박사

저영향개발 기술의 물순환 효율성 분석 기법 개발 및 적용 연구 = Development and Application of Water Cycle Efficiency Analysis Method for Low Impact Development Technology

장영수 2018년
논문상세정보
' 저영향개발 기술의 물순환 효율성 분석 기법 개발 및 적용 연구 = Development and Application of Water Cycle Efficiency Analysis Method for Low Impact Development Technology' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 수력 공학
  • K-LIDM
  • 강우모의장치
  • 물순환
  • 저영향개발
  • 최적 설계
  • 효율성
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,183 0

0.0%

' 저영향개발 기술의 물순환 효율성 분석 기법 개발 및 적용 연구 = Development and Application of Water Cycle Efficiency Analysis Method for Low Impact Development Technology' 의 참고문헌

  • 환경영향평가시 저영향 개발(LID) 기법 적용 매뉴얼
    환경부 [2013]
  • 표면재료에 따른 우수유출 저감시설의 침투 특성에 관한 실험 연구, 석사학위 논 문
    김수광 홍익대학교 대학원 [2005]
  • 투수성 포장재를 사용한 홍쉬 우수유출 저감효과 분석
    강태호 심재현 여운광 이재응 대 한토목학회논문집, 21(6B), 645~654 [2001]
  • 투수성 포장과 침투 트렌치를 고려한 수정 SWMM의 개발 및 적용. 박사학위논문
    이정민 부경대학교 대학원 [2007]
  • 지표면 투수성 보도 블록의 침투능 결정에 관한 실험적 연구, 석사학위논문
    유경희 한경 대학교 대학원 [2008]
  • 지역별 방재성능목표 설정기준
  • 지붕유출수 관리를 위한 침투화분 기술 개발 및 평가. 석사학위 논문
    문소연 공주대학교 대학원 [2015]
  • 저영향개발(LID) 기법 설계 가이드라인
    환경부 [2016]
  • 저영향개발 기반의 SWMM모형을 활용한 유역 물순환 개선과 비점오염 저감 평가 에 관한 연구. 박사학위 논문
    장종경 부산대학교 대학원 [2013]
  • 저영향 개발(LID) 기술요소 가이드라인
    환경부 [2013]
  • 옥상녹화의 우수유출량 저감효과에 관한 연구
    오승환 윤소원 이동근 장성완 한국환경복 원기술학회지, 9(6), 117~122 [2006]
  • 식생이 조성된 LID 시설의 효율 평가
    김이형 홍정선 응용생태공학회논문집, 3(2), 100~109 [2016]
  • 수질오염총량관리를 위한 개발사업 비점오염원 최적관리지침
    환경부 [2010]
  • 수질 및 수생태계 보전에 관한 법률
    환경부 [2016]
  • 서울특별시 물순환 회복 및 저영향개발 기본 조례
  • 서울시 물순환 체계구축을 위한 심포지엄
  • 비점오염저감시설의 설치 및 관리 운영 매뉴얼
    환경부 [2014]
  • 분산식 빗물관리시설 적용에 따른 증발산 변화 연구
    이태구 한영해 한국생태환경건축학 회논문집, 12(5), 3~10 [2012]
  • 부산대 LID 실증단지 에서의 저영향개발기법 적용 물순환 효율성 분석 연구,
    예성제 부산대학교 대학원 석사 학위 논문
  • 레인가든이 지하유출 및 첨두유출량 감소에 미치는 효과
    김창수 성기준 한국환경복원기 술학회지, 14(5), 69~79 [2011]
  • 도심 저영향개발(LID) 적용 방안 연구
  • 도시지역 강우유출수 관리를 위한 식생체류지 기술 개발 및 평가, 석사학위 논문
    류기영 공주대학교 대학원 [2015]
  • 도시유역 수문지형학적 특성을 고려한 LID 기법 적정 지역 선정 연구. 석사학위 논 문
    백종석 부산대학교 대학원 [2015]
  • 남미아. 분포형 수문모형을 이용한 도시지역 옥상녹화에 따른 물 및 열순환 영향 평가
    김연미 김현준 장철희 한국생태환경건축학회논문집, 13(4), 33~41 [2013]
  • 국토교통부
    LID요소기술 효율성 검증 실험시설 구축 및 운영 보고서 [2016]
  • 국토교통부
    친수구역 조성지침 [2011]
  • 국토교통부
    LID 요소기술 가이드라인 [2014]
  • 국토교통부
    친수구역의 활용에 관한 특별법 [2010]
  • 국토교통부
    확률강우량도 개선 및 보완 연구 [2015]
  • 공업지역에서의 비점오염원 유출특성분석 및 SWMM활용 LID 적용. 석사학위 논문
    주재승 부산대학교 대학원 [2012]
  • Yaoze L., Vincent F., Bernard A. (2015) Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff. Journal of Environmental Management, 147, 12~23.
  • W. F., J. T., S, J., J. M., P. R. (2008). Pollutant removal and peak flow mitigation by a bioretention cell in Urban Charlotte, N.C.. Journal of Environmental Engineering, 403~408.
  • W. F. Hunt, J. M., R. J., S. J. (2015). Runoff volume reduction by a level spreader–vegetated filter strip system in suburban Charlotte, N.C.. Journal of Hydrologic Engineering, 499~503.
  • W. D. Shuster, E. Pappas. (2011). Laboratory simulation of urban runoff and estimation of runoff hydrographs with experimental curve numbers implemented in USEPA SWMM. Journal of Irrigation and Drainage Engineering, 343~351.
  • Virginia S., Gianni V., Hartini K. (2012). The hydrological performance of a green roof test bed under UK climatic conditions. Journal of Hydrology, 414-415, 148~161.
  • U.S. Environmental Protection Agency. (2007). Reducing Stormwater Costs through Low Impact Development (LID) Strategies and Practices.
  • Thomas H. Cahill. (2012). Low Impact Development and Sustainable Stormwater Management
  • Sin J., Jun C., Zhu J. H., Yoo C. (2014). Evaluation of flood runoff reduction effect of LID (Low Impact Development) based on the decrease in CN: case studies from Gimcheon Pyeonghwa district, Korea. Procedia Engineering, 70, 1531~1538.
  • SWMM-LID 모형을 활용한 도시소유역 LID영향 분석 연구. 석사학위 논문
    조은영 부산대 학교 대학원 [2012]
  • SEMCOG. (2008). Low Impact Development Manual for Michigan
  • Robert M. R, Thomas P. B., James J., Joshua F., Kristopher M. (2012). Water quality and hydrologic performance of a porous asphalt pavement as a storm-water treatment strategy in a cold climate. Journal of Environmental Engineering, 81~89.
  • Robert A., William F. Hunt III. (2010). Impacts of construction activity on bioretention performance. Journal of Hydrologic Engineering, 386~394.
  • R. A. Brown, D. E. Line, W. F. Hunt. (2012). LID Treatment Train: Pervious concrete with subsurface storage in series with bioretention and care with seasonal high water tables. Journal of Environmental Engineering, 689~697.
  • Prince George’s county. (1997). Low-Impact Development design Mannual. PGC, MD, Department Environment Resource
  • Prince George’s County. (1993). Design manual for use of bioretention in stormwater management, Prince George’s County, MD Department of Environmental Resources, Watershed Protection Branch, MD Department of Environmental Protection, Landover, MD.
  • Prince George's County(1999), Low impact development design strategies - an integrated design approach.
  • Precious E. D. F., Marla C. M., Jevelyn A.S., Kim L. H. (2015). Evaluation on the hydrologic effects after applying an infiltration trench a4nd a tree box filter as low impact development (LID) Techniques. Journal of Korean Society on Water Environment, 31(1), 12~18.
  • Pezzaniti, D., Beecham, S., Kandasamy, J. (2009). Influence of clogging on the effective life of permeable pavements. Water Management, 162(WM3), 211~220.
  • Norman B., Graig S. (2011). A pilot-scale evaluation of greenroof runoff retention, detention, and quality. Water Air Soil Pollution, 216, 83~92.
  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., Veith, T. L. (2007). Modelevaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885~900.
  • Minnesota Pollution Control Agency. (2017). Minnesota Stormwater Manual.
  • Maya P., Makram T., William D. (2010). Modeling techniques of Best Management Practices: Rain barrels and rain gardens using EPA SWMM-5. Journal of Hydrologic Engineering, 434~443.
  • Maryland Stormwater Design Manual. (2009), Maryland Department of the Environment.
  • Lizhu Hou, Shaoyuan Feng, Yueyuan Ding, Shuhan Zhang, Zailin Huo. (2008). Experimental study on rainfall-runoff relation for porous pavements. Hydrology Research, 39(3), 181~190.
  • Kipkie, C.W. (1999). Feasibility a permeable pavement option in the Storm Water Management Model (SWMM) for 1ong-term continuous modelling. Master thesis, University of Guelph, Canada.
  • Katherine, Franco M, Alisha. (2010). Observed and modeled performances of prototype green roof test plots subjected to simulated Low- and high-intensity precipitations in a laboratory experiment. Journal of Hydrologic Engineering, 444~457.
  • Katherine A., Franco M., Alisha G. (2010). Observed and modeled performance of prototype green roof test plots subjected to simulated low- and high- intensity precipitation in a laboratory experiment. Hydrologic Engineering, 15, 444~457.
  • K. M. Debusk, T. M. Wynn. (2011). Storm-water bioretention for runoff quality and quantity mitigation. Journal of Environmental Engineering, 800~808.
  • K-water
    LID 통합설계시스템개발용역 보고서 [2016]
  • Jia, Y., Guangheng, N., Yoshihisa, K , Tadashi,S. (2001). “Development of WEP model and its application to an urban watershed. Hydrological Processes (J), 15, 2175~2194.
  • James C.Y., Gerald E., T. Andrew, Ken M. (2010). Incentive index developed to evaluate storm-water Low-Impact Designs. Journal of Environmental Engineering, 1341~1346.
  • IPCC
    기후변화 2007 종합보고서 [2007]
  • IPCC
    기후변화 2013 종합보고서 [2013]
  • Guo, J.C.Y. (1998). Surface-subsurface model for trench infiltration basins, Journal of Water Resources Planning and Management, 124(5), 280-284.
  • Gary E., D.WRE. (2010), Modeling and sizing bioretention using flow duration control. Journal of Hydrologic Engineering, 417~425.
  • Erik S. B., John C. C. (2009). Stormwater runoff quality and quantity from traditional and low impact development watersheds. Journal of the American Water Resources Association, 45(4), 998~1008.
  • Elizabeth A. F., Samuel B. (2010). Urban runoff mitigation by a permeable pavement system over impermeable soils. Journal of Environmental Engineering, 475~485.
  • EPA. (1996). Hydrological Simulation Program- FORTRAN User Manual for Release 11
  • E. D. Tillinghast, W. F. Hunt, G. D. Jennings, Patricia. (2012). Increasing stream geomorphic stability using storm water control measures in a densely urbanized watershed. Journal of Hydrologic Engineering, 1381~1388.
  • Duchene M., McBean E. A. Thomson N. R. (1994). Modeling of infiltration from trenches for storm-water control, Journal of Water Resources Planning and Management, 120(3), 276~283.
  • Donald D. P. E., Preethi K. (2011). Effect of roof surface type on storm-water runoff from full-scale roofs in a temperate climate. Journal of Irrigation and Drainage Engineering, 161~169.
  • D. E., R. A., W. F., W.G. (2012). Effectiveness of LID for commercial development in North Carolina. Journal of Environmental Engineering, 680~688.
  • Collins, K., Hunt, W. F., and Hathaway, J. M. (2008). “Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina. Journal of Hydrologic Engineering, 13(12), 1146~1157.
  • Clear Creek Solutions. (2014). Western Washington Hydrology Model 2012 User Manual.
  • Clean Water Services. (2009). Low Impact Development Approaches Handbook.
  • C.F. Yong, D.T. McCarthy, A. Deletic. (2013). Predicting physical clogging of porous and permeable pavements. Journal of Hydrology, 481, 48~55.
  • Brown, Keath., Wong. (2009). Urban Water Management Transition Framework.
  • Brattebo, B. O., Booth, D. B. (2003). Long-term stormwater quantity and quality performance of permeable pavement systems. Water Research6, 37(18), 4369~4376.
  • Betty T. (2001). Low impact parking lot design reduces runoff and pollutant loads. Journal of Water Resources Planning and Management, 172~179.
  • Bean, E. Z., William. F., David A. (2007). “Field survey of permeable pavement surface infitration rates. Journal of Irrigation and Drainage Engineering, 133(3), 249~255.
  • Ayoko N., Nigel D. (2012). Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure, Landscape and Urban Planning, 104, 356~363.
  • Allen P. D. (2008). Field performance of bioretention: hydrology impacts. Journal of Hydrologic Engineering, 90~95.
  • Alar T., Ulo M. (2007). Rainwater runoff quantity and quality performance from a greenroof: The effects of short-term events. Ecological Engineering, 30, 271~277.
  • A. M. Hathaway, W.F. Hunt, G. D. Jennings. (2008). A field study of green roof hydrologic and water quality performance. Transactions of the ASABE, 52(1), 37~44.