosslinking
  • Photodynamic therapy
  • Riboflavin
  • Subcutaneous depot
  • Tyrosine-rich peptides
  • Wound healing
  • sustained release
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,697 0

0.0%

' Protease Activatable Peptide Depot for Photodynamic Therapy and Riboflavin-Induced Hyaluronic acid/Peptide Hydrogel for Bio-Applications' 의 참고문헌

  • van Nostrum, C. F. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliver Rev 56, 9-16, doi:10.1016/j.addr.2003.07.013 (2004).
  • Zheng, G. et al. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. P Natl Acad Sci USA 104, 8989-8994, doi:10.1073/pnas.0611142104 (2007).
  • Yu, L. & Ding, J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37, 1473- 1481 (2008).
  • Wu, H. et al. Imaging Integrin αvβ3 and NRP-1 Positive Gliomas with a Novel Fluorine-18 Labeled RGD-ATWLPPR Heterodimeric Peptide Probe. Molecular Imaging and Biology 16, 781- 792, doi:10.1007/s11307-014-0761-0 (2014).
  • Wiig, M. E. et al. The early effect of high molecular weight hyaluronan (hyaluronic acid) on anterior cruciate ligament healing: an experimental study in rabbits. Journal of Orthopaedic Research 8, 425-434 (1990).
  • West, D. C., Hampson, I. N., Arnold, F. & Kumar, S. Angiogenesis induced by degradation products of hyaluronic acid. Science 228, 1324-1327 (1985).
  • Weigel, P. H., Fuller, G. M. & LeBoeuf, R. D. A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. Journal of theoretical biology 119, 219-234 (1986).
  • Verma, S., Watt, G. M., Mal, Z. & Hasan, T. Strategies for enhanced photodynamic therapy effects. Photochem Photobiol 83, 996-1005, doi:10.1111/j.1751-1097.2007.00166.x (2007).
  • Thorpe, P. E. et al. New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res 47, 5924-5931 (1987).
  • Tanihara, M., Suzuki, Y., Nishimura, Y., Suzuki, K. & Kakimaru, Y. Thrombin-sensitive peptide linkers for biological signal-responsive drug release systems. Peptides 19, 421-425 (1998).
  • Sugahara, K. N. et al. Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors. Cancer Cell 16, 510-520, doi:10.1016/j.ccr.2009.10.013 (2009).
  • Slevin, M., Kumar, S. & Gaffney, J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J Biol Chem 277, 41046-41059 (2002).
  • Sapna, G., Gokul, S. & Bagri‐Manjrekar, K. Matrix metalloproteinases and periodontal diseases. Oral diseases 20, 538-550 (2014).
  • Rheinwald, J. G. & Green, H. Serial Cultivation of Strains of Human Epidermal Keratinocytes - Formation of Keratinizing Colonies from Single Cells. Cell 6, 331-344, doi:Doi 10.1016/S0092- 8674(75)80001-8 (1975).
  • Ren, G., Dong, F., Wang, J. & Shi, P. The effect of hyaluronic acid external film on rats wound healing. Zhonghua zheng xing wai ke za zhi= Zhonghua zhengxing waike zazhi= Chinese journal of plastic surgery 20, 380-383 (2004).
  • Potter, W. R., Mang, T. S. & Dougherty, T. J. The Theory of Photodynamic Therapy Dosimetry - Consequences of Photodestruction of Sensitizer. Photochem Photobiol 46, 97-101, doi:DOI 10.1111/j.1751-1097.1987.tb04741.x (1987).
  • Porter, A. G. & J nicke, R. U. Emerging roles of caspase-3 in apoptosis. Cell death & differentiation 6 (1999).
  • Pickart, L., Vasquez-Soltero, J. M. & Margolina, A. GHK peptide as a natural modulator of multiple cellular pathways in skin regeneration. BioMed research international 2015 (2015).
  • Pickart, L. The human tri-peptide GHK and tissue remodeling. Journal of Biomaterials Science, Polymer Edition 19, 969-988 (2008).
  • Park, H., Choi, B., Hu, J. & Lee, M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta biomaterialia 9, 4779- 4786 (2013).
  • Orlowska, M. et al. Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: effects on quality of fructose solution, apple juice, and milk. Food and Bioprocess Technology 6, 1580-1592 (2013).
  • Musso, H. Phenol oxidation reactions. Angewandte Chemie International Edition in English 2, 723-735 (1963).
  • Mosinger, J. & Mička, Z. Quantum yields of singlet oxygen of metal complexes of mesotetrakis( sulphonatophenyl) porphine. Journal of Photochemistry and Photobiology A: Chemistry 107, 77-82, doi:http://dx.doi.org/10.1016/S1010-6030(96)04613-8 (1997).
  • Morgan, D. Wound management products in the drug tariff. Pharmaceutical journal 263, 820-825 (1999).
  • Mason, S. D. & Joyce, J. A. Proteolytic networks in cancer. Trends Cell Biol 21, 228-237, doi:10.1016/j.tcb.2010.12.002 (2011).
  • Mang, T. S. et al. Photobleaching of Porphyrins Used in Photodynamic Therapy and Implications for Therapy. Photochem Photobiol 45, 501-506, doi:DOI 10.1111/j.1751-1097.1987.tb05409.x (1987).
  • Malemud, C. J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Frontiers in bioscience: a journal and virtual library 11, 1696-1701 (2006).
  • MacDonald, I. J. & Dougherty, T. J. Basic principles of photodynamic therapy. J Porphyr Phthalocya 5, 105-129, doi:DOI 10.1002/jpp.328 (2001).
  • Luo, Y., Kirker, K. R. & Prestwich, G. D. Crosslinked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69, 169-184 (2000).
  • Lim, C. K. et al. Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Lett 334, 176-187, doi:10.1016/j.canlet.2012.09.012 (2013).
  • Li, S.-Y. et al. Protease-activable cellpenetrating peptide–protoporphyrin conjugate for targeted photodynamic therapy in vivo. ACS applied materials & interfaces 7, 28319-28329 (2015).
  • Li, H. et al. A systematic review of matrix metalloproteinase 9 as a biomarker of survival in patients with osteosarcoma. Tumor Biology 35, 5487-5491 (2014).
  • Lesley, J., Hascall, V. C., Tammi, M. & Hyman, R. Hyaluronan binding by cell surface CD44. J Biol Chem 275, 26967-26975 (2000).
  • Kurisawa, M., Chung, J. E., Yang, Y. Y., Gao, S. J. & Uyama, H. Injectable biodegradable hydrogels composed of hyaluronic acid– tyramine conjugates for drug delivery and tissue engineering. Chem Commun, 4312-4314 (2005).
  • Kraljic, I., Mohsni, S. E. & Arvis, M. A GENERAL METHOD FOR THE IDENTIFICATION OF PRIMARY REACTIONS IN SENSITIZED PHOTOOXIDATIONS*. Photochem Photobiol 27, 531-537, doi:10.1111/j.1751-1097.1978.tb07642.x (1978).
  • Kogan, G., Šolt s, L., Stern, R. & Gemeiner, P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology letters 29, 17-25 (2007).
  • Kim, Y. O. et al. A tyrosine-rich peptide induced flower-like palladium nanostructure and its catalytic activity. Rsc Adv 5, 78026-78029, doi:10.1039/c5ra11817d (2015).
  • Kim, S.-h. & Chu, C.-C. Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers and Polymers 10, 14-20 (2009).
  • Kim, J. et al. Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels. Journal of Materials Science: Materials in Medicine 19, 3311-3318 (2008).
  • Kelbauskas, L. & Dietel, W. Internalization of Aggregated Photosensitizers by Tumor Cells: Subcellular Time-resolved Fluorescence Spectroscopy on Derivatives of Pyropheophorbide-a Ethers and Chlorin e6 under Femtosecond One- and Two-photon Excitation . Photochem Photobiol 76, 686-694, doi:10.1562/0031-8655(2002)0760686IOAPBT2.0.CO2 (2002).
  • Kang, Y.-A. et al. Copper–GHK increases integrin expression and p63 positivity by keratinocytes. Archives of dermatological research 301, 301-306 (2009).
  • Jang, H.-S. et al. Tyrosine-mediated twodimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat Commun 5, 3665 (2014).
  • Ikebe, M. et al. A hinge at the central helix of the regulatory light chain of myosin is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity. J Biol Chem 273, 17702-17707 (1998).
  • Ifkovits, J. L. & Burdick, J. A. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue engineering 13, 2369-2385 (2007).
  • Hersz nyi, L., Hritz, I., Lakatos, G., Varga, M. Z. & Tulassay, Z. The behavior of matrix metalloproteinases and their inhibitors in colorectal cancer. Int J Mol Sci 13, 13240- 13263 (2012).
  • Heo, J. et al. Riboflavin-induced photocrosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug delivery and translational research 6, 148-158 (2016).
  • Henderson, B. W. & Dougherty, T. J. How Does Photodynamic Therapy Work. Photochem Photobiol 55, 145-157, doi:DOI 10.1111/j.1751-1097.1992.tb04222.x (1992).
  • Greenwald, R. A. & Moy, W. W. Effect of oxygen‐derived free radicals on hyaluronic acid. Arthritis & Rheumatology 23, 455-463 (1980).
  • Gokhale, R. S. & Khosla, C. Role of linkers in communication between protein modules. Current opinion in chemical biology 4, 22-27 (2000).
  • George, R. A. & Heringa, J. An analysis of protein domain linkers: their classification and role in protein folding. Protein Engineering, Design and Selection 15, 871-879 (2002).
  • Fisher, A. M. R., Murphree, A. L. & Gomer, C. J. Clinical and Preclinical Photodynamic Therapy. Laser Surg Med 17, 2-31, doi:DOI 10.1002/lsm.1900170103 (1995).
  • Elvin, C. M. et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999-1002, doi:10.1038/nature04085 (2005).
  • Dougherty, T. J. et al. Photodynamic therapy. J Natl Cancer I 90, 889-905, doi:DOI 10.1093/jnci/90.12.889 (1998).
  • Dolmans, D. E. J. G. J., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat Rev Cancer 3, 380-387, doi:10.1038/nrc1071 (2003).
  • Depalma, R. L. et al. Characterization and quantitation of wound matrix in the fetal rabbit. Matrix 9, 224-231 (1989).
  • Deed, R. et al. Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. International journal of cancer 71, 251-256 (1997).
  • Dechert, T. A., Ducale, A. E., Ward, S. I. & Yager, D. R. Hyaluronan in human acute and chronic dermal wounds. Wound Repair Regen 14, 252-258, doi:10.1111/j.1743-6109.2006.00119.x (2006).
  • DeRosa, M. C. & Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coordin Chem Rev 233, 351-371, doi:Pii S0010-8545(02)00034-6 Doi 10.1016/S0010-8545(02)00034-6 (2002).
  • Davidson, J. M. et al. Hyaluronate derivatives and their application to wound healing: preliminary observations. Clinical materials 8, 171-177 (1991).
  • Correia, M., Neves-Petersen, M. T., Jeppesen, P. B., Gregersen, S. & Petersen, S. B. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis. Plos One 7, e50733 (2012).
  • Collins, M. N. & Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate polymers 92, 1262-1279 (2013).
  • Cohen, G. M. Caspases: the executioners of apoptosis. Biochem J 326, 1-16 (1997).
  • Clo, E., Snyder, J. W., Ogilby, P. R. & Gothelf, K. V. Control and selectivity of photosensitized singlet oxygen production: Challenges in complex biological systems. Chembiochem 8, 475-481, doi:10.1002/cbic.200600454 (2007).
  • Cho, H.-J. et al. Activatable iRGD-based peptide monolith: Targeting, internalization, and fluorescence activation for precise tumor imaging. Journal of Controlled Release 237, 177-184, doi:http://dx.doi.org/10.1016/j.jconrel.2016.06.032 (2016).
  • Chen, X., Bai, Y., Zaro, J. L. & Shen, W.-C. Design of an in vivo cleavable disulfide linker in recombinant fusion proteins. Biotechniques 49, 513 (2010).
  • Chen, X. Y., Zaro, J. L. & Shen, W. C. Fusion protein linkers: Property, design and functionality. Adv Drug Deliver Rev 65, 1357- 1369, doi:10.1016/j.addr.2012.09.039 (2013).
  • Chatterjee, D. K., Fong, L. S. & Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv Drug Deliver Rev 60, 1627-1637, doi:10.1016/j.addr.2008.08.003 (2008).
  • Busti, C., Falcinelli, E., Momi, S. & Gresele, P. Matrix metalloproteinases and peripheral arterial disease. Internal and emergency medicine 5, 13-25 (2010).
  • Bullok, K. & Piwnica-Worms, D. Synthesis and characterization of a small, membranepermeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. J Med Chem 48, 5404-5407 (2005).
  • Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annual review of cell and developmental biology 15, 269-290 (1999).
  • Brown, S. B., Brown, E. A. & Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5, 497-508, doi:Doi 10.1016/S1470-2045(04)01529-3 (2004).
  • Brown, J. The role of hyaluronic acid in wound healing’s proliferative phase. Journal of wound care 13, 48-51 (2004).
  • Bonnett, R. & Martinez, G. Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron 57, 9513-9547, doi:Doi 10.1016/S0040-4020(01)00952-8 (2001).
  • Boateng, J. S., Matthews, K. H., Stevens, H. N. E. & Eccleston, G. M. Wound healing dressings and drug delivery systems: A review. J Pharm Sci-Us 97, 2892-2923, doi:10.1002/jps.21210 (2008).
  • Bahney, C. S., Hsu, C.-W., Yoo, J. U., West, J. L. & Johnstone, B. A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. The FASEB Journal 25, 1486-1496 (2011).
  • Argos, P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211, 943-958 (1990).
  • Andley, U. P. & Chakrabarti, B. Role of singlet oxygen in the degradation of hyaluronic acid. Biochem Bioph Res Co 115, 894-901 (1983).
  • Amiram, M., Luginbuhl, K. M., Li, X., Feinglos, M. N. & Chilkoti, A. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection. J Control Release 172, 144-151, doi:10.1016/j.jconrel.2013.07.021 (2013).
  • Amiram, M., Luginbuhl, K. M., Li, X. H., Feinglos, M. N. & Chilkoti, A. Injectable proteaseoperated depots of glucagon-like peptide-1 provide extended and tunable glucose control. P Natl Acad Sci USA 110, 2792-2797, doi:10.1073/pnas.1214518110 (2013).
  • Amet, N., Lee, H.-F. & Shen, W.-C. Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharmaceutical research 26, 523 (2009).
  • Aimetti, A. A., Machen, A. J. & Anseth, K. S. Poly (ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzymeresponsive protein delivery. Biomaterials 30, 6048-6054 (2009).
  • Abatangelo, G., Martelli, M. & Vecchia, P. Healing of hyaluronic acid-enriched wounds: histological observations. Journal of Surgical Research 35, 410-416 (1983).