박사

T91/T92/S304H 및 Shot peened S304H 의 증기산화조건에따른산화행위 및 미세조직변화연구 = Oxidation Behavior and Microstructure Evolution of T91/T92/S304H and Shot Peened S304H upon Steam Test

마후유 2018년
논문상세정보
' T91/T92/S304H 및 Shot peened S304H 의 증기산화조건에따른산화행위 및 미세조직변화연구 = Oxidation Behavior and Microstructure Evolution of T91/T92/S304H and Shot Peened S304H upon Steam Test' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 공학, 공업일반
  • Grain refinement
  • Heat resistance steel
  • Shot peening treatment
  • oxidation
  • pre-cipitation
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
345 0

0.0%

' T91/T92/S304H 및 Shot peened S304H 의 증기산화조건에따른산화행위 및 미세조직변화연구 = Oxidation Behavior and Microstructure Evolution of T91/T92/S304H and Shot Peened S304H upon Steam Test' 의 참고문헌

  • http://www.crystallography.net/.
  • Z. X. Xia, C. Zhang, X. F. Huang, W. B. Liu, Z. G. Yang, Improve oxidation resistance at high temperature by nanocrystalline surface layer, Scientific reports, 5, 1 (2015).
  • Z. Tőkei, K. Hennesen, H. Viefhaus, and H. J. Grabke, Diffusion of chromium in ferritic and austenitic 9-20 wt.% chromium steels. Materials science and technology, 16(10), 1129 (2000).
  • Z. Tokei, H. Viefhaus, K. Hennesen, and H. J. Grabke, Role of fast diffusion paths in the initial stages of oxidation of high temperature chromium-steels, Solid State Phenomena, 7, 3 (2000).
  • Z. B. Wang, K. Lu, G. Wilde, S. V. Divinski, Interfacial diffusion in Cu with a gradient nanostructured surface layer, Acta Materialia, 58, 2376 (2010).
  • Y. S. He, K. Shin, Reports for KEPRI (2009).
  • Y. Iijima, K. Kimura, and K. Hirano, Self-diffusion and isotope effect in α-iron. Acta Metallurgica, 36(10), 2811 ((1988).
  • Y. Fukuda, K. Tamura, Babcock-Hitachi K. K. 835 (1995).
  • Y. Chen, K. Sridharan, T. Allen, Corrosion behavior of ferritic–martensitic steel T91 in supercritical water, Corrosion Science, 48, 2843 (2006).
  • X. Tao, J. Gu, L. Han, Characterization of precipitates in X12CrMoWVNbN10- 1-1 steel during heat treatment, Journal of Nuclear Materials, 452(1), 557 (2014).
  • X. Ren, K. Sridharan, T. R. Allen, Effect of grain refinement on corrosion of ferritic–martensitic steels in supercritical water environment, Materials and Corrosion, 61, 748 (2010).
  • X. C. Liu, H. W. Zhang, K. Lu, Strain-induced ultrahard and ultrastable nanolaminated structure in nickel, Science, 342, 337 (2013).
  • W. Yan, W. Wang, Y. Shan, K. Yang, and W. Sha, Creep of heat-resistant steels. In 9-12Cr Heat-Resistant Steels (163-189). (Springer International Publishing, 2015).
  • W. P. Tong, N. R. Tao, Z. B. Wang, J. Lu, K. Lu, Nitriding iron at lower temperatures, Science, 51, 686 (2003).
  • V. Lepingle, G. Louis, D. Petelot, B. Lefebvre, J. C. Vaillant, Materials Science Forum, 369, 239 (2001).
  • V. Lepingle, G. Louis, D. Petelot, B. Lefebvre, J. C. Vaillant, High temperature corrosion behaviour of some boiler steels in pure water vapour, Materials science forum, 369, 239 (2001).
  • V. Lepingle, G. Louis, D. Allu , B. Lefebvre, B. Vandenberghe, Steam oxidation resistance of new 12% Cr steels: Comparison with some other ferritic steels, Corrosion Science, 50, 1011 (2008).
  • V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650C with supporting thermodynamic modelling, Materials Science and Engineering: A, 477, 334 (2008).
  • V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650 C with supporting thermodynamic modelling, Materials Science and Engineering: A, 477(1), 334 (2008).
  • T. Shinoda, R. Tanaka, Role of carbide precipitation on the creep rupture strength of the austenite family of stainless steel, Nippon Kinoku Gakkai Kaiho. 11(3), 180 (1972)
  • T. Itagaki, H. Kutsumi, H. Haruyama, M. Igarashi, F. Abe, Corros. 61, 307 (2005).
  • S. Lozano-Perez, K. Kruska, I. Iyengar, T. Terachi, T. Yamada, Corrosion Science. 56, 78 (2012).
  • Q. Li, Metall. Mater. Tran. A. 37, 89 (2006).
  • N. Z. Gutierrez, H. De Cicco, J. Marrero, C. A. Dan n, M. I. Luppo, Evolution of precipitated phases during prolonged tempering in a 9% Cr1% MoVNb ferritic–martensitic steel: Influence on creep performance, Materials Science and Engineering: A, 528(12), 4019 (2011).
  • N. Q. Zhang, Z. L. Zhu, H. Xu, X. Mao, J. Li, Oxidation of ferritic and ferritic–martensitic steels in flowing and static supercritical water, Corrosion Science, 103, 124 (2016).
  • M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H. G. Armaki, K. Maruyama, Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants, Materials Science and Engineering: A, 510, 162 (2009).
  • L. Tan, X. Ren, T.R. Allen, Corrosion behavior of 9–12% Cr ferritic– martensitic steels in supercritical water, Corrosion Science, 52, 1520 (2010).
  • L. Tan, X. Ren, K. Sridharan, T. R. Allen, Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation, Corrosion Science, 50, 2040 (2008).
  • L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science, 304, 422 (2004).
  • Kubaschewski, A. L. Evans, C. B. Alcock, Metallurgical thermochemistry, Oxford Pergamon Press (1967).
  • K. Sawada, M. Fujitsuka, M. Tabuchi, K. Kimura, Effect of oxidation on the creep rupture life of ASME T23 steel, International Journal of Pressure Vessels and Piping, 86, 693 (2009).
  • K. S. N. Vikrant, G. V. Ramareddy, A. H. V. Pavan, K. Singh, Estimation of residual life of boiler tubes using steamside oxide scale thickness, International Journal of Pressure Vessels and Piping, 104, 69 (2013).
  • K. Maruyama, K. Sawada, J. I. Koike, Strengthening mechanisms of creep resistant tempered martensitic steel, ISIJ International, 41, 641 (2001).
  • K. Lu, Making strong nanomaterials ductile with gradients, Science, 345, 1455 (2014).
  • K. Lu, J. Lu, Mater. Sci. Eng A. 375, 38 (2004).
  • K. H. Lo, C. H. Shek, J. K. L. Lai, Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65, 39 (2009).
  • K. Guan, X. Xu, H. Xu, Z. Wang, Effect of aging at 700 C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds, Nuclear Engineering and Design, 235(23), 2485 (2005).
  • J.C. Vailaant, B. Vandenberghe, B. Hahn, B. Hahn, B. Heuser, T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants-Properties and experience, International Journal of Pressure Vessels and Piping, 85, 38 (2008).
  • J.C. Griess, W. A. Maxwell, Oak Ridge National Lab. (1981).
  • J. Marion, F. Kluger, M. Sell, A. Skea, Advanced ultra-supercritical steam power plants. Proc. POWER-GEN Asia KLCC, Kuala Lumpur, Malaysia, (2014).
  • J. L. X. H. Chen, L. Lu, K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Mateerialia, 52, 1039 (2005).
  • J. K llqvist, H. O. Andr n, Microanalysis of a stabilised austenitic stainless steel after long term ageing, Materials Science and Engineering: A, 270(1), 27 (1999).
  • J. FRANKE, The Benson boiler turns 75, Siemens Power Journal online, 1, (2002).
  • J. Erneman, M. Schwind, H. O. Andr n, J. O. Nilsson, A. Wilson, J. gren, The evolution of primary and secondary niobium carbonitrides in AISI 347 stainless steel during manufacturing and long-term ageing, Acta Materialia, 54(1), 67 (2006).
  • J. D. S. Peltz, L. V. R. Beltrami, S. R. Kunst, C. Brandolt, C. D. F. Malfatti, Effect of the shot peening process on the corrosion and oxidation resistance of AISI430 stainless steel. Materials Research, 18, 538 (2015).
  • International energy outlook [J], Energy Information Administration (EIA), 2017
  • H. S. Lee, D. S. Kim, J. S. Jung, Y. S. Pyoun, K. Shin, Influence of peening on the corrosion properties of AISI 304 stainless steel, Corrosion Science, 51, 2826 (2009).
  • H. Kutsumi, S. Muneki, T. Itagaki, F. Abe, Steam oxidation behavior of precipitation strengthened. Journal of the Japan institute of Metals, 66, 997 (2002).
  • H. Kutsumi, S. Muneki, T. Itagaki, F. Abe, J. Jpn Inst. Met. 66, 997 (2002).
  • H. Ghassemi-Armaki, R. P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr Heat Resistant Steels, Materials Letters, 63(28), 2423 (2009).
  • H. Asteman, J. E. Svensson, M. Norell, L. G. Johansson, Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation, Oxidation of Metals, 54, 11 (2000).
  • H. Asteman, J. E. Svensson, L. G. Johansson, M. Norell, Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor Oxidation of Metals, 52, 95 (1999).
  • G. Golański, A. Zielińska-Lipiec, Zieliński, and M. Sroka, Effect of long-term service on microstructure and mechanical properties of martensitic 9% Cr steel. Journal of Materials Engineering and Performance, 26(3), 1101 (2017).
  • F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ International, 41(6), 612 (2001).
  • F. K. Yan, G. Z. Liu, N. R. Tao, K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles, Acta Materialia, 60, 1059 (2012).
  • F. Abe, T. U.Kern, and R. Viswanathan, Creep-resistant Steels (Elsevier, 2008)
  • E. J. Opila, Volatility of common protective oxides in high-temperature water vapor: current understanding and unanswered questions, Materials Science Forum, 461, 765 (2004).
  • E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, M. D. Allendorf, J. Phys. Chem. A. 111, 1971 (2007).
  • D.R. T. Roland, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scripta Materialia, 54, 1949 (2006).
  • D.H. Hur, M.S. Choi, D.H. Lee, M.H. Song, S.J. Kim, J.H. Han, Effect of shot peening on primary water stress corrosion cracking of Alloy 600 steam generator tubes in an operating PWR plant, Nuclear Engineering and Design, 227, 155 (2004).
  • D. laverde, T. G. Acebo, F. Castro, Continuous and cyclic oxidation of T91 ferritic steel under steam, Corrosion Science, 46, 613 (2004).
  • C. T. Fujii, R. A. Meussner, The Mechanism of the High‐Temperature Oxidation of Iron‐Chromium Alloys in Water Vapor, Journal of the Electrochemical Society, 111, 1215 (1964).
  • C. Gindorf, K. Hilpert, L. Singheiser, Determination of chromium vaporization rates of different interconnect alloys by transpiration experiments, Solid oxide Fuel Cell. 7, 793 (2001)
  • C. Gindorf, K. Hilpert, L. Singheiser, Chromium Vaporisation from Fe, Cr base alloys used as interconnect in fuel cells, Steel Research International, 72, 528 (2001)
  • C. G. Lee, Y. Iijima, T. Hiratani, and K. I. Hirano, Diffusion of chromium in α- iron. Materials Transactions, JIM, 31(4), 255 (1990).
  • B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, M.O. Iefimov, Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel, Materials Science and Engineering: A, 458, 253 (2007).
  • B. Hashemi, M. R. Yazdi, V. Azar, The wear and corrosion resistance of shot peened–nitrided 316L austenitic stainless steel, Materials & Design, 32, 3287 (2011).
  • ASM Handbook Volume 5: Surface Engineering, ASM International (1994)
  • A.M. M.A. Meyers, D.J. Benson, Mechanical properties of nanocrystalline materials. Progress in materials science, 51, 427 (2006).
  • . Y. He, K. Li, I.S. Cho, C.S. Lee, I.G. Park, J.I. Song, C.W. Yand, J.H. Lee, and K. Shin, Microstructural Characterization of SS304 upon Various Shot Peening Treatments, Applied Microscopy, 45, 155 (2015).
  • . X. Peng, J. Yan, Y. Zhou, and F. Wang, Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air, Acta Materialia, 53, 5079 (2005).
  • . R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, US program on materials technology for ultra-supercritical coal power plants, Journal of materials engineering and performance, 14, 281 (2005).
  • . R. K. Gupta, and N. Birbilis, The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review, Corrosion Science. 92, 1 (2015).
  • . P.S. Prev y, and J.T. Cammett, The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6, International Journal of Fatigue, 26, 975 (2004).
  • . N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Materialia, 50, 4603 (2002).
  • . M. Caramello, C. Bertani, M. De Salve, B. Panella, Helical coil thermalhydraulic model for supercritical lead cooled fast reactor steam generators, Applied Thermal Engineering, 101, 693 (2016).
  • . K.S.N. Vikrant, G.V. Ramareddy, A.H.V. Pavan, and K. Singh, Estimation of residual life of boiler tubes using steamside oxide scale thickness, International journal of pressure vessels and piping, 104, 69 (2013).
  • . K. Li, Y. He, I.S. Cho, C.S. Lee, I.G. Park, J.I. Song, C.W. Yand, J.H. Lee, and K. Shin, Effect of ultrasonic nanocrytalline surface modification on the microstructural evolution of Inconel 690 alloy, Materials and Manufacturing Processes, 30, 194 (2015).
  • . K. Li, G. Spartacus, J. Dong, P. Cao, and K. Shin, Effect of ultrasonic shot peening on microstructure and properties of 301SS, Materials and Manufacturing Processes, 1 (2017).
  • . I.G. Wright, R.B. Dooley, A review of the oxidation behaviour of structural alloys in steam, International Materials Reviews, 55, 129 (2010).
  • . H.J. Jang, S.Y. Kang, J.J. Lee, T.S. Kim, and S.J. Park, Performance analysis of a multi-stage ultra-supercritical steam turbine using computational fluid dynamics, Applied Thermal Engineering, 87, 352 (2015).
  • . F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ international 41, 612 (2001).
  • . B.A. Pint, Y. Zhang, Performance of Al‐rich oxidation resistant coatings for Fe‐base alloys, Materials and Corrosion, 62, 549 (2011).