박사

부력 학습발달과정에 근거한 알고리즘 기반 교수 모델 = Algorithm Based Instructional Model from Learning Progressions for Buoyancy

김성기 2018년
논문상세정보
' 부력 학습발달과정에 근거한 알고리즘 기반 교수 모델 = Algorithm Based Instructional Model from Learning Progressions for Buoyancy' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 화학과 응용과학
  • 교수모델
  • 부력
  • 알고리즘
  • 학습 발달과정
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,841 0

0.0%

' 부력 학습발달과정에 근거한 알고리즘 기반 교수 모델 = Algorithm Based Instructional Model from Learning Progressions for Buoyancy' 의 참고문헌

  • 화학 교재 및 화학 교사들의 Br nsted− Lowry 산-염기 개념에 대한 분석
    김성기 박철용 백성혜 최희 대한화학회지, 61(2), 65-76 [2017]
  • 허경, 박정호, 이원규 알고리즘적 사고 문제 모델 및 평가방법 의 제안과 초등수학 내용요소의 적용 및 분석
    권대용 컴퓨터교육학회논문 지, 11(4), 1-12 [2008]
  • 패턴인식의 원리
    이성환 홍릉과학 출판사 [1994]
  • 초등 교사와 아동의 부력 개념 이해도
    김옥희 전주교육대학교 교육대 학원 석사학위논문 [2005]
  • 중학생의 수면 변위, 무게와 질량, 밀도의 개념 형성에 관한 연 구
    이관옥 서울대학교 대학원 석사학위 논문 [1990]
  • 박사
    인지 갈등 수업을 통한 초등학생의 부력에 대한 개념 변화
    안현주 대 구교육대학교 교육대학원 석사학위논문 [2007]
  • 순환학습 모형을 적용한 과학수업이 초등학생의 부력 개념 변화 에 미치는 효과
    박진현 부산교육대학교 교육대학원 석사학위논문 [2007]
  • 수압과 부력 개념에 관한 고등학생들의 응답 특성
    서홍철 한국교원대 학교 교육대학원 석사학위논문 [2004]
  • 박사
  • 밀도개념과 밀도개념에 관련된 INIRC 군 변환 능력의 형성에 미치는 순환학습의 효과
    김충호 최병순 한국과학교육학회지, 12(2), 31-42 [1992]
  • 물체에 작용하는 부력에 대한 학습 발달 과정(Learning Progressions) 연구
    송그론 한국교원대학교 교육대학원 석사학위논문 [2016]
  • 물 속에서의 무게 개념에 대한 초등학교 교사들의 이해
    구정회 한국교 원대학교 교육대학원 석사학위논문 [2002]
  • nal, S., & Coştu, B. (2005, June). Problematic issue for students: Does it sink or float. In Asia-Pasific Forum on Science Learning and Teaching, 6(1), 1.
  • Zangori, L., Peel, A., Kinslow, A., Friedrichsen, P., & Sadler, T. D. (2017). Student development of model‐based reasoning about carbon cycling and climate change in a socio‐scientific issues unit. Journal of Research in Science Teaching, 54(10), 1249-1273.
  • Yin, Y., Shavelson, R. J., Ayala, C. C., Ruiz-Primo, M. A., Brandon, P. R., Furtak, E. M., ... & Young, D. B. (2008). On the impact of formative assessment on student motivation, achievement, and conceptual change. Applied measurement in Education, 21(4), 335-359.
  • Yin, Y. (2012). Applying Scientific Principles to Resolve Student Misconceptions. Science scope, 35(8), 48-53.
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
  • Windschitl M., Thompson J., & Braaten M., (2008). Beyond the scientific method: Model-Based Inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967.
  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45–69.
  • Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science education, 81(4), 387-404.
  • Treagust, D. F., Chittelborough, G. D., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
  • Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi‐dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687-715.
  • Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Murphy Gardiner, A. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 143-166.
  • Spyrtou, A., Zoupidis, A., & Kariotoglou, P. (2008). The design and development of an ICT-enhanced Module concerning density as a property of Materials applied in floating/sinking Phenomena. Curriculum design.
  • Smith, C., Carey, S., & Wiser, M. (1985). On differentiation: A case study of the development of the concepts of size, weight, and density. Cognition, 21(3), 177-237.
  • Skoumios, M. (2009). The effect of sociocognitive conflict on students' dialogic argumentation about floating and sinking. International Journal of Environmental and Science Education, 4(4), 381-399.
  • Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modelling: An analysis of novices’ reasoning during computer-based modelling. International Journal of Science Education, 27(14). 1695–1721.
  • Shadish, W. R.; Cook, T. D.; Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Mifflin and Company.
  • Serway, R. A.; Jewett, J. W. (2006). Principles of physics: a calculus-based text(4th ed.). Nelson Education.
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Ach r, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.
  • Schwarz, C. V. (2009). Developing preservice elementary teachers’ knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720–.744.
  • Schneider, M., & Hardy, I. (2013). Profiles of inconsistent knowledge in children’s pathways of conceptual change. Developmental Psychology, 49(9), 1639.
  • Schecker, H. P. (1993). Learning physics by making models. Physics Education, 28(2), 102–106.
  • Schalkoff, R. J. (1992). Pattern recognition. John Wiley & Sons, Inc..
  • Sanger, M. J. (2006). Whatever floats (or sinks) your can. Journal of Chemical Education, 83(11), 1632.
  • Salis, F., & Frigg, R. (2017). Capturing the scientific imagination.
  • Ruppert, J., Duncan, R. G., & Chinn, C. A. (2017). Disentangling the role of domain-specific knowledge in student modeling. Research in Science Education, 1-28.
  • Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological bulletin, 100(3), 349.
  • Robertson, W. W., & Richardson, E. (1975). The development of some physical science concepts in secondary school students. Journal of Research in Science Teaching, 12(4), 319-329.
  • Portides, D. P. (2007). The relation between idealisation and approximation in scientific model construction. Science & Education, 16(7-8), 699-724.
  • Piburn, M. D., Reynolds, S. J., Leedy, D. E., McAuliffe, C. M., Birk, J. P. & Johnson, J. K. (2002). The hidden earth: visualization of geologic features and their subsurface geometry. Paper presented at the annual meeting of National Association for Research in Science Teaching, New Orleans.
  • Piaget (2005). The child’s conception of physical causality. Oxon: Routledge.
  • Perlis, A. (1962). The computer in the university. Computers and the World of the Future, 180-219.
  • Passmore, C., Stewart, J., & Cartier, J. (2009). Model-based inquiry and school science: Creating connections. School Science and Mathematics, 109(7), 394–402.
  • Paik, S., Song, G., Kim, S., & Ha, M. (2017). Developing a Four-level Learning Progression and Assessment for the Concept of Buoyancy. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 4965-4986.
  • Paik, S. H., Kim, S., & Kim, K. (2017). Suggestion of a viewpoint change for the classification criteria of redox reactions. Journal of Chemical Education, 94(5), 563-568.
  • Paik, S. H. (2015). Understanding the relationship among Arrhenius, Br nsted–Lowry, and Lewis theories. Journal of Chemical Education, 92(9), 1484-1489.
  • Novak, J. D., Rowell, J. A., & Dawson, C. J. (1977). Teaching about floating and sinking: Further studies toward closing the gap between cognitive psychology and classroom practice. Science Education, 61(4), 527-540.
  • National Research Council(1996). National education standards. Washington, D.C.: National Academy Press.
  • Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. Morrison & M. S. Morgan (Eds.), Models as mediators (pp.10–.37). Cambridge: Cambridge University Press.
  • Morell, L., Collier, T., Black, P., & Wilson, M. (2017). A constructmodeling approach to develop a learning progression of how students understand the structure of matter. Journal of Research in Science Teaching, 54(8), 1024-1048.
  • Mislevy, R. J., Haertel, G., Riconscente, M., Rutstein, D. W., & Ziker, C. (2017). Design Patterns for Model-Based Reasoning. In Assessing Model-Based Reasoning using Evidence-Centered Design (pp. 25-29). Springer, Cham.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. sage.
  • Mandinach, E., & Cline, H. (1993). Systems, science and schools. System Dynamics Review, 9(2), 195-206.
  • Magnani, L., Casadio, C., & Magnani. (2016). Model-based reasoning in science and technology. Springer.
  • M ller, K., Hardy, I., & Lange, K. (2012). Moving beyond standards: How can we improve elementary science learning? A German perspective. Making it tangible–learning outcomes in science education, 33-58.
  • Long, Y., & Aleven, V. (2017). Enhancing learning outcomes through self-regulated learning support with an open learner model. User Modeling and User-Adapted Interaction, 27(1), 55-88.
  • Leuchter, M., Saalbach, H., & Hardy, I. (2014). Designing Science Learning in the First Years of Schooling. An intervention study with sequenced learning material on the topic of ‘floating and sinking'. International Journal of Science Education, 36(10), 1751-1771.
  • Leisten, J. (1994). Teaching alchemy. Chemistry in Britain, 30(7), 552-552.
  • Lehrer, R., & Schauble, L. (2017). The Dynamic material and representational practices of modeling. Converging Perspectives on Conceptual Change: Mapping an Emerging Paradigm in the Learning Sciences, 43.
  • Lehrer, R., & Schauble, L. (2000). Developing model-based reasoning in mathematics and science. Journal of Applied Developmental Psychology, 21(1), 39-48.
  • Lederman, N. G. (2007). Nature of science: Past, present, and future. Handbook of research on science education, 2, 831-879.
  • Kousathana, M., Demerouti, M., Tsaparlis, G. (2005). Instructional misconceptions in acid-base equilibria: An analysis from a history and philosophy of science perspective. Science & Education, 14(2), 173-193.
  • Koponen, I. (2007). Models and modelling in physics education: a critical re-analysis of philosophical underpinnings and suggestions for revisions. Science and Education, 16(7–8), 751–773.
  • Kawasaki, K., Rupert Herrenkohl, L., & Yeary, S. A. (2004). Theory building and modeling in a sinking and floating unit: A case study of third and fourth grade students' developing epistemologies of science. International Journal of Science Education, 26(11), 1299-1324.
  • Justi, R., & Gilbert, J. K. (2002). Modeling, teachers’' views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369–387.
  • Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environments, 13(1–2), 15 –.37.
  • Jacobsen, E. K., Paulson, D. R., & Sanger, M. J. (2008). Soda can density and unexpected results. Journal of Chemical Education, 85(1), 18.
  • Is Water H2O? Evidence, Realism and Pluralism
    Hasok Chang Springer Science & Business Media [2012]
  • Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., & Basawapatna, A. (2011). Computational Thinking Patterns.
  • Inhelder, B., & Piaget, J. (1958). The Growth of Logical Thinking from childhood to adolescence: An essay on the construction of formal operational structures (Developmental psychology). Basic Books.
  • Howell, D. C. (2012). Statistical methods for psychology. Cengage Learning.
  • Howe, C. J. (2016). Conceptual structure in childhood and adolescence: The case of everyday physics. London: Routledge
  • Hewson, M. G. (1986). The acquisition of scientific knowledge: Analysis and representation of student conceptions concerning density. Science Education, 70(2), 159-170.
  • Hestenes, D. (1987). Toward a modelling theory of physics instruction. American Journal of Physics, 55(5), 440–454.
  • Herrmann‐Abell, C. F., & DeBoer, G. E. (2017). Investigating a learning progression for energy ideas from upper elementary through high school. Journal of Research in Science Teaching, 55(1), 68–93.
  • Hecht, E. (1996). Physics: calculus. Thomson.
  • Havu‐Nuutinen, S. (2005). Examining young children’s conceptual change process in floating and sinking from a social constructivist perspective. International journal of science education, 27(3), 259-279.
  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for learning chemistry. Science Education, 80(5), 509–.534.
  • Hardy, I., Jonen, A., M ller, K., & Stern, E. (2006). Effects of instructional support within constructivist learning environments for elementary school students' understanding of" floating and sinking.". Journal of Educational Psychology, 98(2), 307.
  • Hamid, R., & Pabunga, D. B. (2017, September). Mapping of Students’ Learning Progression Based on Mental Model in Magnetic Induction Concepts. In Journal of Physics: Conference Series, 895(1), 12147.
  • Halloun, I. A. (1996). Schematic Modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019– 1041.
  • Halliday, D.; Resnick, R.; Walker, J. (2010). Fundamentals of physics(9th ed.). Wiley
  • Hadjiachilleos, S., Valanides, N., & Angeli, C. (2013). The impact of cognitive and affective aspects of cognitive conflict on learners’ conceptual change about floating and sinking. Research in Science & Technological Education, 31(2), 133-152.
  • Guzdial, M. (2008). Education Paving the way for computational thinking. Communications of the ACM, 51(8), 25-27.
  • Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–.822.
  • Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The qualitative report, 8(4), 597-606.
  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
  • Glynn, S. M., & Duit, R. (1995). Learning science meaningfully: constructing conceptual models. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 3–.33). Mahwah, NJ: Erlbaum.
  • Gilbert, J. K., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, part 1: horses for courses. International Journal of Science Education, 20(1), 83–87.
  • Gilbert, J. K. (2008). Visualization: an emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and Practice in Science Education (pp. 3-24). Dordrecht, The Netherlands: Kluwer Academic.
  • Giere, R. N. (1991). Understanding scientific reasoning(3rd ed.). New York: Harcourt Brace Jovanovich.
  • Galilei, G. (1968). The Little Balance. McGraw-Hill.
  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school. Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
  • Duncan, R. G., & Rivet, A. E. (2013). Science learning progressions. Science, 339(6118), 396-397.
  • Duit, R., & Treagust, D. F. (1998). Learning in science: From behaviourism towards social constructivism and beyond. International handbook of science education, 1(Part 1), 3-25.
  • Dentici, O. A., Grossi, M. G., Borghi, L., De Ambrosis, A., & Massara, C. I. (1984). Understanding floating: A study of children aged between six and eight years. European Journal of Science Education, 6(3), 235-243.
  • Creswell, J. W. & Miller, D. L. 2000. Determining validity in qualitative inquiry, Theory into Practice, 39(3), 124-130.
  • Corcoran, T. B., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform.
  • Colaizzi, P. F. (1978). Psychological research as the phenomenologist views it.
  • Clement, J. J. (2000). Model-based learning as a key research area of science education. International Journal of Science Education, 22(9), 1041-1053.
  • Chi, M. T., Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self explanations improves understanding. Cognitive science, 18(3), 439-477.
  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1991). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152.
  • Chi, M. T. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. International handbook of research on conceptual change, 61-82.
  • Chi, M. T. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161-199.
  • Chamizo, J. A. (2013). A new definition of models and modeling in chemistry teaching. Science and Education, 22(7), 1613-1632.
  • Campbell, D. T. (1955). The informant in quantitative research. American Journal of Sociology, 60(4), 339-342.
  • Butts, D. P., Hofman, H. M., & Anderson, M. (1993). Is hands-on experience enough? A study of young children’s views of sinking and floating objects. Journal of Elementary Science Education, 5(1), 50-64.
  • Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding in a computational thinking-based science learning environment. User Modeling and User-Adapted Interaction, 27(1), 5-53.
  • Basu, S., Biswas, G., & Kinnebrew, J. S. (2016). Using Multiple Representations to Simultaneously Learn Computational Thinking and Middle School Science. In AAAI (pp. 3705-3711).
  • Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421.
  • 7차 과학과 교육과정
    교육인적자원부 교육인적자원부 7차 과학과 교육과정 [1997]
  • 2015 개정 과학과 교육과정.
    교육부 2015 개정 과학과 교육과정 [2015]
  • 2009 개정 과학과 교육과정.
    교육과학기술부 교육과학기술부 2009 개정 과학과 교육과정 [2009]