박사

하부 플랜지 분절형 프리스트레스트 콘크리트 휨부재의 구조거동 = Structural Behavior of Bottom Flange Segmented Prestressed Concrete Flexural Members

박민국 2018년
논문상세정보
' 하부 플랜지 분절형 프리스트레스트 콘크리트 휨부재의 구조거동 = Structural Behavior of Bottom Flange Segmented Prestressed Concrete Flexural Members' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 구조거동
  • 분리타설
  • 상대변위
  • 상향치올림
  • 수평전단강도
  • 프리스트레스트 콘크리트
  • 프리캐스트
  • 합성부재
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
88 0

0.0%

' 하부 플랜지 분절형 프리스트레스트 콘크리트 휨부재의 구조거동 = Structural Behavior of Bottom Flange Segmented Prestressed Concrete Flexural Members' 의 참고문헌

  • 한국콘크리트학회
    콘크리트 구조설계기준 해설, 599 pp [2012]
  • 프리스트레스트 콘크리트
    신현묵 동명사, 504 pp [2013]
  • Zia, P. and Mostafa, T. (1977). Development Length of Prestressing Strand. PCI Journal, 22(5), 54-65.
  • Wang, X. H. and Liu, X. L. (2004b). Modeling bond strength of corroded reinforcement without stirrups. Cement and Concrete Research, 34(8), 1331-1339.
  • Wang, X. H. and Liu, X. L. (2004a). Modeling Effects of Corrosion on Cover Cracking and Bond in Reinforced Concrete. Magazine of Concrete Research, 56(4), 191-199.
  • Walraven, J., Frenay, J. and Pruijssers, A. (1988). Influence of Concrete Strength and Load History on the Shear Friction Capacity of Concrete Members. PCI Journal, 32(1), 66-84.
  • Ugural, A. C. and Fenster, S. K. (2003). Advanced Strength and Applied Elasticity, Prentice-Hall, 544 pp.
  • Tsoukantas, S. G. and Tassios, T. P. (1989). Shear Resistance of Connections between Reinforced Concrete Linear Precast Elements. ACI Structural Journal, 86(3), 242-249.
  • Timoshenko, S. P. (1921). On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine, 41, 744–746.
  • Thomas, E. C., David, W. J. and Paul, Z. (1990). Transfer Length of Epoxy-Coated Prestressing Strand. ACI Materials Journal, 87(3), 193-203.
  • Tepfers, R. (1979). Cracking of Concrete Cover Along Anchored Deformed Reinforcing Bars. Magazine of Concrete Research, 31(106), 3-12.
  • Tadros, M. K., Fawzy, F. and Hanna, K. (2011). Precast, Prestressed Girder Camber Variability. PCI Journal, 56(1), 135– 154.
  • Storm, T. K., Rizkalla, S. H. and Zia, P. Z. (2013). Effects of production practices on camber of prestressed concrete bridge girders. PCI Journal, 58(4), 2-17.
  • Santos, P. M. D. and Julio, E. N. B. S. (2014). Interface Shear Transfer on Composite Concrete Members. ACI Structural Journal, 111(1), 113-121.
  • Saemann, J. C. and Washa, G. W. (1964). Horizontal Shear Con-nections Between Precast Beams and Cast-in-Place Slabs. ACI Journal, 61(11), 1383-1408.
  • Russell, B. W. and Burns, N. H. (1997). Measurement of Transfer Lengths on Pretensioned Concrete Elements. Journal of Structural Engineering, ASCE, 123(5), 541-549.
  • Rosa, M. A., Stanton, J. F. and Eberhard, M. O. (2007). Improving Predictions for Camber in Precast, Prestressed Concrete Bridge Girders. Final report no. WA-RD669-1. Olympia, WA: Washington State Department of Transportation.
  • Rahal, K. N. (2010). Shear-Transfer Strength of Reinforced Concrete. ACI structural Journal, 107(4), 419-429.
  • Patnaik, A. K. (2001). Behavior of composite concrete beams with smooth interface. Journal of structural Engineering ASCE, 127(4), 359-366.
  • Park, H., Din, Z. U. and Cho, J. Y. (2012). Methodological Aspects in the Measurement of Strand Transfer Length in Pretensioned Concrete. ACI Structural Journal, 109(5), 625-634.
  • Park, H. and Cho, J. Y. (2013). Bond-Slip-Strain Relationship in the Transfer Zone of Pretensioned Concrete Elements. ACI Structural Journal, 111(3), 503-514.
  • PCI Industry Handbook Committee. (2005). PCI Design Handbook-Precast Prestressed Concrete. 6th Edition, Precast/Prestressed Concrete Institute, Chicago, IL, 736 pp.
  • PC(Precast concrete) 조립식 건축공법의 통합관리 및 활성화 방안에 관한 연구. 인하대학교 공학대학원
    조기덕 학위논문, 137 pp [2006]
  • Oh, B. H., Lim, S. N. and Choi, Y. C. (2004). Finite Element Analysis of Transfer Length in Pretensioned Prestressed Concrete Members. Journal of the Korea Concrete Institute, 16(3), 293-302.
  • Oh, B. H., Kim, E. S. and Choi, Y. C. (2006). Theoretical Analysis of Transfer Lengths in Pretensioned Prestressed Concrete Members. Journal of Structural Engineering, ASCE, 132(10), 1057-1066.
  • Oh, B. H. and Kim, E. S. (2002). Realistic Evaluation of Transfer Lengths in Pretensioned, Prestressed Concrete Members. ACI Structural Journal, 97(6), 821-830.
  • Noppakunwijai, P., Tadros, M. K., Ma, J. Z. and Mast, R. F. (2001). Strength design of pretensioned flexural concrete members at prestress transfer. PCI Journal, 46(1), 34-52.
  • Noppakunwijai, P., Tadros, M. K. and Sun, C. (2003). Application of the strength Design Method for Flexural Members at Prestress Transfer. PCI Journal, 48(5), 1-14.
  • Nilson, A. H. (1987). Designing of Prestressed Concrete. John WiletandSon Inc.
  • Newmark, N. M., Siess, C. P. and Viest, I. M. (1951). Tests and analysis of composite beams with incomplete interaction. Proceedings of the Society of Experimental Stress Analysis, 9(1), 75-92.
  • Nawy, E. G. (2006). Prestressed Concrete: a Fundamental approach. Prentice Hall.
  • Nagle, T. J. and Kuchma, D. A. (2007). Shear transfer resistance in high-strength concrete girders. Magazine of Concrete Research, 59(8), 611-620.
  • Mitchell, D., Cook, W. D., Khan, A. A. and Tham, T. (1993). Influence of High Strength Concrete on Transfer and Development Length of Pretensioning Strand. PCI Journal, 38(3), 52-66.
  • Mau, S. T. and Hsu, T. T. C. (1988). Readers Comments on Influence of Concrete Strength and Load History on the Shear Friction Capacity of Concrete Members. Journal of the Prestressed Concrete Institute, 33(1), 166-168.
  • Mattock, A. H. and Hawkins, N. M., (1972). Shear transfer in reinforced concrete recent research. PCI Journal, 17(2), 55-75.
  • Mattock, A. H. (2001). Shear Friction and High-Strength Concrete. ACI structural Journal, 98(1), 50-59.
  • Mattock, A. H. (1978). Shear transfer under monotonic loading, across an interface between concretes cast at different times : Final report 2. Department of Civil Engineering University of Washington, 99 pp.
  • Mattock, A. H. (1977). Shear transfer under monotonic loading, across an interface between concretes cast at different times : Final report 3. Department of Civil Engineering University of Washington, 104 pp.
  • Mattock, A. H. (1976). Shear transfer under monotonic loading, across an interface between concretes cast at different times : Final report 1. Department of Civil Engineering University of Washington, 67 pp.
  • Martin, L. and Scott, N. (1976). Development of Prestressing Strand in Pretensioned Members. ACI Journal, 73(8), 453-456.
  • Martin, L. D. (1977). A Rational Method for Estimating Camber and Deflection of Precast Prestressed Members. PCI Journal, 22(1), 100–108.
  • MacGregor, J. G. (1997). Reinforced Concrete Mechanics and Design. 3rd Edition, Prentice Hall.
  • Loov, R. E. and Patnaik, A. K. (1994). Horizontal shear strength of composite concrete beams with a rough interface. PCI Journal, 39(1), 48-69.
  • Laldki, S. and Young, A. G. (1988). Bond between Steel Strand and Cement Grout in Ground Anchorages. Magazine of Concrete Research, 31(106), 3-12.
  • Kovach, J. D. (2008). Horizontal Shear Capacity of Composite Concrete Beams without Interface Ties. PCI / PITA RESEARCH PROJECT, 236 pp.
  • Kahn, L. F., and Slapkus, A. (2004). Interface shear in high strength composite T-Beams. PCI Journal, 49(1), 102-110.
  • Kahn, L. F. and Mitchell, A. D. (2002). Shear Friction Tests with High-Strength Concrete. ACI structural Journal, 99(1), 98-103.
  • Jonsson, E. (1992). Anchorage of Strands in Prestressed Extruded Hollow Core Slabs. Proceedings of the International symposium Bond in Concrete: From Research to Practice. Riga Technical University and CEB, eds., Riga, Latvia, 2.20-2.28.
  • Hsu, T. T. C., Mau, S. T. and Chen, B. (1987). Theory of Shear Transfer Strength of Reinforced Concrete. ACI structural Journal, 84(2), 149-160.
  • Hofbeck, J. A., Ibrahim, I. O. and Mattock, A. H. (1969). Shear transfer in reinforced concrete. ACI Journal, 66(2), 119-128.
  • Guyon, Y. (1953). Pretensioned Concrete: Theoretical and Experimental Study. Paris, France.
  • Crane, C. K. (2010). Shear and shear friction of ultra-high performance concrete bridge girders. Georgia Institute of Technology, 348 pp.
  • Cook, R. A., Bloomquist, D. and Sanek, J. E., (2005). Field Verification of Camber Estimates for Prestressed Concrete Bridge Girders. Final report No. BD-545 RPWO#7. Tallahassee, FL: Florida Department of Transportation.
  • Comete European de Normalisation (CEN). (2004). Eurocode 2: Design of Concrete Structure. Part 1-General Rules and Rules for Buildings. prEN 1992-1.
  • Collins, M. P. and Mitchell, D., 1991, Prestressed Concrete Structures, Prentice- Hall, 766 pp.
  • CTA 76-B4. (1976). Composite Systems Without Ties. Technical Bulletin 76-B4. Concrete Technology Associates. Tacoma, WA.
  • CSA Committee A23.3-04. (2004). Design of Concrete Structures, Canadian Standards Association.
  • Bhargava, K. and Ghosh, A. K. (2003). Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement. Structural Engineering and Mechanics, 16(6), 749-769.
  • BSI British Standards. (2002). BS8110-1:1997 Structural use of concrete, BSI, London.
  • Arab, A. A., Badie, S. S. and Manzari, M. T. (2011). A Methodological Approach for Finite Element Modeling of Pretensioned Concrete Members at the Release of Pretensioning. Engineering Structures, 33(6), 1918-1929.
  • Anderson, A. R. (1960). Composite Designs in Precast and Cast-in Place Concrete. Progressive Architecture, 41(9), 172-179.
  • American Association of State Highway and Transportation Officials. (2007). AASHTO LRFD Bridge Design Specifications. 4th Edition, AASHTO, Washington,DC, 1802 pp.
  • ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary. Farmington Hills, MI: American Concrete Institute.