박사

Development of fluorescent probes based on styryl dye and styryl BODIPY from focused libraries

이상욱 2018년
논문상세정보
' Development of fluorescent probes based on styryl dye and styryl BODIPY from focused libraries' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 화학과 응용과학
  • Drug delivery
  • Focused library
  • Styryl BODIPY
  • Styryl dye
  • Thymidine triphosphate
  • fluorescentprobe
  • hydrogen peroxide
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,554 0

0.0%

' Development of fluorescent probes based on styryl dye and styryl BODIPY from focused libraries' 의 참고문헌

  • von Heijne, G.; Steppuhn, J.; Herrmann, R. G., Domain structure of mitochondrial and chloroplast targeting peptides. European Journal of Biochemistry 1989, 180 (3), 535- 545.
  • https://www.cancer.gov/about-ancer/understanding/statistics Date : Nov. 30. 2017.
  • de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews 1997, 97 (5), 1515-1566.
  • Zwicker, V. E.; Liu, X.; Yuen, K. K. Y.; Jolliffe, K. A., Triazole–containing zinc(II)dipicolylamine-functionalised peptides as highly selective pyrophosphate sensors in physiological media. Supramolecular Chemistry 2016, 28 (1-2), 192-200.
  • Zhu, H.; Fan, J.; Du, J.; Peng, X., Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. Accounts of Chemical Research 2016, 49 (10), 2115- 2126.
  • Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R. P., A Stable Nonfluorescent Derivative of Resorufin for the Fluorometric Determination of Trace Hydrogen Peroxide: Applications in Detecting the Activity of Phagocyte NADPH Oxidase and Other Oxidases. Analytical Biochemistry 1997, 253 (2), 162-168.
  • Zheng, Y.-C.; Zheng, M.-L.; Chen, S.; Zhao, Z.-S.; Duan, X.-M., Biscarbazolylmethane-based cyanine: a two-photon excited fluorescent probe for DNA and selective cell imaging. Journal of Materials Chemistry B 2014, 2 (16), 2301-2310.
  • Zheng, M. M.; Zheng, L.; Zhang, P. Y.; Li, J. B.; Zhang, Y., Development of Bioorthogonal Reactions and Their Applications in Bioconjugation. Molecules 2015, 20 (2), 3190-3205.
  • Zhao, W.; Carreira, E. M., Conformationally Restricted Aza-Bodipy: A Highly Fluorescent, Stable, Near-Infrared-Absorbing Dye. Angewandte Chemie International Edition 2005, 44 (11), 1677-1679.
  • Zhao, C.; Zhang, Y.; Wang, X.; Cao, J., Development of BODIPY-based fluorescent DNA intercalating probes. Journal of Photochemistry and Photobiology A: Chemistry 2013, 264 (Supplement C), 41-47.
  • Zhang, X.; Chen, A.; Tsourkas, A. In Imaging RNA in Single Living Cells: Recent Advances and Future Outlook, Biomedical Optics and 3-D Imaging, Miami, Florida, 2012/04/28; Optical Society of America: Miami, Florida, 2012; p BM2A.2.
  • Zhai, D.; Lee, S.-C.; Vendrell, M.; Leong, L. P.; Chang, Y.-T., Synthesis of a Novel BODIPY Library and Its Application in the Discovery of a Fructose Sensor. ACS Combinatorial Science 2012, 14 (2), 81-84.
  • Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., A Selective Turn- On Fluorescent Sensor for Imaging Copper in Living Cells. Journal of the American Chemical Society 2006, 128 (1), 10-11.
  • Yuriy, S. M.; Alexey, V. S.; Alexander, S. T.; Evgeniy, V. R., Recent Advances of Individual BODIPY and BODIPY-Based Functional Materials in Medical Diagnostics and Treatment. Current Medicinal Chemistry 2017, 24 (25), 2745-2772.
  • Yun, S.-W.; Kang, N.-Y.; Park, S.-J.; Ha, H.-H.; Kim, Y. K.; Lee, J.-S.; Chang, Y.- T., Diversity Oriented Fluorescence Library Approach (DOFLA) for Live Cell Imaging Probe Development. Accounts of Chemical Research 2014, 47 (4), 1277-1286.
  • Yuan, M.; Li, Y.; Li, J.; Li, C.; Liu, X.; Lv, J.; Xu, J.; Liu, H.; Wang, S.; Zhu, D., A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Organic Letters 2007, 9 (12), 2313-2316.
  • Yu, C.; Xu, Y.; Jiao, L.; Zhou, J.; Wang, Z.; Hao, E., Isoindole-BODIPY Dyes as Red to Near-Infrared Fluorophores. Chemistry – A European Journal 2012, 18 (21), 6437- 6442.
  • Xu, Z.; Xu, L., Fluorescent probes for the selective detection of chemical species inside mitochondria. Chemical Communications 2016, 52 (6), 1094-1119.
  • Xu, W.; Ren, C.; Teoh, C. L.; Peng, J.; Gadre, S. H.; Rhee, H.-W.; Lee, C.-L. K.; Chang, Y.-T., An Artificial Tongue Fluorescent Sensor Array for Identification and Quantitation of Various Heavy Metal Ions. Analytical Chemistry 2014, 86 (17), 8763-8769.
  • Xu, J.; Zhang, Y.; Yu, H.; Gao, X.; Shao, S., Mitochondria-Targeted Fluorescent Probe for Imaging Hydrogen Peroxide in Living Cells. Analytical Chemistry 2016, 88 (2), 1455-1461.
  • Wu, Y.; Yeh, F. L.; Mao, F.; Chapman, E. R., Biophysical Characterization of Styryl Dye-Membrane Interactions. Biophysical Journal 97 (1), 101-109.
  • Wu, P.; Hou, X.; Xu, J.-J.; Chen, H.-Y., Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 2016, 8 (16), 8427-8442.
  • Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P., New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews 2011, 40 (7), 3483-3495.
  • Wu, J.-Z.; Yuan, L., Synthesis and DNA interaction studies of a binuclear ruthenium(II) complex with 2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10- phenanthroline as bridging and intercalating ligand. Journal of Inorganic Biochemistry 2004, 98 (1), 41-45.
  • Williams, D. F., The Williams dictionary of biomaterials. Liverpool University Press: Liverpool, 1999; p xvii, 343 p.
  • Williams, D. F., On the mechanisms of biocompatibility. Biomaterials 2008, 29 (20), 2941-2953.
  • Weinberg, S. E.; Chandel, N. S., Targeting mitochondria metabolism for cancer therapy. Nature Chemical Biology 2014, 11, 9.
  • Weinberg, F.; Hamanaka, R.; Wheaton, W. W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G. M.; Budinger, G. R. S.; Chandel, N. S., Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences 2010, 107 (19), 8788-8793.
  • Wang, S.; Chang, Y.-T., Discovery of heparin chemosensors through diversity oriented fluorescence library approach. Chemical Communications 2008, (10), 1173-1175.
  • Wang, H.; Fronczek, F. R.; Vicente, M. G. H.; Smith, K. M., Functionalization of 3,5,8-Trichlorinated BODIPY Dyes. The Journal of Organic Chemistry 2014, 79 (21), 10342-10352.
  • Vendrell, M.; Lee, J.-S.; Chang, Y.-T., Diversity-oriented fluorescence library approaches for probe discovery and development. Current Opinion in Chemical Biology 2010, 14 (3), 383-389.
  • Veal, E. A.; Day, A. M.; Morgan, B. A., Hydrogen Peroxide Sensing and Signaling. Molecular Cell 26 (1), 1-14.
  • Urbanek, M. O.; Galka-Marciniak, P.; Olejniczak, M.; Krzyzosiak, W. J., RNA imaging in living cells – methods and applications. RNA Biology 2014, 11 (8), 1083-1095.
  • Ulrich, G.; Ziessel, R.; Harriman, A., The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition 2008, 47 (7), 1184-1201.
  • Treibs, A.; Kreuzer, F.-H., Difluorboryl-Komplexe von Di- und Tripyrrylmethenen. Justus Liebigs Annalen der Chemie 1968, 718 (1), 208-223.
  • Tokar, V.P., Losytskyy, M.Y., Kovalska, V.B. et al. J Fluoresc (2006) 16: 783. https://doi.org/10.1007/s10895-006-0127-3
  • Teoh, S. T.; Lunt, S. Y., Metabolism in cancer metastasis: bioenergetics, biosynthesis, and beyond. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, e1406-n/a.
  • Tedsana, W.; Tuntulani, T.; Ngeontae, W., A highly selective turn-on ATP fluorescence sensor based on unmodified cysteamine capped CdS quantum dots. Analytica Chimica Acta 2013, 783 (Supplement C), 65-73.
  • Tan, A. S.; Baty, J. W.; Berridge, M. V., The role of mitochondrial electron transport in tumorigenesis and metastasis. Biochimica et Biophysica Acta (BBA) - General Subjects 2014, 1840 (4), 1454-1463.
  • Sztajer, H.; Wang, W.; L nsdorf, H.; Stocker, A.; Schmid, R. D., Purification and some properties of a novel microbial lactate oxidase. Applied Microbiology and Biotechnology 1996, 45 (5), 600-606.
  • Sunahara, H.; Urano, Y.; Kojima, H.; Nagano, T., Design and Synthesis of a Library of BODIPY-Based Environmental Polarity Sensors Utilizing Photoinduced Electron- Transfer-Controlled Fluorescence ON/OFF Switching. Journal of the American Chemical Society 2007, 129 (17), 5597-5604.
  • Su, X.; Xiao, X.; Zhang, C.; Zhao, M., Nucleic Acid Fluorescent Probes for Biological Sensing. Applied Spectroscopy 2012, 66 (11), 1249-1261.
  • Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J., An ICT-Based Approach to Ratiometric Fluorescence Imaging of Hydrogen Peroxide Produced in Living Cells. Journal of the American Chemical Society 2008, 130 (14), 4596-4597.
  • Singh, S. P.; Gayathri, T., Evolution of BODIPY Dyes as Potential Sensitizers for Dye-Sensitized Solar Cells. European Journal of Organic Chemistry 2014, 2014 (22), 4689- 4707.
  • Simonson, S. G.; Zhang, J.; Andrew T. Canada, J.; Su, Y.-F.; Benveniste, H.; Piantadosi, C. A., Hydrogen Peroxide Production by Monoamine Oxidase during Ischemia- Reperfusion in the Rat Brain. Journal of Cerebral Blood Flow & Metabolism 1993, 13 (1), 125-134.
  • Shen, Y.; Zhang, X.; Zhang, Y.; Wu, Y.; Zhang, C.; Chen, Y.; Jin, J.; Li, H., A mitochondria-targeted colorimetric and ratiometric fluorescent probe for hydrogen peroxide with a large emission shift and bio-imaging in living cells. Sensors and Actuators B: Chemical 2018, 255 (Part 1), 42-48.
  • Sekar, R. B.; Periasamy, A., Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. The Journal of Cell Biology 2003, 160 (5), 629-633.
  • Schmidt, F.; Stadlbauer, S.; Konig, B., Zinc-cyclen coordination to UTP, TTP or pyrophosphate induces pyrene excimer emission. Dalton Transactions 2010, 39 (31), 7250- 7261.
  • Sarkar, H. S.; Das, S.; Mandal, D.; Uddin, M. R.; Mandal, S.; Sahoo, P., "Turn-on" fluorescence sensing of cytosine: development of a chemosensor for quantification of cytosine in human cancer cells. RSC Advances 2017, 7 (85), 54008-54012.
  • Santangelo, P. J.; Nix, B.; Tsourkas, A.; Bao, G., Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Research 2004, 32 (6), e57-e57.
  • Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J., A Selective and Sensitive Fluoroionophore for HgII, AgI, and CuII with Virtually Decoupled Fluorophore and Receptor Units. Journal of the American Chemical Society 2000, 122 (5), 968-969.
  • Rozwadowski, K. L.; Khachatourians, G. G.; Selvaraj, G., Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. Journal of Bacteriology 1991, 173 (2), 472-478.
  • Rosania, G. R.; Lee, J. W.; Ding, L.; Yoon, H.-S.; Chang, Y.-T., Combinatorial Approach to Organelle-Targeted Fluorescent Library Based on the Styryl Scaffold. Journal of the American Chemical Society 2003, 125 (5), 1130-1131.
  • Richmond, W., Use of cholesterol oxidase for assay of total and free cholesterol in serum by continuous-flow analysis. Clinical Chemistry 1976, 22 (10), 1579-1588.
  • Rezende, L. C. D.; Emery, F. S., A review of the synthetic strategies for the development of BODIPY dyes for conjugation with proteins. 2013.
  • Rajasekaran, R.; Aruna, P. R.; Koteeswaran, D.; Padmanabhan, L.; Muthuvelu, K.; Rai, R. R.; Thamilkumar, P.; Murali Krishna, C.; Ganesan, S., Characterization and Diagnosis of Cancer by Native Fluorescence Spectroscopy of Human Urine. Photochemistry and Photobiology 2013, 89 (2), 483-491.
  • Peng, X.; Wu, T.; Fan, J.; Wang, J.; Zhang, S.; Song, F.; Sun, S., An Effective Minor Groove Binder as a Red Fluorescent Marker for Live-Cell DNA Imaging and Quantification. Angewandte Chemie International Edition 2011, 50 (18), 4180-4183.
  • Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T., A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells. Journal of the American Chemical Society 2007, 129 (6), 1500-1501.
  • Park, C.; Hong, J.-I., A new fluorescent sensor for the detection of pyrophosphate based on a tetraphenylethylene moiety. Tetrahedron Letters 2010, 51 (15), 1960-1962.
  • O'Connor, N. A.; Stevens, N.; Samaroo, D.; Solomon, M. R.; Marti, A. A.; Dyer, J.; Vishwasrao, H.; Akins, D. L.; Kandel, E. R.; Turro, N. J., A covalently linked phenanthridine-ruthenium(ii) complex as a RNA probe. Chemical Communications 2009, (19), 2640-2642.
  • Niu, S.-L.; Ulrich, G.; Retailleau, P.; Harrowfield, J.; Ziessel, R., New insights into the solubilization of Bodipy dyes. Tetrahedron Letters 2009, 50 (27), 3840-3844.
  • Neill, S.; Desikan, R.; Hancock, J., Hydrogen peroxide signalling. Current Opinion in Plant Biology 2002, 5 (5), 388-395.
  • Nakano, S.; Tamura, T.; Das, R. K.; Nakata, E.; Chang, Y.-T.; Morii, T., A Diversity-Oriented Library of Fluorophore-Modified Receptors Constructed from a Chemical Library of Synthetic Fluorophores. ChemBioChem 2017, 18 (22), 2212- 2216.
  • Murphy, Michael P., How mitochondria produce reactive oxygen species. Biochemical Journal 2009, 417 (1), 1.
  • Murphy, M. P.; Smith, R. A. J., Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. Annual Review of Pharmacology and Toxicology 2007, 47 (1), 629-656.
  • Murphy, M. P., Targeting lipophilic cations to mitochondria. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2008, 1777 (7), 1028-1031.
  • Morais, J. M.; Papadimitrakopoulos, F.; Burgess, D. J., Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response. Aaps J 2010, 12 (2), 188-196.
  • Molitch ME. Diabetes Mellitus. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths; 1990. Chapter 136. Available from: https://www.ncbi.nlm.nih.gov/books/NBK242
  • Modica-Napolitano, J. S.; Aprille, J. R., Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Advanced Drug Delivery Reviews 2001, 49 (1), 63-70.
  • Miller, E. W.; Albers, A. E.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., Boronate-Based Fluorescent Probes for Imaging Cellular Hydrogen Peroxide. Journal of the American Chemical Society 2005, 127 (47), 16652-16659.
  • Mart , A. A.; Jockusch, S.; Stevens, N.; Ju, J.; Turro, N. J., Fluorescent Hybridization Probes for Sensitive and Selective DNA and RNA Detection. Accounts of Chemical Research 2007, 40 (6), 402-409.
  • Marras, S. A. E.; Tyagi, S.; Kramer, F. R., Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clinica Chimica Acta 2006, 363 (1), 48-60.
  • Lu, S.-H.; Phang, R.; Fang, J.-M., Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties. Organic Letters 2016, 18 (8), 1724-1727.
  • Loudet, A.; Burgess, K., BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chemical Reviews 2007, 107 (11), 4891-4932.
  • Long, F.; Zhu, A.; Shi, H., Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel) 2013, 13 (10), 13928- 48.
  • Loeb, K. R.; Loeb, L. A., Significance of multiple mutations in cancer. Carcinogenesis 2000, 21 (3), 379-385.
  • Liu, Z.; Lavis, Luke D.; Betzig, E., Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level. Molecular Cell 2015, 58 (4), 644-659.
  • Liu, X.; Sun, Y.; Zhang, Y.; Miao, F.; Wang, G.; Zhao, H.; Yu, X.; Liu, H.; Wong, W.-Y., A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm. Organic & Biomolecular Chemistry 2011, 9 (10), 3615-3618.
  • Lippert, A. R.; Van de Bittner, G. C.; Chang, C. J., Boronate Oxidation as a Bioorthogonal Reaction Approach for Studying the Chemistry of Hydrogen Peroxide in Living Systems. Accounts of Chemical Research 2011, 44 (9), 793-804.
  • Lin, W.; Yuan, L.; Cao, Z.; Feng, Y.; Song, J., Through-Bond Energy Transfer Cassettes with Minimal Spectral Overlap between the Donor Emission and Acceptor Absorption: Coumarin–Rhodamine Dyads with Large Pseudo-Stokes Shifts and Emission Shifts. Angewandte Chemie International Edition 2010, 49 (2), 375-379.
  • Lin, C.-K.; Wang, Y.-F.; Cheng, Y.-C.; Yang, J.-S., Multisite Constrained Model of trans-4-(N,N-Dimethylamino)-4′-nitrostilbene for Structural Elucidation of Radiative and Nonradiative Excited States. The Journal of Physical Chemistry A 2013, 117 (15), 3158-3164.
  • Li, Z.; Sun, S.; Yang, Z.; Zhang, S.; Zhang, H.; Hu, M.; Cao, J.; Wang, J.; Liu, F.; Song, F.; Fan, J.; Peng, X., The use of a near-infrared RNA fluorescent probe with a large Stokes shift for imaging living cells assisted by the macrocyclic molecule CB7. Biomaterials 2013, 34 (27), 6473-6481.
  • Li, Q.; Kim, Y.; Namm, J.; Kulkarni, A.; Rosania, G. R.; Ahn, Y.-H.; Chang, Y.-T., RNA-Selective, Live Cell Imaging Probes for Studying Nuclear Structure and Function. Chemistry & Biology 2006, 13 (6), 615-623.
  • Li, Q.; Chang, Y.-T., A protocol for preparing, characterizing and using three RNAspecific, live cell imaging probes: E36, E144 and F22. Nature Protocols 2007, 1, 2922.
  • Li, D.; Tian, X.; Wang, A.; Guan, L.; Zheng, J.; Li, F.; Li, S.; Zhou, H.; Wu, J.; Tian, Y., Nucleic acid-selective light-up fluorescent biosensors for ratiometric two-photon imaging of the viscosity of live cells and tissues. Chemical Science 2016, 7 (3), 2257-2263.
  • Lennicke, C.; Rahn, J.; Lichtenfels, R.; Wessjohann, L. A.; Seliger, B., Hydrogen peroxide – production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling 2015, 13 (1), 39.
  • Leiner, M. J. P.; Hubmann, M. R.; Wolfbeis, O. S., The total fluorescence of human urine. Analytica Chimica Acta 1987, 198 (Supplement C), 13-23.
  • Lee, S.; Yuen, K. K. Y.; Jolliffe, K. A.; Yoon, J., Fluorescent and colorimetric chemosensors for pyrophosphate. Chemical Society Reviews 2015, 44 (7), 1749-1762.
  • Lee, J.-S.; Kim, Y. K.; Vendrell, M.; Chang, Y.-T., Diversity-oriented fluorescence library approach for the discovery of sensors and probes. Molecular BioSystems 2009, 5 (5), 411-421.
  • Lee, J.-S.; Kang, N.-y.; Kim, Y. K.; Samanta, A.; Feng, S.; Kim, H. K.; Vendrell, M.; Park, J. H.; Chang, Y.-T., Synthesis of a BODIPY Library and Its Application to the Development of Live Cell Glucagon Imaging Probe. Journal of the American Chemical Society 2009, 131 (29), 10077-10082.
  • Ledford, H., End of cancer-genome project prompts rethink. Nature 2015, 517 (7533), 128-9.
  • Lakshmi V, Sharma R, Ravikanth M., Functionalized boron-dipyrromethenes and their applications.Dovepress 2015, 1-24.
  • Kwon, T.-H.; Kim, H. J.; Hong, J.-I., Phosphorescent Thymidine Triphosphate Sensor Based on a Donor–Acceptor Ensemble System using Intermolecular Energy Transfer. Chemistry – A European Journal 2008, 14 (31), 9613-9619.
  • Kumar, N.; Bhalla, V.; Kumar, M., Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions. Analyst 2014, 139 (3), 543-558.
  • Kumar, C. V.; Turner, R. S.; Asuncion, E. H., Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. Journal of Photochemistry and Photobiology A: Chemistry 1993, 74 (2), 231-238.
  • Kr mer, O. H.; Zhu, P.; Ostendorff, H. P.; Golebiewski, M.; Tiefenbach, J.; Peters, M. A.; Brill, B.; Groner, B.; Bach, I.; Heinzel, T.; G ttlicher, M., The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. The EMBO Journal 2003, 22 (13), 3411-3420.
  • Kowada, T.; Maeda, H.; Kikuchi, K., BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chemical Society Reviews 2015, 44 (14), 4953-4972.
  • Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chemical Reviews 2010, 110 (5), 2620-2640.
  • Kim, S.-i.; Jin, S.-G.; Pfeifer, G. P., Formation of cyclobutane pyrimidine dimers at dipyrimidines containing 5-hydroxymethylcytosine. Photochemical & Photobiological Sciences 2013, 12 (8), 1409-1415.
  • Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K., BODIPY dyes in photodynamic therapy. Chemical Society Reviews 2013, 42 (1), 77-88.
  • Jolliffe, K. A., Pyrophosphate Recognition and Sensing in Water Using Bis[zinc(II)dipicolylamino]-Functionalized Peptides. Accounts of Chemical Research 2017, 50 (9), 2254-2263.
  • Jiao, G.-S.; Thoresen, L. H.; Burgess, K., Fluorescent, Through-Bond Energy Transfer Cassettes for Labeling Multiple Biological Molecules in One Experiment. Journal of the American Chemical Society 2003, 125 (48), 14668-14669.
  • Jares-Erijman, E. A.; Jovin, T. M., Imaging molecular interactions in living cells by FRET microscopy. Current Opinion in Chemical Biology 2006, 10 (5), 409-416.
  • Ishikawa-Ankerhold, H. C.; Ankerhold, R.; Drummen, G. P. C., Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012, 17 (4), 4047.
  • Im, C.-N.; Kang, N.-Y.; Ha, H.-H.; Bi, X.; Lee, J. J.; Park, S.-J.; Lee, S. Y.; Vendrell, M.; Kim, Y. K.; Lee, J.-S.; Li, J.; Ahn, Y.-H.; Feng, B.; Ng, H.-H.; Yun, S.- W.; Chang, Y.-T., A Fluorescent Rosamine Compound Selectively Stains Pluripotent Stem Cells. Angewandte Chemie International Edition 2010, 49 (41), 7497-7500.
  • Hughes, L. D.; Rawle, R. J.; Boxer, S. G., Choose Your Label Wisely: Water- Soluble Fluorophores Often Interact with Lipid Bilayers. Plos One 2014, 9 (2).
  • Huang, X.; Wang, J.; Liu, H.; Lan, T.; Ren, J., Quantum dot-based FRET for sensitive determination of hydrogen peroxide and glucose using tyramide reaction. Talanta 2013, 106 (Supplement C), 79-84.
  • Huang, F.; Hao, G.; Wu, F.; Feng, G., Fluorescence sensing of ADP over ATP and PPi in 100% aqueous solution. Analyst 2015, 140 (17), 5873-5876.
  • Hong, Y.; Chen, S.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z., Water-Soluble Tetraphenylethene Derivatives as Fluorescent “Light-Up” Probes for Nucleic Acid Detection and Their Applications in Cell Imaging. Chemistry – An Asian Journal 2013, 8 (8), 1806- 1812.
  • Hecht, M.; Fischer, T.; Dietrich, P.; Kraus, W.; Descalzo, A. B.; Unger, W. E. S.; Rurack, K., Fluorinated Boron-Dipyrromethene (BODIPY) Dyes: Bright and Versatile Probes for Surface Analysis. ChemistryOpen 2013, 2 (1), 25-38.
  • Hardin, G., The Tragedy of the Commons. Science 1968, 162 (3859), 1243-1248.
  • Han, C.; Yang, H.; Chen, M.; Su, Q.; Feng, W.; Li, F., Mitochondria-Targeted Near- Infrared Fluorescent Off–On Probe for Selective Detection of Cysteine in Living Cells and in Vivo. ACS Applied Materials & Interfaces 2015, 7 (50), 27968-27975.
  • Halliwell, B.; Clement, M. V.; Long, L. H., Hydrogen peroxide in the human body. FEBS Letters 2000, 486 (1), 10-13.
  • Guo, L.; Chan, M. S.; Xu, D.; Tam, D. Y.; Bolze, F.; Lo, P. K.; Wong, M. S., Indolebased Cyanine as a Nuclear RNA-Selective Two-Photon Fluorescent Probe for Live Cell Imaging. ACS Chemical Biology 2015, 10 (5), 1171-1175.
  • Guo, J. Y.; Chen, H. Y.; Mathew, R.; Fan, J.; Strohecker, A. M.; Karsli-Uzunbas, G.; Kamphorst, J. J.; Chen, G.; Lemons, J. M.; Karantza, V.; Coller, H. A.; Dipaola, R. S.; Gelinas, C.; Rabinowitz, J. D.; White, E., Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011, 25 (5), 460-70.
  • Guo, H.; Aleyasin, H.; Dickinson, B. C.; Haskew-Layton, R. E.; Ratan, R. R., Recent advances in hydrogen peroxide imaging for biological applications. Cell & Bioscience 2014, 4 (1), 64.
  • Goze, C.; Ulrich, G.; Mallon, L. J.; Allen, B. D.; Harriman, A.; Ziessel, R., Synthesis and Photophysical Properties of Borondipyrromethene Dyes Bearing Aryl Substituents at the Boron Center. Journal of the American Chemical Society 2006, 128 (31), 10231-10239.
  • Gough, D. R.; Cotter, T. G., Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death &Amp; Disease 2011, 2, e213.
  • Gorman, A.; Killoran, J.; O'Shea, C.; Kenna, T.; Gallagher, W. M.; O'Shea, D. F., In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy. Journal of the American Chemical Society 2004, 126 (34), 10619-10631.
  • Gaur, P.; Kumar, A.; Dalal, R.; Kumar, R.; Bhattacharyya, S.; Ghosh, S., Selectivity advancement through chemical structure engineering: Long-term intracellular DNA recognition, chromosomal staining and micronuclei detection. Sensors and Actuators B: Chemical 2017, 248 (Supplement C), 690-698.
  • Gaur, P.; Kumar, A.; Dalal, R.; Bhattacharyya, S.; Ghosh, S., Emergence through delicate balance between the steric factor and molecular orientation: a highly bright and photostable DNA marker for real-time monitoring of cell growth dynamics. Chemical Communications 2017, 53 (17), 2571-2574.
  • Gabe, Y.; Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T., Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide. Analytical and Bioanalytical Chemistry 2006, 386 (3), 621-626.
  • G ttlicher, M.; Minucci, S.; Zhu, P.; Kr mer, O. H.; Schimpf, A.; Giavara, S.; Sleeman, J. P.; Lo Coco, F.; Nervi, C.; Pelicci, P. G.; Heinzel, T., Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO Journal 2001, 20 (24), 6969-6978.
  • Fogal, V.; Richardson, A. D.; Karmali, P. P.; Scheffler, I. E.; Smith, J. W.; Ruoslahti, E., Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol 2010, 30 (6), 1303-18.
  • Fernandez-Suarez, M.; Ting, A. Y., Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 2008, 9 (12), 929-43.
  • Feng, X. J.; Wu, P. L.; Bolze, F.; Leung, H. W. C.; Li, K. F.; Mak, N. K.; Kwong, D. W. J.; Nicoud, J.-F.; Cheah, K. W.; Wong, M. S., Cyanines as New Fluorescent Probes for DNA Detection and Two-Photon Excited Bioimaging. Organic Letters 2010, 12 (10), 2194- 2197.
  • Feng, S.; Fang, Y.; Feng, W.; Xia, Q.; Feng, G., A colorimetric and ratiometric fluorescent probe with enhanced near-infrared fluorescence for selective detection of cysteine and its application in living cells. Dyes and Pigments 2017, 146 (Supplement C), 103-111.
  • Fan, J.; Hu, M.; Zhan, P.; Peng, X., Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chemical Society Reviews 2013, 42 (1), 29-43.
  • F rster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948, 437 (1-2), 55-75.
  • F Hammer, Cyanine Dyes and Related Compounds (London ⁄ New York: Interscience Publisher, 1964) p 398.
  • Erten-Ela, S.; Yilmaz, M. D.; Icli, B.; Dede, Y.; Icli, S.; Akkaya, E. U., A Panchromatic Boradiazaindacene (BODIPY) Sensitizer for Dye-Sensitized Solar Cells. Organic Letters 2008, 10 (15), 3299-3302.
  • Dumat, B.; Bordeau, G.; Faurel-Paul, E.; Mahuteau-Betzer, F.; Saettel, N.; Metge, G.; Fiorini-Debuisschert, C.; Charra, F.; Teulade-Fichou, M.-P., DNA Switches on the Two- Photon Efficiency of an Ultrabright Triphenylamine Fluorescent Probe Specific of AT Regions. Journal of the American Chemical Society 2013, 135 (34), 12697-12706.
  • Du, F.; Min, Y.; Zeng, F.; Yu, C.; Wu, S., A Targeted and FRET-Based Ratiometric Fluorescent Nanoprobe for Imaging Mitochondrial Hydrogen Peroxide in Living Cells. Small 2014, 10 (5), 964-972.
  • Dickinson, B. C.; Srikun, D.; Chang, C. J., Mitochondrial-targeted fluorescent probes for reactive oxygen species. Current Opinion in Chemical Biology 2010, 14 (1), 50- 56.
  • Dickinson, B. C.; Peltier, J.; Stone, D.; Schaffer, D. V.; Chang, C. J., Nox2 redox signaling maintains essential cell populations in the brain. Nature Chemical Biology 2010, 7, 106.
  • Dickinson, B. C.; Chang, C. J., Chemistry and biology of reactive oxygen species in signaling or stress responses. Nature Chemical Biology 2011, 7, 504.
  • Czupryna, J.; Tsourkas, A., Xanthine oxidase-generated hydrogen peroxide is a consequence, not a mediator of cell death. FEBS Journal 2012, 279 (5), 844-855.
  • Czerney, P.; Grane , G.; Birckner, E.; Vollmer, F.; Rettig, W., Molecular engineering of cyanine-type fluorescent and laser dyes. Journal of Photochemistry and Photobiology A: Chemistry 1995, 89 (1), 31-36.
  • Coskun, A.; Deniz, E.; Akkaya, E. U., A sensitive fluorescent chemosensor for anions based on a styryl–boradiazaindacene framework. Tetrahedron Letters 2007, 48 (31), 5359-5361.
  • Cornago, M.; Garcia-Alberich, C.; Blasco-Angulo, N.; Vall-llaura, N.; Nager, M.; Herreros, J.; Comella, J. X.; Sanchis, D.; Llovera, M., Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death &Amp; Disease 2014, 5, e1435.
  • Chung, C.; Srikun, D.; Lim, C. S.; Chang, C. J.; Cho, B. R., A two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue. Chemical Communications 2011, 47 (34), 9618-9620.
  • Chinnery, P. F.; Turnbull, D. M., Mitochondrial DNA mutations in the pathogenesis of human disease. Molecular Medicine Today 2000, 6 (11), 425-432.
  • Cheng, T.; Xu, Y.; Zhang, S.; Zhu, W.; Qian, X.; Duan, L., A Highly Sensitive and Selective OFF-ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell. Journal of the American Chemical Society 2008, 130 (48), 16160-16161.
  • Chen, X.; Tian, X.; Shin, I.; Yoon, J., Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews 2011, 40 (9), 4783-4804.
  • Chan, J.; Dodani, S. C.; Chang, C. J., Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nature Chemistry 2012, 4, 973.
  • Chan, J.; Dodani, S. C.; Chang, C. J., Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 2012, 4 (12), 973-84.
  • Boveris, A.; Cadenas, E., Mitochondrial Production of Hydrogen Peroxide Regulation by Nitric Oxide and the Role of Ubisemiquinone. IUBMB Life 2000, 50 (4-5), 245-250.
  • Bolden, J. E.; Peart, M. J.; Johnstone, R. W., Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006, 5 (9), 769-84.
  • Boens, N.; Leen, V.; Dehaen, W., Fluorescent indicators based on BODIPY. Chemical Society Reviews 2012, 41 (3), 1130-1172.
  • Bianchi-Smiraglia, A.; Rana, M. S.; Foley, C. E.; Paul, L. M.; Lipchick, B. C.; Moparthy, S.; Moparthy, K.; Fink, E. E.; Bagati, A.; Hurley, E.; Affronti, H. C.; Bakin, A. V.; Kandel, E. S.; Smiraglia, D. J.; Feltri, M. L.; Sousa, R.; Nikiforov, M. A., Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution. Nature Methods 2017, 14, 1003.
  • Betz, W. J.; Mao, F.; Smith, C. B., Imaging exocytosis and endocytosis. Current Opinion in Neurobiology 1996, 6 (3), 365-371.
  • Berg, J. M.; Tymoczko, J. L.; Gatto, G. J.; Stryer, L., Biochemistry. Eighth edition. ed.; W.H. Freeman & Company, a Macmillan Education Imprint: New York, 2015; 8th ed. page 424-442. 424-442.
  • Baumann, K., Letting H2O2 work. Nature Reviews Molecular Cell Biology 2010, 11, 234.
  • Bartlett, P. N.; Bradford, V. Q.; Whitaker, R. G., Enzyme electrode studies of glucose oxidase modified with a redox mediator. Talanta 1991, 38 (1), 57-63.
  • Bao, G.; Rhee, W. J.; Tsourkas, A., Fluorescent Probes for Live-Cell RNA Detection. Annual Review of Biomedical Engineering 2009, 11 (1), 25-47.
  • Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L., Glucose oxidase — An overview. Biotechnology Advances 2009, 27 (4), 489-501.
  • Bandichhor, R.; Petrescu, A. D.; Vespa, A.; Kier, A. B.; Schroeder, F.; Burgess, K., Water-Soluble Through-Bond Energy Transfer Cassettes for Intracellular Imaging. Journal of the American Chemical Society 2006, 128 (33), 10688-10689.
  • Armitage B.A. () Cyanine Dye–DNA Interactions: Intercalation, Groove Binding, and Aggregation. In: Waring M.J., Chaires J.B. (eds) DNA Binders and Related Subjects. Topics in Current Chemistry, vol 253. Springer, Berlin, Heidelberg
  • Almaqwashi, A. A.; Paramanathan, T.; Rouzina, I.; Williams, M. C., Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy. Nucleic Acids Research 2016, 44 (9), 3971-3988.