박사

극저온용 고망간강 용접부 기계적성질에 미치는 미세조직의 영향 = Microstructure and Mechanical Properties of Cryogenic High-manganese Steel Weld Metal

한일욱 2018년
논문상세정보
' 극저온용 고망간강 용접부 기계적성질에 미치는 미세조직의 영향 = Microstructure and Mechanical Properties of Cryogenic High-manganese Steel Weld Metal' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • 금속
  • 기계적 성질
  • 망간
  • 미세조직
  • 용접
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
276 0

0.0%

' 극저온용 고망간강 용접부 기계적성질에 미치는 미세조직의 영향 = Microstructure and Mechanical Properties of Cryogenic High-manganese Steel Weld Metal' 의 참고문헌

  • 고망간강의 열처리
    문인기 대한금속재료학회지, , 17.2: 137-145 [1979]
  • YOO, Jaehong, et al. Materials Chemistry and Physics, 2014, 148.3: 499-502.
  • YOO, Jaehong, et al. Journal of materials science, 2015, 50.1: 279-286.
  • YOO, Jaehong, et al. Influence of Cr on Weld Solidification Cracking in Fe-15Mn-0.5 C-3.5 Al-xCr Alloys. ISIJ International, 2015, 55.1: 257-263.
  • YOO, J., et al. Science and Technology of Welding and Joining, 2014, 19.6: 514-520.
  • Y. Tomota, The relationship between toughness and microstructure in Fe-high Mn binary alloys, Metall. Mater. Trans. A, 18 (1987) 1073-1081
  • Y. Tomota, Microstructural dependence of Fe-high Mn tensile behavior, Metall. Mater. Trans. A, 17 (1986) 537-547,
  • W. Tofaute, K. Linden Arch Eisenhuttenwes, 10 (1936), p. 515
  • V.N. Krivobok Trans ASST, 893 (1929)
  • Singon Kang, MAT SCI ENG A, 532 (2012) 500-504.
  • R.L. Klueh, et al. Manganese as an Austenite stabilizer in Fe-Cr-Mn-C Steels, Material Science and Engineering, A, 102(1988) 115-124
  • R.A. Hadfield. Science, 12 (1888), p. 28
  • R my L. Thesis. Paris Sud University; 1975
  • L.M. Roncery, Welding of twinning-induced plasticity steels, Scripta Mater. 66 (2012) 997-1001, 8.
  • KOTZOT, Heinz J. Overview of the LNG Industry Seminar: Gas Treatment, Liquefaction, and Storage. In: GPA Convention, San Antonio. 2003.
  • J.K. Choi, S.G. Lee, Y.H. Park, I.W. Han, and J. W. Morris, Jr. (2012). “High Manganese Austenitic Steel for Cryogenic Applications,” Offshore and Polar Engineering, ISOPE, Vol.4, No1, PP 29~35.
  • J.H. Hall Trans AIME Iron Steel Div (1929), p. 382
  • J. Charles, A. Berzhegan, A. Lutts, P.L. Dancoisne, Met Prog, 71 (1981)
  • International Energy Agency (2012), Golden Rules for a Golden Age of Gas -World Energy Outlook.
  • IMAI, Norio; KOMATSUBARA, Nozomi; KUNISHIGE, Kazutoshi. Effect of Cu and Ni on hot workability of hot-rolled mild steel. ISIJ international, 1997, 37.3: 224-231.]
  • IIT Trade Focus Vol.13, No.62
  • IGC Code (1993). The International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk, Chapter 6, Materials of Construction.
  • HAN, Kyutae, et al. Materials Science and Engineering: A, 2014, 618: 295-304.
  • ExxonMobil (2012). The Outlook for Energy: A View to 2040.
  • D.L. Olson, Prediction of Austenitic Weld Metal Microstructure and Properties, Welding Journal, (1985) 10, 281-295
  • Curtze, S, and Kuokkala, VT (2010). Acta Mater, 58, 5129–5140.
  • Chun, YS, Kim, JS, Park, KT, Lee, YK, and Lee, CS (2012). Mater Sci Eng A, 30, 87–95.
  • Brofman, PJ, and Ansell, GS (1978). Metall Trans A, 9(6), 879–880.
  • Bouaziz, O., Allain, S., Scott, C. P., Cugy, P., & Barbier, D. (2011). Current opinion in solid state and materials science, 15(4), 141-168.
  • Bo-Young Jeong, Journal of KWJS, 28 (2) (2010) 36-41 (in Korean)
  • ASME (2010). Boiler and Pressure Vessel Code, Section XII.
  • ASM Handbook (1993), Vol 6, pp 1016-1019.
  • API 620 (2008). Design and Construction of Large, Welded, Low-Pressure Storage Tanks, Appendix Q.
  • A.R. Troiano, F.T. McGuire Trans ASM, 31 (1943), p. 346