박사

공간능력과 빛과 그림자 문제 해결 과정의 신경과학적 차이 = Neuropsychological Difference in the Spatial Ability and the Light & Shadow Problem Solving Process

신정윤 2018년
논문상세정보
' 공간능력과 빛과 그림자 문제 해결 과정의 신경과학적 차이 = Neuropsychological Difference in the Spatial Ability and the Light & Shadow Problem Solving Process' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 초등교육( 국민학교 교육 )
  • eeg
  • 공간 능력
  • 빛과 그림자
  • 시선 이동
  • 신경과학
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
866 0

0.0%

' 공간능력과 빛과 그림자 문제 해결 과정의 신경과학적 차이 = Neuropsychological Difference in the Spatial Ability and the Light & Shadow Problem Solving Process' 의 참고문헌

  • 학습활동이 뇌파 분석에 기초한 뇌순환 학습 모형의 개발과 과학 학습에의 적용
    김용진 서울대학교 대학원 박사학위 논문 [2000]
  • 문제해결상황에서 독자의 눈동자 움직 임 및 뇌파 특성 분석: 독해력 수준에 따른 독자의 과제집착력 양상 을 중심으로
    김지희 서혁 신윤하 편지윤 독서연구, 38(0), 225-254 [2016]
  • 두뇌 기능의 리듬성에 기초한 두뇌순환학습 모형의 뇌파적 검증
    김용진 장남기 한국생물교육학회지, 28(4), 396-407 [2000]
  • 뇌파검사학
    김대식 이광우 최장욱 서울: 고려의학 [2001]
  • 공간지각 능력수준에 따른 활성화 뇌 영역의 차이: fMRI 연구
    김연희 박세훈 손진훈 이경화 한국뇌학회지, 1(2), 201-209 [2001]
  • 공간검사의 문제풀이 방략유형 탐색과 성별, 공간능력 수준별, 전공계열별 집단 차이
    주지은 이화여자대학교 대학원 박사학위논문 [2008]
  • Yu, Q., Tang, Y., Li, J., Lu, Q., Wang, H., Sui, D., & Heil, M. (2009). Sex differences of event-related potential effects during three-dimensional mental rotation. NeuroReport, 20(1), 43-47.
  • Yoon, S. Y., & Min, K. H. (2016). College students' performance in an introductory atmospheric science course: associations with spatial ability. Meteorological Applications, 23(3), 409-419.
  • Yoon, S. Y. (2011). Psychometric properties of the Revised Spatial Visualization Tests: Visualization of Rotations (The Revised PSVT:R). Doctoral Dissertation, Purdue University.
  • Yilmaz, H. B. (2009). On the development and measurement of spatial ability. International Electronic Journal of Elementary Education, 1(2), 83-96.
  • Yeongjoon, G., Ssangee, S., & Jungtae, L. (2008). EEG analysis of frontal lobe activities by decision stimuli. Future Generation Communication and Networking, 3, 30-34.
  • Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5(10), 995-1002.
  • Yang, E. M., Andre, T., Greenbowe, T. J., & Tibell, L. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25(3), 329-349.
  • Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science education, 88(3), 465-492.
  • Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68(1), 77-94.
  • Wendel, K., V is nen, O., Malmivuo, J., Gencer, N. G., Vanrumste, B., Durka, P., ... & de Peralta Menendez, R. G. (2009). EEG/MEG source imaging: methods, challenges, and open issues. Computational Intelligence and Neuroscience, 2009, 13.
  • Weiss, B., Knakker, B., & Vidny nszky, Z. (2016). Visual processing during natural reading. Scientific reports, 6.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
  • Waberski, T. D., Gobbel , R., Lamberty, K., Buchner, H., Marshall, J. C., & Fink, G. R. (2008). Timing of visuo-spatial information processing: electrical source imaging related to line bisection judgements. Neuropsychologia, 46(5), 1201-1210.
  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250-270.
  • Vandenberghe, R., & Gillebert, C. R. (2009). Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain. Behavioural Brain Research, 199(2), 171-182.
  • Van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning.
  • Valanides, N., Efthymiou, I., & Angeli, C. (2013). Interplay of Internal and External Representations: Students’ Drawings and Textual Explanations about Shadow Phenomena. Journal of Visual Literacy, 32(2), 67-84.
  • Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: links to achievement in science, technology, engineering, and mathematics?. Current Directions in Psychological Science, 22(5), 367-373.
  • Tsutsumi, E. (2004). A Mental Cutting Test using drawings of intersections. Journal for Geometry and Graphics, 8(1), 117-126.
  • Tsujii, T., Sakatani, K., Masuda, S., Akiyama, T., & Watanabe, S. (2011). Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study. Neuroimage, 58(2), 640-646.
  • Trafton, J. G., Trickett, S. B., & Mintz, F. E. (2005). Connecting internal and external representations: Spatial transformations of scientific visualizations. Foundations of Science, 10(1), 89-106.
  • Tomasino, B., & Gremese, M. (2016). Effects of stimulus type and strategy on mental rotation network: an activation likelihood estimation meta-analysis. Frontiers in Human Neuroscience, 9, 693.
  • Titus, S., & Horsman, E. (2009). Characterizing and improving spatial visualization skills. Journal of Geoscience Education, 57, 242-254.
  • Tai, R. H., Loehr, J. F., & Brigham, F. J. (2006). An exploration of the use of eye‐gaze tracking to study problem‐solving on standardized science assessments. International Journal of Research & Method in Education, 29(2), 185-208.
  • Stern, E. (2005). Pedagogy meets neuroscience. Science, 310, 745.
  • Steinhauer, H. M. (2013). Correlation between a student’s performance on the Mental Cutting Test and their 3D parametric modeling ability. Engineering Design Graphics Journal, 76(3).
  • Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics andscience? A critical review. American Psychologist, 60(9), 950– 958.
  • Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 11-20.
  • Smith, D. T., Jackson, S. R., & Rorden, C. (2005). Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 43(9), 1288-1296.
  • Slotnick, S. D., & Moo, L. R. (2006). Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory. Neuropsychologia, 44(9), 1560-1568.
  • Slavutzkaya, A. V., Gerasimenko, N. Y., & Mikhailova, E. S. (2012). Recognition of spatially transformed objects in men and women: analysis of behavior and evoked potentials. Human Physiology, 38(3), 238-248.
  • Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36, 261–268.
  • Sibley, D. F. (2005). Visual abilities and misconceptions about plate tectonics. Journal of Geoscience Education, 53(4), 471-477.
  • Shi, Z., Zheng, W., & Yang, N. (2016). Can Threatened Moral Self Make People Prefer Ecological Product?. Asia Marketing Journal, 17(4), 21-42.
  • Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604.
  • Shallice, T. I. M., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114(2), 727-741.
  • Schultz, J., Imamizu, H., Kawato, M., & Frith, C. D. (2004). Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. Journal of Cognitive Neuroscience, 16(10), 1695-1705.
  • Savelsbergh, G. J., Van der Kamp, J., Williams, A. M., & Ward, P. (2005). Anticipation and visual search behaviour in expert soccer goalkeepers. Ergonomics, 48(11-14), 1686-1697.
  • Ruff, C. C., Knauff, M., Fangmeier, T., & Spreer, J. (2003). Reasoning and working memory: common and distinct neuronal processes. Neuropsychologia, 41(9), 1241-1253.
  • Rosenzweig, M. R., Breedlove, S. M., & Watson, N. V. (2005). Biological psychology: an introduction to behavioral and cognitive neuroscience, Sinauer associate. USA (4th edn).
  • Rosenbloom, M. H., Schmahmann, J. D., & Price, B. H. (2012). The functional neuroanatomy of decision-making. Journal of Neuropsychiatry and Clinical Neurosciences, 24(3), 266-277.
  • Rommelse, N. N., Van der Stigchel, S., & Sergeant, J. A. (2008). A review on eye movement studies in childhood and adolescent psychiatry. Brain and Cognition, 68(3), 391-414.
  • Roberts, J. E., & Bell, M. A. (2003). Two-and three-dimensional mental rotation tasks lead to different parietal laterality for men and women. International Journal of Psychophysiology, 50(3), 235-246.
  • Ridderinkhof, K. R., Van Den Wildenberg, W. P., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56(2), 129-140.
  • Rao, R. P., Zelinsky, G. J., Hayhoe, M. M., & Ballard, D. H. (1997). Eye movements in visual cognition: a computational study. Urbana, 51, 61801.
  • R m , P. I. A., & Baccino, T. (2010). Eye fixation–related potentials (EFRPs) during object identification. Visual Neuroscience, 27(5-6), 187-192.
  • Prescott, J., Gavrilescu, M., Cunnington, R., O'Boyle, M. W., & Egan, G. F. (2010). Enhanced brain connectivity in math-gifted adolescents: An fMRI study using mental rotation. Cognitive Neuroscience, 1(4), 277-288.
  • Pl chl, M., Ossand n, J. P., & K nig, P. (2012). Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Frontiers in Human Neuroscience, 6.
  • Pizzagalli, D. A., Oakes, T. R., & Davidson, R. J. (2003). Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjects. Psychophysiology, 40(6), 939-949.
  • Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002). Functional imaging with low-resolution brain electromagnetic tomography (LORETA) : A review. Methods & Findings in Experimental & Clinical Pharmacology, 24(suppl C), 91-95.
  • Parker, J. (2006). Exploring the impact of varying degrees of cognitive conflict in the generation of both subject and pedagogical knowledge as primary trainee teachers learn about shadow formation. International Journal of Science Education, 28(13), 1545-1577.
  • Pallrand, G. J., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507-516.
  • Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53(2), 445-453.
  • Ossand n, J. P., Helo, A. V., Montefusco-Siegmund, R., & Maldonado, P. E. (2010). Superposition model predicts EEG occipital activity during free viewing of natural scenes. Journal of Neuroscience, 30(13), 4787-4795.
  • Oshio, R., Tanaka, S., Sadato, N., Sokabe, M., Hanakawa, T., & Honda, M. (2010). Differential effect of double-pulse TMS applied to dorsal premotor cortex and precuneus during internal operation of visuospatial information. Neuroimage, 49(1), 1108-1115.
  • Ormand, C. J., Manduca, C., Shipley, T. F., Tikoff, B., Harwood, C. L., Atit, K., & Boone, A. P. (2014). Evaluating geoscience students' spatial thinking skills in a multi-institutional classroom study. Journal of Geoscience Education, 62(1), 146-154.
  • Ooms, K., De Maeyer, P., Fack, V., Van Assche, E., & Witlox, F. (2012). Interpreting maps through the eyes of expert and novice users. International Journal of Geographical Information Science, 26(10), 1773-1788.
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113.
  • Ng, V. W. K., Bullmore, E. T., De Zubicaray, G. I., Cooper, A., Suckling, J., & Williams, S. C. R. (2001). Identifying rate-limiting nodes in large-scale cortical networks for visuospatial processing: an illustration using fMRI. Journal of Cognitive Neuroscience, 13(4), 537-545.
  • Newcombe, N., & Shipley, T. F. (2012). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity. Springer: Berlin.
  • Newcombe, N. S. (2016). Thinking spatially in the science classroom. Current Opinion in Behavioral Sciences, 10, 1-6.
  • Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H., Beckmann, J. F., & Guthke, J. (2004). Intelligence and individual differences in becoming neurally efficient. Acta Psychologica, 116(1), 55-74.
  • Nelson, C. A., Monk, C. S., Lin, J., Carver, L. J., Thomas, K. M., & Truwit, C. L. (2000). Functional neuroanatomy of spatial working memory in children. Developmental Psychology, 36(1), 109.
  • Nachev, P., & Husain, M. (2006). Disorders of visual attention and the posterior parietal cortex. Cortex, 42(5), 766-773.
  • Munzert, J., Zentgraf, K., Stark, R., & Vaitl, D. (2008). Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements. Experimental Brain Research, 188(3), 437-444.
  • Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., LeBihan, D., & Dehaene, S. (2004). Brain anatomy in Turner syndrome: evidence for impaired social and spatial–numerical networks. Cerebral Cortex, 14(8), 840-850.
  • Mizuno, K., Tanaka, M., Ishii, A., Tanabe, H. C., Onoe, H., Sadato, N., & Watanabe, Y. (2008). The neural basis of academic achievement motivation. NeuroImage, 42(1), 369-378.
  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.
  • Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 142–151.
  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal,and neurological influences. Psychological Bulletin, 86(5), 889-918.
  • Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT: R). Educational Psychology Review, 25(1), 69-94.
  • Luck, S. J. (2005) An introduction to the event-related potential technique, Cambridge, MA. MIT Press.
  • Lohman, D. F. (1994). Spatially gifted, verbally inconvenienced. In N. Colangelo, S. G. Assouline, & D. L. Ambroson (Eds.). Talent development: Proceedings from the 1993 Henry B. and Jocelyn Wallace National Research Symposium on Talent Development (pp. 251-264). Dayton, OH: Ohio Psychology Press.
  • Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Stenverg (Ed.). Advences in the psychology of human intelligence (pp. 181-248). Hillside, NJ: Erlbaum.
  • Lohman, D. F. (1979). Spatial ability: A review and re-analysis of the correlational literature(Technical Report No. 8). Stanford CA: Stanford university, School of Education, Aptitude Research Project. (NTIS No. AD-A075972).
  • Liu, H. C., & Chuang, H. H. (2011). Investigation of the impact of two verbal instruction formats and prior knowledge on student learning in a simulation-based learning environment. Interactive Learning Environments, 19(4), 433-446.
  • Linn, M., & Petersen, A. C. (1985). Emergence andcharacterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479-1498.
  • Liben, L. S., & Titus, S. J. (2012). The importance of spatial thinking for geoscience education: Insights from the crossroads of geoscience and cognitive science. Geological Society of America Special Papers, 486, 51-70.
  • Leopold, C., Gorska, R. A., & Sorby, S. A. (2001). International experiences in developing the spatial visualization abilities of engineering students. Journal for Geometry and Graphics, 5(1), 81-91.
  • Leger, P. M., Senecal, S., Courtemanche, F., de Guinea, A. O., Titah, R., Fredette, M., & Labonte-LeMoyne, E. (2014). Precision is in the eye of the beholder: Application of eye fixation-related potentials to information systems research. Journal of the Association for Information Systems, 15(10), 651.
  • Lajoie, S. P. (2003). Individual differences in spatial ability: Developing technologies to increase strategy awareness and skills. Educational Psychologist, 38(2), 115-125.
  • Kyllonen, P. C., Lohman, D. F., & Snow, R. E. (1984). Effects of aptitudes, strategy training, and task facets on spatial task performance. Journal of Educational Psychology, 76(1), 130.
  • Kretzschmar, F., Pleimling, D., Hosemann, J., F ssel, S., Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2013). Subjective impressions do not mirror online reading effort: Concurrent EEG-eyetracking evidence from the reading of books and digital media. PloS one, 8(2), e56178.
  • Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549-579.
  • Kozhevnikov, M., & Thornton, R. (2006). Real-time data display, spatial visualization ability and learning force and motion concepts. Journal of Science Education and Technology, 15, 111–132.
  • Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745-756.
  • Kosslyn, S. M., Thompson, W. L., Klm, I. J., & Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378(6556), 496-498.
  • Koshino, H., Carpenter, P. A., Keller, T. A., & Just, M. A. (2005). Interactions between the dorsal and the ventral pathways in mental rotation: an fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 5(1), 54-66.
  • Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. Journal of Neuroscience, 29(47), 14980-14986.
  • Kinsey, B., Towle, E., & Onyancha, R. M. (2009). Improvement of Spatial Ability Using Innovative Tools: Alternative View Screen and Physical Model RotatorR. Engineering Design Graphics Journal, 72(1).
  • Kimura, D. (1999). Sex and cognition. Cambridge, MA: MIT Press.
  • Kellenbach, M. L., Hovius, M., & Patterson, K. (2005). A pet study of visual and semantic knowledge about objects. Cortex, 41(2), 121-132.
  • Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110(2), 316.
  • Kaunitz, L. N., Kamienkowski, J. E., Varatharajah, A., Sigman, M., Quiroga, R. Q., & Ison, M. J. (2014). Looking for a face in the crowd: Fixation-related potentials in an eye-movement visual search task. Neuroimage, 89, 297-305.
  • Kastens, K. A., & Ishikawa, T. (2006). Spatial thinking in the geosciences and cognitive sciences: A cross-disciplinary look at the intersection of the two fields. Geological Society of America Special Papers, 413, 53-76.
  • Kang, J. S., Ojha, A., Lee, G., & Lee, M. (2017). Difference in brain activation patterns of individuals with high and low intelligence in linguistic and visuo-spatial tasks: An EEG study. Intelligence, 61, 47-55.
  • Kandel, J., Schwartz, J., & Jessll, T. (1991). Principle of neural science. 3rd edition. Elsevier. New York: NY.
  • Kamienkowski, J. E., Ison, M. J.., Quiroga, R. Q., & Sigman, M. (2012). Fixation- related potentials in visual search: A combined EEG and eye tracking study. Journal of Vision, 12(7), 1-20.
  • Kali, Y., & Orion, N. (1996). Spatial abilities of high-school students in the perception of geologic structures. Journal of Research in Science Teaching, 33, 369-391.
  • Kahana, M. J., Sekuler, R., Caplan, J. B., Kirschen, M., & Madsen, J. R. (1999). Human theta oscillations exhibit task dependence during virtual maze navigation. Nature, 399(6738), 781.
  • Jin, S. H., Kwon, Y. J., Jeong, J. S., Kwon, S. W., & Shin, D. H. (2006). Differences in brain information transmission between gifted and normal children during scientific hypothesis generation. Brain and Cognition, 62(3), 191-197.
  • Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind, 2(3), 4.
  • Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60(6), 581–592.
  • Hutzler, F., Braun, M., V , M. L. H., Engl, V., Hofmann, M., Dambacher, M., & Jacobs, A. M. (2007). Welcome to the real world: validating fixation-related brain potentials for ecologically valid settings. Brain Research, 1172, 124-129.
  • Hugdahl, K., Thomsen, T., & Ersland, L. (2006). Sex differences in visuo-spatial processing: an fMRI study of mental rotation. Neuropsychologia, 44(9), 1575-1583.
  • Hsu, Y. L., Li, W. C., & Tang, C. H. (2013). The use of eye tracking in the study of airline cabin safety communication. In International Conference on Engineering Psychology and Cognitive Ergonomics. Springer, Berlin, Heidelberg.
  • Hsu, C. Y., Tsai, C. C., & Liang, J. C. (2011). Facilitating preschoolers’ scientific knowledge construction via computer games regarding light and shadow: The effect of the prediction–observationexplanation (POE) strategy. Journal of Science Education and Technology, 20(5), 482-493.
  • Hoppe, C., Fliessbach, K., Stausberg, S., Stojanovic, J., Trautner, P., Elger, C. E., & Weber, B. (2012). A key role for experimental task performance: effects of math talent, gender and performance on the neural correlates of mental rotation. Brain and Cognition, 78(1), 14-27.
  • Herrmann, C. S., Munk, M. H. J., & Engel, A. K. (2004). Cognitive functions of gamma-band activity: Memory match and utilization. Trends in Cognitive Sciences, 8(8), 347–355.
  • Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in Cognitive Sciences, 7(11), 498-504.
  • Hegarty, M., Keehner, M., Khooshabeh, P., & Montello, D. R. (2009). How spatial abilities enhance, and are enhanced by, dental education. Learning and Individual Differences, 19(1), 61-70.
  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175-191.
  • Hegarty, M. (2014). Spatial thinking in undergraduate science education. Spatial Cognition & Computation, 14(2), 142-167.
  • Hansen, L., & Monk, M. (2002). Brain development, structuring of learning and science education: Where are we now? A review of some recent research. International Journal of Science Education, 24(4), 343-356.
  • Halari, R., Sharma, T., Hines, M., Andrew, C., Simmons, A., & Kumari, V. (2006). Comparable fMRI activity with differential behavioural performance on mental rotation and overt verbal fluency tasks in healthy men and women. Experimental Brain Research, 169(1), 1-14.
  • Guzel, N., & Sener, E. (2009). High school students’ spatial ability and creativity in geometry. Procedia-Social and Behavioral Sciences, 1(1), 1763-1766.
  • Gur, R. C., Alsop, D., Glahn, D., Petty, R., Swanson, C, L., Maldjian, J. A., Turetsky, B. I., Detre, J. A., Gee, J., & Gur, R. E. (2000). An fMRI study of sex differences inregional activation to a verbal and a spatial task, Brain and Language, 74, 157-170.
  • Guay, R. B. (1976). Purdue spatial visualization test. West Lafayette, IN: Purdue Research Foundation.
  • Grindrod, C. M., Bilenko, N. Y., Myers, E. B., & Blumstein, S. E. (2008). The role of the left inferior frontal gyrus in implicit semantic competition and selection: an event-related fMRI study. Brain Research, 1229, 167-178.
  • Gootjes, L., Bruggeling, E. C., Magn e, T., & Van Strien, J. W. (2008). Sex differences in the latency of the late event-related potential mental rotation effect. Neuroreport, 19(3), 349-353.
  • Goldsmith, L. T., Hetland, L., Hoyle, C., & Winner, E. (2016). Visual-spatial thinking in geometry and the visual arts. Psychology of Aesthetics, Creativity, and the Arts, 10(1), 56-71.
  • Goel, V., & Dolan, R. J. (2004). Differential involvement of left prefrontal cortexin inductive and deductive reasoning. Cognition, 93(3), 109-121.
  • Gluck, J., D nser, A., Steinb gl, K., & Kaufmann, H. (2007). Warning: Subtle aspects of strategy assessment may affect correlations among spatial tests. Perceptual and Motor Skills, 104(1), 123-140.
  • Gluck, J., & Fitting, S. (2003). Spatial strategy selection: Interesting incremental information. International Journal of Testing, 3(3), 293-308.
  • Ghasemi, A., Momeni, M., Jafarzadehpur, E., Rezaee, M., & Taheri, H. (2011). Visual skills involved in decision making by expert referees. Perceptual and Motor Skills, 112(1), 161-171.
  • Gerlach, C., Law, I., Gade, A., & Paulson, O. B. (2000). Categorization and category effects in normal object recognition: A PET study. Neuropsychologia, 38(13), 1693-1703.
  • Gerlach, C., Aaside, C. T., Humphreys, G. W., Gade, A., Paulson, O. B., & Law, I. (2002). Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia, 40(8), 1254-1267.
  • Geiser, C., Lehmann, W., & Eid, M. (2006). Separating "rotators" from" nonrotators" in the mental rotations test: A multigroup latent class analysis. Multivariate Behavioral Research, 41(3), 261-293.
  • Gazzaniga, M. S., Ivry R. B. & Mangun, G. R. (2008). cognitive neuroscience: the biology of the mind(3rd ed.). Network: W. W. Norton.
  • Ganley, C. M., Vasilyeva, M., & Dulaney, A. (2014). Spatial ability mediates the gender difference in middle school students' science performance. Child Development, 85(4), 1419-1432.
  • Galili, L., & Hazan, A. (2000). Learnenrs’ knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88.
  • Fitzgibbon, S. P., Pope, K. J., Mackenzie, L., Clark, C. R., & Willoughby, J. O. (2004). Cognitive tasks augment gamma EEG power. Clinical Neurophysiology, 115(8), 1802-1809.
  • Fink, A., Grabner, R. H., Neuper, C., & Neubauer, A. C. (2005). EEG alpha band dissociation with increasing task demands. Cognitive Brain Research, 24(2), 252-259.
  • Fincham, J. M., Carter, C. S., Van Veen, V., Stenger, V. A., & Anderson, J. R. (2002). Neural mechanisms of planning: a computational analysis using event-related fMRI. Proceedings of the National Academy of Sciences, 99(5), 3346-3351.
  • Fernandez, R., Dror, I. E., & Smith, C. (2011). Spatial abilities of expert clinical anatomists: Comparison of abilities between novices, intermediates, and experts in anatomy. Anatomical Sciences Education, 4(1), 1-8.
  • Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850-855.
  • Feher, E., & Rice, K. (1988). Shadows and anti‐images: Children's conceptions of light and vision. Science Education, 72(5), 637-649.
  • Fan, J., Hof, P. R., Guise, K. G., Fossella, J. A., & Posner, M. I. (2007). The functional integration of the anterior cingulate cortex during conflict processing. Cerebral Cortex, 18(4), 796-805.
  • Fairclough, S. H., Venables, L., & Tattersall, A. (2005). The influence of task demand and learning on the psychophysiological response. International Journal of Psychophysiology, 56(2), 171-184.
  • Eshach, H. (2003). Small-group interview-based discussions about diffused shadow. Journal of Science Education and Technology, 12(3), 261-275.
  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2(10), 704-716.
  • Ellison, A., Schindler, I., Pattison, L. L., & Milner, A. D. (2004). An exploration of the role of the superior temporal gyrus in visual search and spatial perception using TMS. Brain, 127(10), 2307-2315.
  • Ekstrom, R., French, J., Harman, H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.
  • Downs, R. M., & Liben, L. S. (1991). The development of expertise in geography: A cognitive-developmental approach to geographic education. Annals of the Association of American Geographers, 81(2), 304-327.
  • Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., & Kliegl, R. (2011). Coregistration of eye movements and EEG in natural reading: analyses and review. Journal of Experimental Psychology: General, 140(4), 552.
  • Devillez, H., Guyader, N., & Gu rin-Dugu , A. (2015). An eye fixation– related potentials analysis of the P300 potential for fixations onto a target object when exploring natural scenes. Journal of Vision, 15(13), 20-20.
  • De Carli, D., Garreffa, G., Colonnese, C., Giulietti, G., Labruna, L., Briselli, E., & Maraviglia, B. (2007). Identification of activated regions during a language task. Magnetic Resonance Imaging, 25(6), 933-938.
  • D'Oliveira, T. C. (2004). Dynamic spatial ability: An exploratory analysis and a confirmatory study. The International Journal of Aviation Psychology, 14(1), 19-38.
  • Cowan, J., & Allen, T. (2000). Using brainwave biofeedback to train the sequence of concentration and relaxation in athletic activities. Proceedings of 15th Association for the Advancement of Applied Sport Psychology, 95.
  • Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279(5355), 1347-1351.
  • Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24(3), 329-340.
  • Collins, A., & Koechlin, E. (2012). Reasoning, learning, and creativity: frontal lobe function and human decision-making. PLoS biology, 10(3), e1001293.
  • College Entrance Examination Board (1939). CEEB special aptitude test in spatial relations. USA.
  • Coleman, S. L., & Gotch, A. J. (1998). Spatial perception skills of chemistry students. Journal of Chemical Education, 75, 206–209.
  • Cohen, C. A., & Hegarty, M. (2012). Inferring cross sections of 3D objects: A new spatial thinking test. Learning and Individual Differences, 22(6), 868-874.
  • Cohen, C. A., & Hegarty, M. (2007). Individual differences in use of an external visualization while performing an internal visualization task. Applied Cognitive Psychology, 21, 701–711.
  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.
  • Carpenter, P. A., Just, M. A., Keller, T. A., Eddy, W., & Thulborn, K. (1999). Graded functional activation in the visuospatial system with the amount of task demand, Journal of Cognitive Neuroscience, 11(1), 9-24.
  • Carp, J., & Compton, R. J. (2009). Alpha power is influenced by performance errors. Psychophysiology, 46(2), 336-343.
  • Campbell, S. R. (2006). Educational Neuroscience: New Horizons for Research in Mathematics Education. Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, 2, 257-264.
  • Camminalcules를 이용한 귀납적 탐구 과제 수행에서 나타난 뇌파의 상대파워 스펙트럼 분석
    윤성규 정진수 한국생물교육학회지, 36(4), 456-467 [2008]
  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47.
  • Butler, T., Imperato-McGinley, J., Pan, H., Voyer, D., Cordero, J., Zhu, Y. S., & Silbersweig, D. (2006). Sex differences in mental rotation: Top–down versus bottom–up processing. Neuroimage, 32(1), 445-456.
  • Bundesen, C., Larsen, A., Kyllingsb k, S., Paulson, O. B., & Law, I. (2002). Attentional effects in the visual pathways: a whole-brain PET study. Experimental Brain Research, 147(3), 394-406.
  • Booth, J. R., MacWhinney, B., Thulborn, K. R., Sacco, K., Voyvodic, J. T., & Feldman, H. M. (2000). Developmental and lesion effects in brain activation during sentence comprehension and mental rotation. Developmental Neuropsychology, 18(2), 139-169.
  • Black, A. A. (2005). Spatial ability and earth science conceptual understanding. Journal of Geoscience Education, 53(4), 402-414.
  • Bishop, A. J. (1980). Spatial abilities and mathematics education—A review. Educational Studies in Mathematics, 11(3), 257-269.
  • Bergstrom, J. R., Schall, A. (2014). Eye tracking in user experience design. New York: Elsevier.
  • Bell, E. C., Willson, M. C., Wilman, A. H., Dave, S., & Silverstone, P. H. (2006). Males and females differ in brain activation during cognitive tasks. Neuroimage, 30(2), 529-538.
  • Basar, E., Basar-Eroglu, C., Karakaş, S., & Sch rmann, M. (2000). Brain oscillations in perception and memory. International Journal of Psychophysiology, 35(2), 95-124.
  • Baccino, T. (2011). Eye movements and concurrent ERP's: EFRPs investigations in reading. Handbook on eye movements. Oxford: Oxford University Press.
  • Baars, B. J., & Gage, N. M. (2007). Cognition, brain and consciousness. London: Elsevier.
  • Axmacher, N., Schmitz, D. P., Wagner, T., Elger, C. E., & Fell, J. (2008). Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory: a combined intracranial EEG and functional magnetic resonance imaging study. Journal of Neuroscience, 28(29), 7304-7312.
  • Asan, O., & Yang, Y. (2015). Using eye trackers for usability evaluation of health information technology: A systematic literature review. JMIR Human Factors, 2(1).
  • Anderson, J. R., Bothell, D., & Douglass, S. (2004). Eye movements do not reflect retrieval processes: Limits of the eye-mind hypothesis. Psychological Science, 15(4), 225-231.
  • Andersen, R. A. (2011). Inferior parietal lobule function in spatial perception and visuomotor integration. Comprehensive Physiology.
  • Amorapanth, P. X., Widick, P., & Chatterjee, A. (2010). The neural basis for spatial relations. Journal of Cognitive Neuroscience, 22(8), 1739-1753.
  • Allen, G. L., Cowan, C. R. M., & Power, H. (2006). Acquiring information from simple weather maps: Influences of domain-specific knowledge and general visual–spatial abilities. Learning and Individual Differences, 16(4), 337-349.
  • Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neuroscience Letters, 310(1), 57-60.