박사

Predictive Models for Blockchain, Cryptocurrency, and Derivatives Market

장희수 2018년
논문상세정보
' Predictive Models for Blockchain, Cryptocurrency, and Derivatives Market' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 제조공업
  • Bayesian neural networks
  • Markov chain Monte Carlo
  • financial market analysis
  • machine learning
  • time series analysis
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,083 0

0.0%

' Predictive Models for Blockchain, Cryptocurrency, and Derivatives Market' 의 참고문헌

  • van Wijk, D. (2013). What can be expected from the bitcoin. Erasmus Uni- versiteit Rotterdam.
  • Yao, J., & Tan, C. L. (2000b). Time dependent directional profit model for financial time series forecasting. In Neural networks, 2000. ijcnn 2000, proceedings of the ieee-inns-enns international joint conference on (Vol. 5, pp. 291-296).
  • Yao, J., & Tan, C. L. (2000a). A case study on using neural networks to perform technical forecasting of forex. Neurocomputing, 34 (1), 79-98.
  • Yang, S.-H., & Lee, J. (2011). Predicting a distribution of implied volatilities for option pricing. Expert Systems with Applications, 38 (3), 1702-1708.
  • Xu, X., & Taylor, S. J. (1995). Conditional volatility and the informational efficiency of the phlx currency options market. Journal of Banking & Finance, 19 (5), 803-821.
  • Xiong, T., Bao, Y., & Hu, Z. (2014). Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowledge-Based Systems, 55 , 87-100.
  • Wang, P. (2011b). Pricing currency options with support vector regression and stochastic volatility model with jumps. Expert Systems with Applications, 38 (1), 1-7.
  • Wang, P. (2011a). Pricing currency options with support vector regression and stochastic volatility model with jumps. Expert Systems with Applications, 38 (1), 1-7.
  • Vapnik, V. (2013). The nature of statistical learning theory. Springer Science & Business Media.
  • Urquhart, A. (2016). The inefficiency of bitcoin. Economics Letters, 148 , 80-82.
  • Tsitsiklis, J. N., & Van Roy, B. (2001). Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks, 12 (4), 694-703.
  • Storvik, G. (2002). Particle filters for state-space models with the presence of unknown static parameters. IEEE Transactions on signal Processing, 50 (2), 281-289.
  • Schmitz, A., Wang, Z., & Kimn, J.-H. (2014). A jump diffusion model for agricultural commodities with bayesian analysis. Journal of Futures Markets, 34 (3), 235-260.
  • Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 .
  • Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning (Vol. 1). MIT press Cambridge.
  • Ranganath, R., Tran, D., & Blei, D. (2016). Hierarchical variational models. In International conference on machine learning (pp. 324-333).
  • Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 .
  • Poyiadjis, G., Doucet, A., & Singh, S. S. (2011). Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika, 98 (1), 65-80.
  • Patricia, N., & Caputo, B. (2014). Learning to learn, from transfer learning to domain adaptation: A unifying perspective. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 1442-1449).
  • Park, H., & Lee, J. (2012). Forecasting nonnegative option price distributions using bayesian kernel methods. Expert Systems with Applications, 39 (18), 13243-13252.
  • Papaspiliopoulos, O., Roberts, G. O., & Sk ld, M. (2007). A general framework for the parametrization of hierarchical models. Statistical Science, 59-73.
  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22 (10), 1345–1359.
  • Nualart, D., Schoutens, W., et al. (2001). Backward stochastic differential equations and feynman-kac formula for levy processes, with applications in finance. Bernoulli , 7 (5), 761-776.
  • Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and cryptocurrency technologies: A comprehensive introduction. Princeton University Press.
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
  • Nadarajah, S., & Chu, J. (2017). On the inefficiency of bitcoin. Economics Letters, 150 , 6-9.
  • Murphy, K.P. (2012), Machine Learning: A Probabilistic Perspective. MIT press
  • Minsky, M., & Papert, S. (1969). Perceptrons.
  • Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. arXiv preprint arXiv:1701.04722 .
  • Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of financial economics, 3 (1-2), 125-144.
  • McNally, S. (2016). Predicting the price of bitcoin using machine learning (Unpublished doctoral dissertation). Dublin, National College of Ireland.
  • Malliaris, M., & Salchenberger, L. (1996). Using neural networks to forecast the s&p 100 implied volatility. Neurocomputing, 10 (2), 183-195.
  • Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2015). Adversarial autoencoders. arXiv preprint arXiv:1511.05644 .
  • Madan, I., Saluja, S., & Zhao, A. (2015). Automated bitcoin trading via machine learning algorithms. nd.
  • Madan, D. B., Carr, P. P., & Chang, E. C. (1998). The variance gamma process and option pricing. Review of Finance, 2 (1), 79-105.
  • Madan, D. B., & Seneta, E. (1990). The variance gamma (vg) model for share market returns. Journal of business, 511-524.
  • MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.
  • MacKay, D. J. (1992). A practical bayesian framework for backpropagation networks. Neural computation, 4 (3), 448-472.
  • Maale, L., Snderby, C. K., Snderby, S. K., & Winther, O. (2016). Auxiliary deep generative models. arXiv preprint arXiv:1602.05473 .
  • Longstaff, F. A., & Schwartz, E. S. (2001). Valuing american options by simulation: a simple least-squares approach. The review of financial studies, 14 (1), 113-147.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  • Lattin, J. M., Carroll, J. D., & Green, P. E. (2003). Analyzing multivariate data. Thomson Brooks/Cole Pacific Grove, CA.
  • Lajbcygier, P. R., & Connor, J. T. (1997). Improved option pricing using artificial neural networks and bootstrap methods. International journal of neural systems, 8 (04), 457-471.
  • Kwon, Y., & Lee, Y. (2011). A second-order tridiagonal method for american options under jump-diffusion models. SIAM Journal on Scientific Computing, 33 (4), 1860-1872.
  • Kristoufek, L. (2015). What are the main drivers of the bitcoin price? evidence from wavelet coherence analysis. PloS one, 10 (4), e0123923.
  • Kristoufek, L. (2013). Bitcoin meets google trends and wikipedia: Quantifying the relationship between phenomena of the internet era. Scientific reports, 3 , 3415.
  • Kou, S. G., & Wang, H. (2004). Option pricing under a double exponential jump diffusion model. Management science, 50 (9), 1178-1192.
  • Kou, S. G. (2002). A jump-diffusion model for option pricing. Management science, 48 (8), 1086-1101.
  • Kingman, J. (1970). Information theory and statistics. by kullback solomon. pp. 399. 28s. 6d. 1968.(dover.). The Mathematical Gazette, 54 (387), 90-90.
  • Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semisupervised learning with deep generative models. In Advances in neural information processing systems (pp. 3581-3589).
  • Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 .
  • Kim, S. (2009). The performance of traders' rules in options market. Journal of Futures Markets, 29 (11), 999-1020.
  • Kazem, A., Sharifi, E., Hussain, F. K., Saberi, M. & Hussain, O. K. (2013). Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Applied soft computing, 13(2), 947-958.
  • Katsiampa, P. (2017). Volatility estimation for bitcoin: A comparison of garch models. Economics Letters, 158 , 3-6.
  • Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49 (3), 851-889.
  • Heston, S. L., & Nandi, S. (2000). A closed-form garch option valuation model. The Review of Financial Studies, 13 (3), 585-625.
  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The review of financial studies, 6 (2), 327-343.
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). Overview of supervised learning. In The elements of statistical learning (pp. 9-41). Springer.
  • Han, J., Zhang, X.-P., & Wang, F. (2016). Gaussian process regression stochastic volatility model for financial time series. IEEE Journal of Selected Topics in Signal Processing, 10 (6), 1015-1028.
  • Han, G.-S., & Lee, J. (2008). Prediction of pricing and hedging errors for equity linked warrants with gaussian process models. Expert Systems with Applications, 35 (1), 515-523.
  • Gujarati, D. N., & Porter, D. C. (1999). Essentials of econometrics.
  • Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on (pp. 6645-6649).
  • Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect inference. Journal of applied econometrics, 8 (S1).
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).
  • Gong, B., Shi, Y., Sha, F., & Grauman, K. (2012). Geodesic flow kernel for unsupervised domain adaptation. In Computer vision and pattern recognition (cvpr), 2012 ieee conference on (pp. 2066-2073).
  • Gilks, W. R., & Berzuini, C. (2001). Following a moving target?monte carlo inference for dynamic bayesian models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63 (1), 127-146.
  • Gers, F. A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: Continual prediction with lstm.
  • Gencay, R., & Qi, M. (2001b). Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Transactions on Neural Networks, 12 (4), 726-734.
  • Gencay, R., & Qi, M. (2001a). Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Transactions on Neural Networks, 12 (4), 726-734.
  • Gatheral, J. (2011). The volatility surface: a practitioner's guide (Vol. 357). John Wiley & Sons.
  • Fulop, A., & Li, J. (2013). Efficient learning via simulation: A marginalized resample-move approach. Journal of Econometrics, 176 (2), 146-161.
  • Fruhwirth-Schnatter, S. (1995). Bayesian model discrimination and bayes factors for linear gaussian state space models. Journal of the Royal Statistical Society. Series B (Methodological), 237-246.
  • Foresee, F. D., & Hagan, M. T. (1997). Gauss-newton approximation to bayesian learning. In Neural networks, 1997., international conference on (Vol. 3, pp. 1930-1935).
  • Fengler, M. R. (2009). Arbitrage-free smoothing of the implied volatility surface. Quantitative Finance, 9 (4), 417-428.
  • Fengler, M. R. (2006). Semiparametric modeling of implied volatility. Springer Science & Business Media.
  • Fearnhead, P. (2002). Markov chain monte carlo, sufficient statistics, and particle filters. Journal of Computational and Graphical Statistics, 11 (4), 848-862.
  • Fang, F., & Oosterlee, C. W. (2009). Pricing early-exercise and discrete barrier options by fourier-cosine series expansions. Numerische Mathematik, 114 (1), 27.
  • Fang, F., & Oosterlee, C. W. (2008). A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Sci- entific Computing, 31 (2), 826-848.
  • Ederington, L. H., & Guan, W. (2002). Is implied volatility an informationally efficient and effective predictor of future volatility?
  • Eberlein, E., Keller, U., et al. (1995). Hyperbolic distributions in finance. Bernoulli , 1 (3), 281-299.
  • Dyhrberg, A. H. (2016b). Hedging capabilities of bitcoin. is it the virtual gold? Finance Research Letters, 16 , 139-144.
  • Dyhrberg, A. H. (2016a). Bitcoin, gold and the dollar-a garch volatility analysis. Finance Research Letters, 16 , 85-92.
  • Durbin, J., & Koopman, S. J. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89 (3), 603-616.
  • Dupire, B. (1997). Pricing and hedging with smiles. Mathematics of derivative securities, 1 (1), 103-111.
  • Dumas, B., Fleming, J., & Whaley, R. E. (1998). Implied volatility functions: Empirical tests. The Journal of Finance, 53 (6), 2059-2106.
  • Doucet, A., & Johansen, A. M. (2009). A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of nonlinear filtering, 12 (656- 704), 3.
  • Clement, E., Lamberton, D., & Protter, P. (2002). An analysis of a least squares regression method for american option pricing. Finance and Stochastics, 6 (4), 449-471.
  • Ciaian, P., Rajcaniova, M., & Kancs, d. (2016). The economics of bitcoin price formation. Applied Economics, 48 (19), 1799-1815.
  • Chu, J., Nadarajah, S., & Chan, S. (2015). Statistical analysis of the exchange rate of bitcoin. PloS one, 10 (7), e0133678.
  • Christoffersen, P., & Jacobs, K. (2004). Which garch model for option valuation? Management science, 50 (9), 1204-1221.
  • Chopin, N., Jacob, P. E., & Papaspiliopoulos, O. (2013). Smc2: an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75 (3), 397- 426.
  • Chopin, N. (2002). A sequential particle filter method for static models. Biometrika, 89 (3), 539-552.
  • Cho, K., Van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 .
  • Cheah, E.-T., & Fry, J. (2015). Speculative bubbles in bitcoin markets? an empirical investigation into the fundamental value of bitcoin. Economics Letters, 130 , 32-36.
  • Carter, C. K., & Kohn, R. (1994). On gibbs sampling for state space models. Biometrika, 81 (3), 541-553.
  • Carr, P., Geman, H., Madan, D. B., & Yor, M. (2003). Stochastic volatility for levy processes. Mathematical Finance, 13 (3), 345-382.
  • Burden, F., & Winkler, D. (2009). Bayesian regularization of neural networks. Artificial Neural Networks: Methods and Applications, 23-42.
  • Brandt, M. W., &Wu, T. (2002). Cross-sectional tests of deterministic volatility functions. Journal of Empirical Finance, 9 (5), 525-550.
  • Bouri, E., Molnar, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of bitcoin: Is it really more than a diversifier? Finance Research Letters, 20 , 192-198.
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31 (3), 307-327.
  • Blair, B. J., Poon, S.-H., & Taylor, S. J. (2010). Forecasting s&p 100 volatility: the incremental information content of implied volatilities and highfrequency index returns. In Handbook of quantitative finance and risk management (pp. 1333-1344). Springer.
  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
  • Berkowitz, J., et al. (2010). On justifications for the ad hoc black-scholes method of option pricing. Studies in Nonlinear Dynamics and Economet- rics, 14 (1), 1-27.
  • Benko, M., Fengler, M., H rdle, W., & Kopa, M. (2007). On extracting information implied in options. Computational statistics, 22 (4), 543-553.
  • Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. Machine learning, 79 (1), 151–175.
  • Barro, R. J. (1979). Money and the price level under the gold standard. The Economic Journal, 89 (353), 13-33.
  • Barndorff-Nielsen, O. E. (1997). Processes of normal inverse gaussian type. Finance and stochastics, 2 (1), 41-68.
  • Bariviera, A. F., Basgall, M. J., Hasperue, W., & Naiouf, M. (2017). Some stylized facts of the bitcoin market. Physica A: Statistical Mechanics and its Applications, 484 , 82-90.
  • Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. The Journal of Finance, 52 (5), 2003-2049.
  • BARONE-ADESI, G., & Whaley, R. E. (1987). Efficient analytic approximation of american option values. The Journal of Finance, 42 (2), 301-320.
  • Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle markov chain monte carlo methods. Journal of the Royal Statistical Society: Series B (Statis- tical Methodology), 72 (3), 269-342.
  • AitSahlia, F., Goswami, M., & Guha, S. (2010). American option pricing under stochastic volatility: an empirical evaluation. Computational Management Science, 7 (2), 189-206.