박사

Flexural strength of 3D printing-manufactured three-unit resin prostheses

박상모 2018년
논문상세정보
' Flexural strength of 3D printing-manufactured three-unit resin prostheses' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 외과의 다방면
  • 3d print
  • additive manufacturing
  • flexural strength
  • three-unit resin prosthesis
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
2,368 0

0.0%

' Flexural strength of 3D printing-manufactured three-unit resin prostheses' 의 참고문헌

  • Winfree, A. T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967).
  • Wang, Z., and Ding, X.: Uniqueness of generalized solution for the Cauchy problem of transportation equations. Acta Mathemtica Scientia 17, 341–352 (1997).
  • Wang, Z., and Ding, X.: Existence and uniqueness of discontinuous solutions defined by Lebesgue-Stieltjes integral. Science in China 39, 807–819 (1996).
  • Wang, Z., Huang, F., and Ding, X.: On the Cauchy problem of transportation equation. Acta Math. Appl. Sinica 13, 113–122 (1997).
  • Vicsek, T., Czir ok, A., Ben-Jacob, E., Cohen, I., and Schochet, O.: Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75, 1226–1229 (1995).
  • Topaz, C. M. and Bertozzi, A. L.: Swarming patterns in a twodimensional kinematic model for biological groups SIAM J. Appl. Math. 65, 152–174 (2004).
  • Toner, J. and Tu, Y.: Flocks, herds, and Schools: A quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998).
  • Shen, J.: Cucker-Smale flocking under hierarchical leadership. SIAM J. Appl. Math. 68, 694–719 (2017).
  • Sepulchre, R., Paley, D., and Leonard, N.: Stabilization of collective motion of self-propelled particles. Proc. 16th Int. Symp. Mathematical Theory of Networks and Systems (Leuven, Belgium, July 2004) Available at cdcl.umd.edu/papers/mtns04.pdf.
  • Rykov, Y., Sinai, Y., and Weinan, E.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177, 349–380 (1996).
  • Peszek, J.: Existence of piecewise weak solutions of discrete Cucker- Smale flocking model with a singular communication weight. J. Differential Equations,257, 2900–2925 (2015).
  • Perea, L., Elosegui, P., and G omez, G.: Extension of the Cucker-Smale control law to space flight formation. J. Guidance Control Dynamics 32, 526–536 (2009).
  • Park, J., Kim, H., and Ha, S.-Y.: Cucker-Smale flocking with interparticle bonding forces. IEEE Tran. Automat. Control 55, 2617–2623 (2010).
  • Paley, D. A., Leonard, N. E., and Sepulchre, R.: Stabilization of symmetric formations to motion around convex loops. Syst. Control Lett. 57, 209–215 (2008).
  • Paley, D. A., Leonard, N. E., Sepulchre, R., Grunbaum, D., and Parrish, J. K.: Oscillator models and collective motion. IEEE Control Sys. 27, 89–105 (2007).
  • Natile, L. and Savar e, G.: A Wasserstein approach to the onedimensional sticky particle system. SIAM. J. Math. Anal. 41, 1340– 1365 (2009).
  • Motsch, S. and Tadmor, E.: A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys. 144, 923–947 (2011).
  • Mikhailov, A. S. and Zanette, D. H.: Noise-induced breakdown of coherent collective motion in swarms, Phys. Rev. E 60, 4571-4575 (1999).
  • Majda, A.: Compressible fluid flow and systems of conservation laws in several space dimensions. Berlin, Heidelberg, New York: Springer (1984).
  • Lohe, M. A.: Quantum synchronization over quantum networks, J. Phys. A: Math. Theor. 43, 465301 (2010).
  • Lohe, M. A.: Non-abelian Kuramoto model and synchronization. J. Phys. A: Math. Theor. 42, 395101-395126 (2009).
  • Li, Z. and Xue, X.: Cucker-Smale flocking under rooted leadership with fixed and switching topologies. SIAM J. Appl. Math. 70, 3156–3174 (2010).
  • Leonard, N. E., Paley, D. A., Lekien, F., Sepulchre, R., Fratantoni, D. M., and Davis, R. E.: Collective motion, sensor networks and ocean sampling. Proc. IEEE 95, 48–74 (2007).
  • Kuramoto, Y.: Self-entralnment of a population of coupled non-linear oscillators. Lecture Notes in Theoretical Physics. 30, 420–423 (1975).
  • Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lecture Notes Theor. Phys. 30, 420 (1975).
  • Kuramoto, Y.: Chemical Oscillations. Waves and Turbulence, Berlin, Springer (1984).
  • Karper, T., Mellet, A., and Trivisa, K.: Hydrodynamic limit of the kinetic Cucker-Smale flocking model. Math. Models Methods Appl. Sci. 25, 131–163 (2015).
  • Karper, T., Mellet, A. and Trivisa, K.: Existence of Weak Solutions to Kinetic Flocking Models. SIAM J. Math. Anal. 45(1), 215–243 (2013).
  • Justh, E. and Krishnaprasad, P. A.: Steering laws and continuum models for planar formations. Proc. 42nd IEEE Conf. on Decision and Control, 3609–3614 (2003).
  • Justh, E. and Krishnaprasad, P. A.: Simple control law for UAV formation flying. Technical Report (2002).
  • Ha, S.-Y., Lee, K., and Levy, D.: Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system. Commun. Math. Sci. 7, 453– 469 (2009).
  • Ha, S.-Y., Ko, D., and Zhang, Y.: On the Critical coupling strength for the Cucker-Smale model with unit speed. Submitted to Discrete and Continuous Dynamical Systems-A.
  • Ha, S.-Y., Ko, D., and Zhang, Y.: Critical coupling strength of the Cucker-Smale model for flocking. Math. Models Methods Appl. Sci. 27, 1051 (2017).
  • Ha, S.-Y., Ko, D., Zhang, X., and Zhang, Y.: Time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles. Accepted in Journal of Mathematical Physics.
  • Ha, S.-Y., Ko, D., Zhang, X., and Zhang, Y.: Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinet. Relat. Mod., 10 (2017).
  • Ha, S.-Y., Kang, M.-J. and Kwon, B.: Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain. SIAM J. Math. Anal. 47(5), 3813–3831 (2015).
  • Ha, S.-Y., Kang, M.-J. and Kwon, B.: A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid. Math. Models Methods Appl. Sci. 24, 2311–2359 (2014).
  • Ha, S.-Y., Jeong, E., and Kang, M.-K.: Emergent behavior of a generalized Viscek-type flocking model. Nonlinearlity 23, 3139–3156 (2010).
  • Ha, S.-Y., Huang, F., and Wang, Y.: A global unique solvability of entropic weak solution to the one-dimensional pressureless Euler system with a flocking dissipation J. Differential Equations. 257, 1333–1371 (2014).
  • Ha, S.-Y., Ha, T., and Kim, J.: Asymptotic flocking dynamics for the Cucker-Smale model with the Rayleigh friction. J. Phys. A: Math. Theor. 43, 315201 (2010).
  • Ha, S.-Y. and Tadmor, D.: From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Mod. 1, 415–435 (2008).
  • Ha, S.-Y. and Slemrod, M.: Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system. J. Dyn. Diff. Equat. 22, 325–330 (2010).
  • Ha, S.-Y. and Liu, J.-G.: A simple proof of Cucker-Smale flocking dynamics and mean field limit. Commun. Math. Sci. 7, 297–325 (2009).
  • Frouvelle, A. and Liu J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44(2), 791–826, (2012).
  • Fornasier, M., Haskovec, J., and Toscani, G.: Fluid dynamic description of flocking via Povzner-Boltzmann equation. Phys. D 240, 21–31 (2011).
  • Erdmann, U., Ebeling, W., and Mikhailov, A.: Noise-induced transition from translational to rotational motion of swarms, Phys. Rev. E, 71, 051904 (2005).
  • Duan, R., Fornasier, M., and Toscani, G.: A kinetic flocking model with diffusion. Commun. Math. Phys. 300, 95–145 (2010).
  • Ding, Y. and Huang, F.: On a nonhomogenous system of pressureless flow. Quartly Appl. Math. 62, 509–528 (2004).
  • Degond, P., Liu, J.-G. and Motsch, S., and Panferov, V.: Hydrodynamic models of self-organized dynamics: Derivation and existence theory. Meth. Appl. Anal., 20(2), 89–114 (2013).
  • Degond, P. and Yang, T.: Diffusion in a continuum model of selfpropelled particles with alignment interaction. Math. Mod. Meth. Appl. Sci., 20, 1459–1490 (2010).
  • Degond, P. and Motsch, S.: Macroscopic limit of self-driven particles with orientation interaction. C.R. Math. Acad. Sci. Paris 345, 555– 560 (2007).
  • Degond, P. and Motsch, S.: Large-scale dynamics of the Persistent Turing Walker model of fish behavior. J. Stat. Phys. 131, 989–1022 (2008).
  • Degond, P. and Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Mod. Meth. Appl. Sci. 18, 1193– 1215 (2008).
  • Cucker, F. and Smale, S.: Emergent behavior in flocks. IEEE Trans. Automat. Control 52, 852–862 (2007).
  • Cucker, F. and Mordecki E.: Flocking in noisy environments. J. Math. Pures Appl. 89, 278–296 (2008).
  • Cucker, F. and Huepe, C.: Flocking with informed agents. Maths in Action 1, 1–25 (2008).
  • Cucker, F. and Dong, J.-G.: On the critical exponent for flocks under hierarchical leadership. Math. Models Methods Appl. Sci. 19, 1391– 1404 (2009).
  • Cucker, F. and Dong, J.-G.: Avoiding collisions in flocks. IEEE Trans. Autom. Control 55, 1238–1243 (2010).
  • Coutand, D. and Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Rational Mech. Anal. 206, 515–616 (2012).
  • Choi, S.-H. and Ha, S.-Y.: Emergence of flocking for a multi-agent system moving with constant speed. Commun. Math. Sci. 14, no. 4, 953–972 (2016).
  • Cho, J., Ha, S.-Y., Huang, F., Jin, C., and Ko., D.: Emergence of bicluster flocking for the Cucker-Smale model. Math. Models Methods Appl. Sci. 26, 1191 (2016).
  • Cho, J., Ha, S.-Y., Huang, F., Jin, C., and Ko., D.: Emergence of bi-cluster flocking for agent-based models with unit speed constraint. Anal. Appl. 14, 1–35 (2016).
  • Chat a e, H., Ginelli, F., Gr a egoire, G., Peruani, F., and Raynaud, F.: Modeling collective motion: variations on the Vicsek model. The European Physical Journal B, 64(3), 451-456 (2008).
  • Cavalletti, F., Sedjro, M., and Westdickenberg, M.: A simple proof of global existence for the 1 D pressureless gas dynamics equations. SIAM J. Math. Anal. 47, 66–79 (2015).
  • Carrillo, J. A., Klar, A., Martin, S., and Tiwari, S.: Self-propelled interacting particle systems with roosting force. Math. Mod. Meth. Appl. Sci. 20, 1533–1552 (2010).
  • Carrillo, J. A., Fornasier, M., Rosado, J., and Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42, 218–236 (2010).
  • Carrillo, J. A., D’Orsogna, M. R., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinetic Relat. Models 2, 363–378 (2009).
  • Carrillo, J. A., Choi, Y.-P., and Hauray, M.: Local well-posedness of the generalized Cucker-Smale model with singular kernels. ESIAM Proceedings and Surveys, 47, 17–35 (2014).
  • Canizo, J. A., Carrillo, J. A., and Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Mod. Meth. Appl. Sci. 21, 515–539 (2011).
  • Bressan, A. and Truyen, N.: Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinet.Relat.Models 7, 205– 218 (2014).
  • Brenier, Y. and Grenier, E.: Sticky particles and scalar conservation laws. SIAM. J. Num. Anal. 35, 2317–2328 (1998).
  • Bouchut, F.: On zero pressure gas dynamics. Advances in kinetic theory and computing. Series on Advances in Mathematics for Applied Sciences, World Scientific 22, 171–190 (1994).
  • Bouchut, F. and James, F.: One-dimensional transportation equations with discontinuous coefficients. Nonlinear Analysis TMA. 32, 891–933 (1998).
  • Bouchut, F. and James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. PDE. 24, 2173–2190 (1999).
  • Bolley, F., Canizo, J. A., and Carrillo, J. A.: Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Mod. Meth. Appl. Sci. 21, 2179–2210 (2011).
  • Bae., H.-O., Choi, Y.-P., Ha, S.-Y., and Kang, M.-J.: Global existence of strong solution for the Cucker-Smale-Navier-Stokes system. J. Diff. Equ. 257, 2225–2255 (2014).
  • Bae. H.-O., Choi, Y.-P., Ha, S.-Y., and Kang, M.-J.: Time-asymptotic interaction of flocking particles and incompressible viscous fluid. Nonlinearity 24, 1155 (2012).
  • Ahn, S., Choi, H., Ha, S.-Y., and Lee, H.: On the collision avoiding initial-configurations to the Cucker-Smale type flocking models. Comm. Math. Sci. 10, 625–643 (2012).
  • Ahn, S. and Ha, S.-Y.: Stochastic flocking dynamics of the Cucker- Smale model with multiplicative white noises. J. Math. Phys. 51, 103– 301 (2010).