박사

Nur77 과 AMPKα를 이중 표적할 수 있는 isoalantolactone의 지방세포 분화 억제 활성 및 항비만 활성에 관한 연구 = Dual Targeting of Nur77 and AMPKα by Isoalantolactone Inhibits Adipogenesis In Vitro and Decreases Body Fat Mass In Vivo

정연섭 2018년
논문상세정보
' Nur77 과 AMPKα를 이중 표적할 수 있는 isoalantolactone의 지방세포 분화 억제 활성 및 항비만 활성에 관한 연구 = Dual Targeting of Nur77 and AMPKα by Isoalantolactone Inhibits Adipogenesis In Vitro and Decreases Body Fat Mass In Vivo' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • AMPKα
  • Anti-obesity
  • Isoalantolactone
  • nur77
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
66 0

0.0%

' Nur77 과 AMPKα를 이중 표적할 수 있는 isoalantolactone의 지방세포 분화 억제 활성 및 항비만 활성에 관한 연구 = Dual Targeting of Nur77 and AMPKα by Isoalantolactone Inhibits Adipogenesis In Vitro and Decreases Body Fat Mass In Vivo' 의 참고문헌

  • Zhao YM, Wang J, Liu HB, Guo CY, Zhang WM. Microwave-assisted extraction of alantolactone and isoalantolactone from Inula helenium. Indian J. Pharm. Sci. 77: 116-20 (2015)
  • Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr. Obesity Rep. 4: 363-70 (2015)
  • Wang S, Wang Y, Zhang Z, Liu Q, Gu J. Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death Dis. 24: e3018 (2017)
  • Wang J, Zhao YM, Tian YT, Yan CL, Guo CY. Ultrasound-assisted extraction of total phenolic compounds from Inula helenium. TheScientificWorldJournal. 2013: 157527 (2013)
  • Villena JA, Viollet B, Andreelli F, Kahn A, Vaulont S, Sul HS. Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit. Diabetes 53: 2242-9 (2004)
  • Vazquez-Vela ME, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch. Med. Res. 39: 715-28 (2008)
  • Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 60: 329-39 (2001)
  • Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc. Natl. Acad. Sci. USA 100: 44-9 (2003)
  • Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein β is required for mitotic clonal expansion during adipogenesis. Proc. Natl. Acad. Sci. USA 100: 850-5 (2003)
  • Surwit RS, Feinglos MN, Rodin J, Sutherland A, Petro AE, Opara EC, Kuhn CM, Rebuff -Scrive M. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and a/J mice. Metabolism 44: 645-51 (1995)
  • Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 311: E730-40 (2016)
  • Sever R, Glass CK. Signaling by Nuclear Receptors. Cold Spring Harb. Perspect. Biol. 5: a016709 (2013)
  • Safe S, Jin UH, Hedrick E, Reeder A, Lee SO. Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Mol. Endocriol. 28: 157-72 (2014)
  • Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: A mini-review. Gerontology 58: 15-23 (2012)
  • Saejeant K, Stephens JM. Adipogenesis. Cold Spring Harb. Perspect. Biol. 4: a008417 (2012)
  • Ruiz-Ojeda FJ, Ruperez AI, Gomez-Llorente C, Gil A, Aquilera CM. Cell models and their application for studying adipogenic differentiation in relation to obesity: A review. Int. J. Mol. Sci. 17: E1040 (2016)
  • Rosenn ED. The transcriptional basis of adipocyte development. Prostaglandins Leukot. Essent. Fatty Acids 73: 31-4 (2005)
  • Reichert M, Eick D. Analysis of cell cycle arrest in adipocyte differentiation. Oncogene 18: 459-66 (1999)
  • Pearen MA, Muscat GE. Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol. Endocrinol. 24: 1891-903 (2010)
  • Otto TC, Lane MD. Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40: 229-42 (2005)
  • O'Keefe JH, Bell DS. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am. J. Cardiol. 100: 899-904 (2007)
  • Ntambi JM, Kim YC. Adipocyte differentiation and gene expression. J. Nutr. 130: 3122S-3126S (2000)
  • Niemela S, Miettinen S, Sarkanen JR, Ashammakhi N. Adipose tissue and adipocyte differentiation: molecular and cellular aspects and tissue engineering applications. Topics in Tissue Engineering. 4: 1-26 (2008)
  • Nesterova IuV, Zelenskaia KL, Vetoshkina TV, Aksinenko SG, Gorbacheva AV, Gorbatykh NA. Mechanisms of antistressor activity of Inula helenium preparations. Eksp Klin Farmakol. 66: 63-5 (2002)
  • Moule SK, Denton RM. The activation of p38 MAPK by the beta-adrenergic agonist isoproterenol in rat epididymal fat cells. FEBS Lett. 439: 287-90 (1998)
  • Min B, Lee H, Song JH, Han MJ, Chung J. Arctiin inhibits adipogenesis in 3T3-L1 cells and decreases adiposity and body weight in mice fed a high-fat diet. Nutr. Res. Pract. 8: 655-61 (2014)
  • Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13: 1016-23 (2011)
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86: 271-8 (1978)
  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Sch tz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell 15: 835-9 (1995)
  • Maira M, Martens C, Phillips A, Drouin J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol. Cell Biol. 19: 7549-57 (1999)
  • MacDougald OA, Lane MD. Adipocyte differentiation. When precursors are also regulators. Curr. Biol. 5: 18-21 (1995)
  • Li ZS, Noda K, Fujita E, Manabe Y, Hirata T, Sugawara T. The green algal carotenoid siphonaxanthin inhibits adipogenesis in 3T3-L1 preadipocytes and the accumulation of lipids in white adipose tissue of KK-Ay mice. J. Nutr. 145: 490-98 (2015)
  • Li XP1, Yu J, Luo JY, Li HS, Han FJ, Chen XG, Hu ZD. Simultaneous determination of chlorogenic acid, caffeic acid, ferulic acid, protocatechuic acid and protocatechuic aldehyde in Chinese herbal preparation by RP-HPLC. Chem. Pharm. Bull. 52: 1251-4 (2014)
  • Li SF, Guo L, Qian SW, Liu Y, Zhang YY, Zhang ZC, Zhao Y, Shou JY, Tang QQ, Li X. G9a is transactivated by C/EBPβ to facilitate mitotic clonal expansion during 3T3-L1 preadipocyte differentiation. Am. J. Physiol. Endocrinol. Methb. 304: E990-8 (2013)
  • Li HX, Xiao L, Wang C, Gao J, Zhai YG. Review: epigenetic regulation of adipocyte differentiation and adipogenesis. J. Zhejiang Univ. Sci. B. 11: 784-91 (2010)
  • Letran SE, Lee SJ, Atif SM, Flores-Langarica A, Uematsu S, Akira S, Cunningham AF, McSorley SJ. TLR5-deficient mice lack basal inflammatory and metabolic defects but exhibit impaired CD4 T cell responses to a flagellated pathogen. J. Immunol. 186: 5406-12 (2011)
  • Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol. Metab. 23: 107-14 (2009)
  • Lee SO, Li X, Khan S, Safe S. Targeting NR4A1 (TR3) in cancer cells and tumors. Expert. Opin. Ther. Targets 15: 195-206 (2011)
  • Lee SO, Li X, Hedrick E, Jin UH, Thalkens RB, Backors DS, Li L, Zhang Y, Wu Q, Safe S. Diindolylmethane analogs bind NR4A1 and are NR4A1 antagonists in colon cancer cells. Mol. Endocrinol. 28: 1729-39 (2014)
  • Lee SO, Andey T, Jin UH, Kim K, Singh M, Safe S. The nuclear receptor TR3 regulates mTORC1 signaling in lung cancer cells expressing wild-type p53. Oncogene 31: 3265-76 (2012)
  • Kotsis V, Nilsson P, Grassi G, Mancia G, Redon J, Luft F, Schmieder R, Engeli S, Stabouli S, Antza C, Pall D, Schlaich M, Jordan J. New developments in the pathogenesis of obesity-induced hypertension. J. Hypertens. 33: 1499-508 (2015)
  • Komishi T, Shimada Y, Nagao T, Okabe H, Konoshima T. Antiproliferative sesquiterpene lactones from the roots of Inula helenium. Bio. Pharm. Bull. 25: 1370-2 (2002)
  • Klipsic D, Landrock D, Martin GG, McIntosh AL, Landrock KK, Mackie JT, Schroeder F, Kier AB. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation. Am. J. Physiol. Gastrointest. Liver Physiol. 309: G387-99 (2015)
  • Kim M, Song K, Kim YS. Alantolactone improves palmitate-induced glucose intolerance and inflammation in both lean and obese states in vitro: Adipocyte and adipocyte-macrophage co-culture system. Int. Immunopharmacol. 49: 187-94 (2017)
  • Kim M, Park JE, Song SB, Cha YS. Effects of black adzuki bean (Vigna angularis) extract on proliferation and differentiation of 3T3-L1 preadipocytes into mature adipocytes. Nutrients 7: 277-92 (2015)
  • Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med. 48: e224 (2016)
  • Khan AL, Hussain J, Hamayun M, Gilani SA, Ahmad S, Rehman G, Kim YH, Kang SM, Lee IJ. Secondary metabolites from Inula britannica L. and their biological activities. Molecules 15: 1562-77 (2010)
  • Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 32: 1431-7 (2008)
  • Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, Bergman RN. Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am. J. Physiol. Endocrinol. Metab. 288: E454-61 (2005)
  • Jang MK, Yun YR, Kim JH, Park MH, Jung MH. Gomisin N inhibits adipogenesis and prevents high-fat diet-induced obesity. Sci. Rep. 7: 40345 (2017)
  • Jakobsson T, Vedin LL, Parini P. Potential role of thyroid receptor β agonists in the treatment of hyperlipidemia. Drugs 77: 1613-21 (2017)
  • Im JY, Ki HH, Xin M, Kwon SU, Kim YH, Kim DK, Hong SP, Jin JS, Lee YM. Anti-obesity effect of Triticum aestivum sprout extract in high-fat-diet-induced obese mice. Biosci. Biotechnol. Biochem. 79: 1133-40 (2015)
  • Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ, Kao YH. Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am. J. Physiol. Cell Physiol. 288: C1094-108 (2005)
  • Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr. Res. Rev. 23: 270-99 (2010)
  • Hardie DG. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta. Pharm. Sin. B. 6: 1-19 (2016)
  • Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int. J. Obes. 32: S7-12 (2008)
  • Guo J, Jou W, Gavrilova O, Hall KD. Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS One 4: e5370 (2009)
  • Guo H, Ling W. The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Rev. Endocr. Metab. Disord. 16: 1-13 (2015)
  • Gu G, Gelsomino L, Covington KR, Beyer AR, Wang J, Rechoum Y, Huffman K, Carstens R, And S, Fuqua SA. Targeting thyroid hormone receptor beta in triple-negative breast cancer. Breast Cancer Res. Treat. 150: 535-45 (2015)
  • Fumoto T, Yamaguchi T, Hirose F, Osumi T. Orphan nuclear receptor Nur77 accelerates the initial phase of adipocyte differentiation in 3T3-L1 cells by promoting mitotic clonal expansion. J. Biochem. 141: 181-92 (2007)
  • Figarola JL, Rahbar S. Small‑molecule COH-SR4 inhibits adipocyte differentiation via AMPK activation. Int. J. Mol. Med. 31: 1166-76 (2013)
  • Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J. Gastroenterol. 20: 1746-55 (2014)
  • Dubon MJ, Byeon Y, Park KS. Substance P enhances the activation of AMPK and cellular lipid accumulation in 3T3‑L1 cells in response to high levels of glucose. Mol. Med. Rep. 12: 8048-54 (2015)
  • Douglas IJ, Bhaskaran K, Batterham RL, Smeeth L. The effectiveness of pharmaceutical interventions for obesity: weight loss with orlistat and sibutramine in a United Kingdom population-based cohort. Br. J. Clin. Pharmacol. 79: 1020-7 (2015)
  • De Magalhaes Filho CD, Downes M, Evans RM. Farnesoid X receptor an emerging target to combat obesity. Dig. Dis. 35: 185-90 (2017)
  • Cordido F, Garcia-Mayorb RV, Larranagab A. Obesity, adipose tissue, inflammation and update on obesity management. Obes. Control Ther. 1: 1-8 (2014)
  • Clapper JR, Hendricks MD, Gu G, Wittmer C, Dolman CS, Herich J, Athanacio J, Villescaz C, Ghosh SS, Heilig JS, Lowe C, Roth JD. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am. J. Physiol. Gastrointest Liver Physiol. 305: G483-95 (2013)
  • Chaadaeva AV, Tenkeeva II, Moiseeva EV, Svirshchevskaia EV, Demushkin VP. Antitumor activity of the plant remedy peptide extract PE-PM in a new mouse T-lymphoma/eukemia model. Biomed. Khim. 55: 81-8 (2008)
  • Bullo M, Casas-Agustench P, Amigo-Correig P, Aranceta J, Salas-Salvado J. Inflammation, obesity and comorbidities: The role of diet. Public Health Nutr. 10: 1164-72 (2007)
  • Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin. Sci. 124: 491-507 (2013)
  • Banerji MA, Buckley MC, Chaiken RL, Gordon D, Lebovitz HE, Kral JG. Liver fat, serum triglycerides and visceral adipose tissue in insulin-sensitive and insulin-resistant black men with NIDDM. Int. J. Obes. Relat. Metab. Disord. 19: 846-50 (1995)
  • Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm. 2010: 802078 (2010)