박사

탄소기반 나노구조 전극을 적용한 미생물 연료전지(MFCs)의 성능평가에 관한 연구

엄한기 2018년
논문상세정보
' 탄소기반 나노구조 전극을 적용한 미생물 연료전지(MFCs)의 성능평가에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Pd
  • pan
  • 미생물 연료전지
  • 전극
  • 촉매
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
230 0

0.0%

' 탄소기반 나노구조 전극을 적용한 미생물 연료전지(MFCs)의 성능평가에 관한 연구' 의 참고문헌

  • 환경부 에너지자립화계획 [2010]
  • 호기성 미생물과 중공사형 한외여과막을 이용한 음식물류 폐 수처리 시스템 개발
    김수정 석사학위논문, 동국대학교 [2015]
  • 하수처리장의 에너지 효율성 개선방안 연구
    조을생 한국환경정책평가 연구원, pp. 1-113 [2011]
  • 폐수처리를 위한 미생물 연료전지 시스템으로부터 수소 및 전 기 생산
    채경진 석사학위논문, 한국해양대학교 [2007]
  • 자기조립 Fe3O4/Carbon 나노복합체 다층구조 전극 형성에 의한 미생물연료전지 성능 향상 연구
    박인호 박사학위논문, 전북대학교 [2014]
  • 음폐수 소화액 고도처리를 위한 mixotrophic microalgae(C. vulgaris)의 적용에 관한 연구
    장산 박사학위논문, 경희대학교 [2016]
  • 박사
  • 음식물 폐기물의 탈리액과 매립지 침출수의 연계처리에 관한 연구
    김원진 석사학위논문, 경북대학교 [2014]
  • 유기성폐기물 성상별 메탄가스 발생가능량 산정인자 연구
    박형완 석사학위논문, 서 울시립대학교 [2016]
  • 수도권 매립지 관리공사
    수도권매립지 통계연감 [2015]
  • Zimniewska, M., Kozlowski, R. and Batog. J. (2008). Nanolignin modified linen fabric as a multifunctional product, Molecular Crystals and Liquid Crystals, 484(1), pp. 409-416.
  • Zhao, F., Harnisch, F., Schrőder, U., Scholz, F., Bogdanoff, P. and Herrmann, I. (2005). Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochemistry Communications, 7(12), pp. 1405-1410.
  • Zacharia, R. Kim, K. Y., Kibria, A. K. M. F. and Nahm, K. S. (2005). Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles, Chemical Physics Letters, 412(4), pp. 369-375.
  • Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S. and Takasaki, Y. (2001). Microbial hydrogen production from sweet potato starch residue, Journal of Bioscience and Bioengineering, 91(1), pp. 58-63.
  • Yakoyama, H., Ohmori, H., Ishida, M., Waki, M. and Tanaka, Y. (2006). Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure, Animal science journal, 77(6), pp. 634-638.
  • Xu, C., Yang, F., Wang, S. and Ramakrishna, S. (2004). In vitro study of human vascular endothelial cell function on materials with various surface roughness, Journal of Biomedical Materials Research, 71A(11), pp. 154-161.
  • Vijayaraghavan, K. and Soom, M. A. M. (2005). Trends in biological hydrogen production-A review, Environmental Science, 3(4), pp. 184-192.
  • Vavilin, V., Rytow, S. V. and Lokshina, L. Ya. (1995). Modeling hydrogen partial pressure changes as a result of competition between the butyric and propionic groups of acidogenic bacteria, Bioresource Technology, 54(2), pp. 171-177.
  • Van Ginkel, S. W. and Logan, B. E. (2005). Increased biological hydrogen production with reduced organic loading, Water Research, 39(16), pp. 3819-3826.
  • Ueno, Y., Otsuka, S. and Morimoto, M. (1996). Hydrogen production from industrial wastewater by anaerobic microflora in chemost at culture, Journal of Fermentation and Bioengineering, 82(2), pp. 194-197.
  • Ter Heijne, A., Hamelers, H. V. M., de Wilde, V., Rozendal, R. R. and Buisman, C. J. N. (2006). A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environmental Science and Technology, 40(17), pp. 5200-5205.
  • Tan, S. H., Inai, R. Kotaki, M. and Ramakrishna, S. (2005). Systematic parameter study for ultra-fine fiber fabrication via electrospinning process, Polymer, 46(16), pp. 6128-6134.
  • Sin, N. J. and Labbe, R. G. (1996). Sporulation-promoting ability of Clostridium perfringens culture fluids, Applied and Environmental Microbiology, 62(4), pp. 1441-1443.
  • Sell, D., Kr mer, P. and Kreysa, G. (1989). Use of an oxygen gas diffusion cathode and a three dimensional packed bed anode in a bioelectrochemical fuel cell, Applied Microbiology Biotechnology, 31(2), pp. 211-213.
  • Schroder, C., Selig, M. and Schonheit, P. (1994). Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium themotoga maritima: invovement of the embden-meyerhof pathway, Archives of Microbiology, 161(6), pp. 460-470.
  • Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J. and Buisman, C. J. N. (2008). Towards Practical Implementation of Bioelectrochemical Wastewater Treatment, Trends in Biotechnology, 26(8), pp. 450-459.
  • Rodr guez, V. and Logan B. E. (2006). Localized attraction correlates with bacterial adhesion to glass and metal oxide substrata, Environment Science & technology, 40(9), pp. 2983-2988.
  • Reneker, D. H. and Chun, I. (1996). Nanometre Diameter Fibers of Polymer, Produced by Electrospinning, Nanotechnology, 7(3), pp. 216-23.
  • Reith, J. H., Wijffels, R. H. and Barten, H. (2003). Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production, Dutch Biological Hydrogen Foundation, The Netherlands, pp. 103-123.
  • Reimers, C. E., Tender, L. M., Fertig, S. and Wang, W. (2001). Harvesting energy from the marine sediment-water interface, Environmental Science and Technology, 35(1), pp. 192-195.
  • Premier, G. C., Kim, J. R., Michie, I., Dinsdale, R. M. and Guwy, A. J. (2011). Automatic control of load increases power and efficiency in a microbial fuel cell, Journal of Power Sources, 196(4), pp. 2013-2019.
  • Potter, M. C. (1991). Electrical Effects Accompanying the Decomposition of Organic Compounds, Proceedings of the Royal Society of London Series B, 84(571), pp. 260-276.
  • Payot, S., Guedon, E., Cailliez, C., Gelhage, E. and Petitdemange, H. (1998). Metabolism of cellobiose by clostridium celluolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth, Microbiology, 144, pp. 375-384.
  • Patel G. and Roth L. A. (1977). Effect of sodium chloride on growth and methane production of methanogens, Canadian Journal of Microbiology, 23(7), pp. 893-897.
  • Park, J. S., Ahn, C. W. and Jang, S. H. (2006). Acid fermentation characteristic of food wastes according to the organic loading rate, Journal of Environmental Sciences, 15(10), pp. 975-982.
  • Park, D. H. and Zeikus, J. G. (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnology and Bioengineering, 81(3), pp. 348-355.
  • Park, D. H. and Zeikus, J. G. (2002). Impact of electrode composition on electricity generation in a single-copartment fuel cell using Shewanella putrefacians, Applied Microbiology and Biotechnology, 59(1), pp. 58-61.
  • Olsen, E., Hagen, G. and Lindquist, S. E. (2000). Dissolution of platinum in methoxy propionitrile containing LiI/I2, Solar Energy Materials and Solar Cells, 63(3), pp. 267-273.
  • Oliveira, R. C., Hammer, P., Guibal, E., Taulemesse, J., M. and Garcia Jr, O. (2014). Characterization of metal-biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: Preliminary studies, Chemical Engineering Journal, 239, pp. 381-391.
  • Okamoto, M., Miyahara, T., Mizuni, O. and Noike, T. (2000). Biological hydrogen potential of materials characteristic of the organic fraction of municipal solids wastes, Water Science and Technology, 41(3), pp. 25-33.
  • Okamoto, M., Miyahara, T., Mixuno, O. and Noike, T. (2000). Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes, Water Science and Technology, 41(3), pp. 25-32.
  • Nandi, R. and Sengupta, S. (1998). Microbial production of hydrogen:An overview, Critical Reviews in Microbiology, 24(1), pp. 61-84.
  • Nandi R. and Sengupta, S. (1998). Microbial production of hydrogen; an overview, Critical Review in Microbiology, 24(1), pp. 61-84.
  • Nagasaki, K., Tomaru, Y., Katanozaka, N., Shirai, Y., Nishida, K., Itakura, S. and Yamaguchi, M. (2004). Isolation and characterization of a novel singlestranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera, Applied and Environmental Microbiology, 70(2), pp.704-711.
  • Musaev, D. G. and Morokuma, K. (1999). Theoretical studies of the mechanism of ethylene polymerization reaction catalyzed by diimine-M(II) (M=Ni, Pd and Pt) and Ti- and Zr-chelating alkoxides, Topics in Catalysis, 7, pp. 107-123.
  • Mohamed, M. N. and Khairul, Z. M D. (2003). Electron irradiation effects on partially fluorinated polymer films: Structure–property relationships, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 201(4), pp. 604-614.
  • Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L. and Noike, T. (2000). Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresource Technology, 73(1), pp. 59-65.
  • Mizno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L. and Noike, T. (2000). Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresource Technology, 73(1), pp. 59-65.
  • Min, B. K., Kim, J. R., Oh, S. E., Regan, J. M. and Logan, B. E. (2005). Electricity generation from swine wastewater using microbial fuel cells, Water Research, 39(20), pp. 4961-4968.
  • McIlroy, S. J., Saunders, A. M., Albertsen, M., Nierychlo, M., McIlroy, B., Hansen, A. A., Karst, S. M., Nielsen, J. L. and Nielsen, P. H. (2015). MiDAS:the field guide to the microbes of activated sludge. Database, 2015, pp. 250-255.
  • McCarty, P. L. and Smith, D. P. (1986). Anaerobic wastewater treatment, Environmental Science and Technology, 20(12), pp. 1200-1206.
  • Matsunaga, T., Hatano, T., Yamada, A. and Matsumoto, M. (2000). Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor, Biotechnology and Bioengineering, 68(6), pp. 647-651.
  • MacDiarmid A. G., Jones Jr., W. E., Norris, I. D., Gao, J., Johnson Jr., A. T., Pinto, N. J., Hone, J., Han, B., Ko, F. K., Okuzaki, H. and Llaguno, M. (2001). Electrostatically-generated nanofibers of electronic polymers, Synthetic Metals, 119(1-3), pp. 27-30.
  • Lu, X., Zhang, W., Wang, C., Wen, T. C. and Wei, Y. (2011). One-Dimensional Conducting Polymer Nanocomposites: Synthesis, Properties and Applications, Progress in Polymer Science, 36(5), pp. 671-712.
  • Logan, B. E., Oh, S. E., Kim, I. S. and Ginkel, S. V. (2002). Biological hydrogen production measured in batch anaerobic respirometers, Environmental Science and Technology, 36(11), pp. 2530-2535.
  • Logan, B. E., Murano, C., Scott, K., Gray, N. D. and Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell, Water Research, 39(5), pp. 942-952.
  • Logan, B. E., Cheng, S., Watson, V. and Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environmental Science and Technology, 41(9), pp. 3341-3346.
  • Logan, B. E. and Regan, J. M. (2006). Microbial fuel cells-challenges and applications, Environmental Science and Technology, 40(17), pp. 5172-5180.
  • Logan, B. E. and Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells, Trends in Microbiology, 14(12), pp. 512-518.
  • Logan, B. E. (2008). Microbial Fuel Cells, Wiley, USA. 2008.
  • Logan B. E. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems, Applied Microbiology and Biotechnology, 85(6), pp. 1665-1671.
  • Liu, Y. and Tay, J. H. (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge, Water Research, 36(7), pp. 1653-1665.
  • Liu, H., Ramnarayanan, R. and Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environmental Science and Technology, 38(7), pp. 2281-2285.
  • Liu, H. and Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environmental Science and Technology, 38(14) pp. 4040-4046.
  • Lichtl, R. R., Bazin, M. J. and Hall, D. O. (1997). The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions, Applied Microbiology and Biotechnology, 47(6), pp. 701-707.
  • Li, D. and Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel?, Advanced Materials, 16(14), pp. 1151-1170.
  • Lefebvre, O., Al-Mamun, A. and Ng, H. Y. (2008). A microbial fuel cell equipped with a biocathode for organic removal and denitrification, Water Science and Technology, 58(4), pp. 881-885.
  • Lee, J., Phung, N. T., Chang, I. S., Kim, B. H. and Sung, H. C. (2003). Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses, FEMS Microbiology Letters, 223(2), pp. 185~191.
  • Lee, C. H., Shin, H. J., Cho, I. H., Kang, Y. M., Kim, I. A., Park, K. D. and Shin, J. W. (2005). Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast, Biomaterials, 26(11), pp. 1261-1270.
  • Lay, J. J. (2000). Modeling and optimization of anaerobic digested sludge converting starch to hydrogen, Biotechnology Bioengineering, 68(3), pp. 269-278.
  • Lallave, M., Bedia, J., Ruiz-Rosas, R., Rodriguez, M. J., Cordero, T., Otero, J. C., Marquez, M., Barrero, A. and Loscertales, I. G. (2007). Filled and hollow carbon nanofiber by coaxial electrospinning of alcell lignin without binder polymers, Advanced Materials, 19(23), pp. 4292-4296.
  • Kwon, J. H., Choi, S. J., Cha, J. H., Kim, H. S., Kim, Y. J., Yu, J. C. and Kim, C. W. (2010). Electricity Generation and Microbial Community variation in Microbial Fuel Cell with various Electrode Combinations, Journal of Korean Society of Environmental Engineers, 32(1), pp. 1255-1264.
  • Kondaveeti, S., Lee, S. H., Park, H. D. and Min, B. (2014). Bacterial communities in a bioelectrochemical denitrification system: The effects of supplemental electron acceptors, Water Research, 51(15), pp. 25-36.
  • Kim, Y. and hatzell, M. C. (2011). Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal, Energy & Environmental Science, 4(11), pp. 4662-4667.
  • Kim, T. S., Kim, H. S., Kwon, S. and Park, H. D. (2010). Analysis of bacterial community composition in wastewater treatment bioreactors using 16S rRNA gene-based pyrosequencing, Korean Journal Microbiology, 46(4), pp. 352-358.
  • Kim, S. H. and Shin, H. S. (2009). Acidogenesis of Lipids-Containing Wastewater in Anaerobic Sequencing Batch Reactor, Korean Society of Environmental Engineers, 31(12), pp. 1075-1080.
  • Kim, N. C., Yoo, K. Y., Ahn, J. W., Kim, Y. J., Heo, K., Jung, Y. G. and Bae, J.G. (2003). Principles and Applications of Biogas Production Technology by Anaerobic digestion, Edition Staff of KORRA, Clean Tech, 9(1).
  • Kim, J. G., Jeong, Y. K. and Park, S. I. (2010). Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell, Journal of the organic resource recycling association, 18(1), pp. 57-65.
  • Kim, I. S., Chae, K., Choi, M. and Verstraete, W. (2008). Microbial fuel cell: Recent advances, bacterial communities and application beyond electricity generation, Environmental Engineering Research, 13(2), pp. 51-65.
  • Kim, H. J., Hyun, M. S, Chan, I. S., Kim, M. and Kim, B. H. (1999). A Microbial Fuel Cell Type Lactate Biosensor Using a Metal-reducing Bacterium, Shewanella Putrefaciens, Journal of Microbiology and Biotechnology, 9(3), pp. 365-367.
  • Kim, D., An, J., Kim, B., Jang, J. and Kim, K. (2012). Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte, Chemistry & Sustainablility, 5(6), pp. 1086-1091.
  • Kim, B., An, J., Kim, D. and Kim, T. (2013). Voltage increase of microbial fuel cells with multiple membrane electrode assemblies by in series connection, Electrochemistry Communication, 28, pp. 131-134.
  • Kim, B. H., Kim, H. J., Hyun, M. S. and Park, D. H. (1999). Direct electrode reaction of Fe(Ⅲ)-reducing bacterium, shewanella putrefaciens, Journal of Microbiology and Biotechnology, 9(2), pp. 127-131.
  • Kim, B. B. and Park, J. W. (2010). Factors Affecting on VFA Production in Anaerobic Acid Fermentation of Food Waste Leachate, Journal of Korean Society of Urban Environment, 10(1), pp. 21-35.
  • Kay, A. and Gr tzel, M. (1996). Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Solar Energy Materials and Solar Cells, 44(1), pp. 99-117.
  • Kawai, H. (1969). The Piezoelectricity of Poly (vinylidene Fluoride), Japanese Journal of Applied Physics, 8(7), p. 975.
  • Jun, S. A., Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z. Ohsuna, T. and Terasaki O. (2000). Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, Journal of the American Chemical Society, 122(43), pp. 10712-10713.
  • Jang, J. K., Pham, H., Chang, I. S., Kang, K. H., Moon, H. S., Cho, K. S. and Kim, B. H. (2004). Construction and operation of a novel mediator- and membrane-less microbial fuel cell, Process Biochemistry, 39(8), pp. 1007-1012.
  • Horiuchi, J. I., Shimizu, T., Tada, K., Kanno, T. and Kobayashi, M. (2002). Selective production of organic acids in anaerobic acid reactor by pH control, Bioresource Technology, 82(3), pp. 209-213.
  • Henze, M. and Harremoės, P. (1983). Anaerobic treatment of wastewaters in fixed film reactors - A literature review, Water Science and Technology, 15(8-9), pp. 1-101.
  • He, Z., Wanner, N., Minteer, S. D. and Angenent, L. T. (2006). The upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy, Environmental Science and Technology, 40(17), pp. 5212-5217.
  • He, Z., Minteer, S. D. and Angenent, L. T. (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environmental Science and Technology, 39(14), pp.5262-5267.
  • He, Z., Kan, J., Wang, Y., Huang, Y., Mansfeld, F. and Nealson, K. H. (2009). Electricity production coupled to ammonium in a microbial fuel cell, Environmental Science & Technology, 43(9), pp. 3391~3397.
  • Hawkes, F., Dinsdale, R., Hawkes, D. L. and Hussy, I. (2002). Sustainable fermentative hydrogen production: challenges for process optimization, International Journal of Hydrogen Energy, 27(11-12), pp. 1339-1347.
  • Hansel, A. and Lindblad, P. (1998). Towards optimization of cyanobactria as biotechnological relevant producers of molecular hydrogen a clean and renewable energy source, Applied Microbiology and Biotechnology, 50(2), pp. 153-160.
  • Hanaki, K., Matsuo, T. and Nagase, M. (1981). Mechanisms of inhibition caused by long-chain fatty acids in anaerobic digestion process, Biotechnology and Bioengineering, 23(7), pp. 1591-1610.
  • Hallenbeck, P. C. and Benemann, J. R. (2002). Biological hydrogen production: fundamentals and limiting processes, International Journal of Hydrogen Energy, 27(11-12), pp. 1185-1193.
  • Gupta, A. K. and Chand, N. (1979). Effect of copolymerization on the crystalline structure of polyacrylonitrile, European Polymer Journal, 15(10), pp. 899-902.
  • Godfroy, A., Raven, N. D. H. and Sharp, R. J. (2000). Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon pyrococcus abyssi ST549, FEMS Microbiology Letters, 186(1), pp. 127-132.
  • Frenot, A. and Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning, Current Opinion in Colloid & Interface Science, 8(1), pp. 64-75.
  • Fiala, G. and Stetter, K. O. (1986). Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 10 0℃, Archives of Micobiology, 145(1), pp. 56-61.
  • Feng, L., Chen, Y. and Zheng, X. (2009). Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH, Environmental Science & Technology, 43(12), pp. 4373-4380.
  • Fang, H. H. P. and Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology, 82(1), pp. 87-93.
  • Dizhbite, T., Telysheva, G., Jurkjane, V. and Viesturs, U. (2004). Characterization of the radical scavenging activity of lignins-natural antioxidants, Bioresource Technology, 95(3), pp. 309-317.
  • Das, D. and Veziroğlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, 26(1), pp. 13-28.
  • Cooper, N. B., Marshall, J. W., Hunt, K. and Reidy, J. G. (2007). Less Power, Great Performance, Water Environmental Technology, 19(2), pp. 63-66.
  • Conner, W. C. and Falconer, J. L. (1995). Spillover in Heterogeneous Catalysis, Chemical Reviews, 95(3), pp. 759-788.
  • Confer, D. R. and Logan, B. E. (1998). Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater cultures, Water Research, 32(1), pp. 31-38.
  • Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaire, L., Pham, T. H., Boeckx, P., Boon, N. and Verstraete, W. (2007). Biological denitrification in microbial fuel cells, Environmental Science and Technology, 41(9), pp. 3354-3360.
  • Chun, J., Kim, K. Y., Lee, J. H. and Choi, Y. (2010). The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX titanium pyrosequencer, BMC Microbiology, 10(101), pp. 1-8.
  • Choi, S., Kim, J. R., Cha, J., Kim, Y., Premier, G. C. and Kim, C. (2013). Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly[2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter, Bioresource Technology, 128(0), pp. 14-21.
  • Cheng, S., Liu, H. and Logan, B. E. (2006). Power densities using different cathode catalysts(Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environmental Science and Technology, 40(1), pp. 364-369.
  • Chen, C. C., Lin, C. Y. and Lin M. C. (2002). Acid-base enrichment enhances anaerobic hydrogen production process, Applied Microbiology and Biotechnology, 58(2), pp. 224-228.
  • Chen, C. C. and Lin, C. Y. (2003). Using sucrose as a substrate in an anaerobic hydrogen-producing reactor, Advances in Environmental Research, 7(3), pp. 695-699.
  • Chaudhuri, S. K. and Lovely, D. R. (2003). Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells, Nature Biotechnology, 21(10), pp. 1229-1232.
  • Chang, F. Y. and Lin, C. Y. (2004). Biohydrogen production using an up-flow anaerobic sludge blanket reactor, International Journal of Hydrogen Energy, 29(1), pp. 33-39.
  • Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B. and Rabolt, J. F. (2004). Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process, Macromolecules, 37(2), pp. 573-578.
  • Cai, M., Liu, J. and Wei, Y. (2004). Enhanced biohydrogen production from sewage sludge with alkaline pretreatment, Environmental Science & Technology, 38(11), pp. 3195-3202.
  • Brosseau, J. D., Yan, J. Y. and Lo. K. V. (1986). The relationship between hydrogen gas and butanol production by Clostridium saccharoperbutylacetonicum, Biotechnology and Bioengineering, 28(3), pp. 305-310.
  • Bond, D. R., Strycharz-Glaven, S. M., Tender, L. M. and Torres, C. I. (2012). On Electron Transport through Geobacter Biofilms, Chemistry & Sustainability, 5(6), pp. 1099-1105.
  • Bond, D. R., Holmes, D. E., Tender, L. M. L. and Lovely, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295(5554), pp. 483-485.
  • Bond, D. R. and Lovely, D. R. (2003). Electricity production by geobacter sulfurreducens attached to electordes, Applied and Environmental Microbiology, 69(3), pp. 1548-1555.
  • Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., Greiner, A. and Wendorff, J. H. (2001). Nanostructured Fibers via Electrospinning, Advanced Materials, 13(1), pp. 70-72.
  • Bjornsson, L., Mattiasson, B. and Henrysson, T. (1997). Effect of support material on the pattern of volatile fatty acid accumulation at overload in anaerobic digestion of semi-solid waste, Applied Microbiology and Biotechnology, 47(6), pp. 640-644.
  • Bennetto, H. P., Stirling, J. L., Tanaka, K. and Vega, C. A. (1983). Anodic reactions in microbial fuel cells, Biotechnology and Bioengineering, 25(2), pp. 559-568.
  • Benemann, J. (1996). Hydrogen biotechnology: Progress and prospects, Nature Biotech. 14, pp. 1101-1103.
  • Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T., Siegrist, H. and Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1), Water Science and Technology, 45(10), pp. 65-73.
  • Bahl, H., Andersch, W., Braun, K. and Gottschalk, G. (1982). Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutyricum grown in continuous culture, Applied Microbiology and Biotechnology, 14(1), pp. 17-20.
  • Aelterman, P., Rabaey, K., Pham, T. H., Boom, N. and Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environmental Science and Technology, 40(10), pp. 3388-3394.
  • APHA. (2005). Standard methods for the examination of water and wastewater, 21st Edition, American Public Health Association, Washington D.C. USA, Part 5000.