박사

일회성 고강도 인터벌 운동과 중강도 지속성 운동이 건강한 성인의 혈당 조절 및 엑소좀 수준에 미치는 영향

공지영 2018년
논문상세정보
' 일회성 고강도 인터벌 운동과 중강도 지속성 운동이 건강한 성인의 혈당 조절 및 엑소좀 수준에 미치는 영향' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 엑소좀
  • 운동강도
  • 인슐린 저항성
  • 일회성운동
  • 혈당 항상성
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
143 0

0.0%

' 일회성 고강도 인터벌 운동과 중강도 지속성 운동이 건강한 성인의 혈당 조절 및 엑소좀 수준에 미치는 영향' 의 참고문헌

  • 질병관리본부 국민건강영양조사; 국민 건강 통계 2015
    http://cdc.go.kr/CDC/contents/CdcKrContentView.jsp?cid=60599&menuIds=HOME001-MNU1130-MNU1639-MNU1640-MNU1642 [2015]
  • 운동이 당대사에 미치는 영향
    김소헌 J Korean Diabetes, 12: 21-24 [2011]
  • 대사질환에서 바이오마커로서 엑소좀과 미소포낭
    이성규 Korean J Obes, 23(3): 150-155 [2014]
  • 규칙인 운동을 통한 비만관련 대사증후군의 예방 치료의 가능성: 유 산소성 운도강도가 복부 비만, 인슐린 항성 염증반응의 개선에 미치는 영향 을 심으로
    박수현 성균관대학교 일반대학원 박사학위논문 [2008]
  • Zhao, Y., Sun, X., Cao, W., Ma, J., Sun, L., Qian, H., Zhu, W., Xu, W. (2015). Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury. Stem Cells Int. 2015: 761-643.
  • World Health Organization (2017). Fact sheet on obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/
  • World Health Organization (2016). Global Report on Diabetes. http://www.who.int/diabetes/global-report/en/.
  • Winnick, J. J., Sherman, W. M., Habash, D.L., Stout, M. B., Failla, M. L., Belury, M. A., Schuster, D. P. (2008). Short-term aerobic exercise training in obese humans with type 2 diabetesmellitus improves whole-body insulin sensitivity through gains in peripheral, not hepatic insulin sensitivity. J Clin Endocrinol Metab. 93: 771-778.
  • Whyte, L. J., Gill, J. M., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health- related outcomes in sedentary overweight/ obese men. Metabolism, 59(10), 1421-1428.
  • Wang, Y., Simar, D., Fiatarone, Singh, M. A. (2009). Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: a systematic review. Diabetes Metab Res Rev, 25:1340.
  • Wallberg-Henriksson, H., Holloszy, J. O. (1985). Activation of glucose transport in diabetic muscle: responses to contraction and insulin. Am J Physiol, 249(1), 233-237
  • Vivien, C., Boisseau, N., Otero, Y. F., Combaret, L., Dardevet, D., Montaurier, C., Delcros, G., Peltier, S. L., Sirvent, P. (2017). Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep. 7(1): 204.
  • Valadi, H., Ekstr m, K., Bossios, A., Sj strand, M., Lee, J. J., L tvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9(6): 654-659.
  • Unger, R. H. (1995). Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes, 44, 863-870.
  • Trombold, J. R., Christmas, K. M., Machin, D. R., Kim, I. Y., & Coyle, E. F. (2013). Acute high- intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation. Journal of Applied Physiology, 114(6), 792-800.
  • Suzuki, K., Nakaji, S., Yamada, M., Totsuka, M., Sato, K., Sugawara, K. (2002). Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev. 8: 6-48.
  • Suh, S. H., Paik, I. Y., Jacobs, K. (2007). Regulation of blood glucose homeostasis during prolonged exercise. Mol Cells, 23, 272-279.
  • Speakman, J. R. & Selman, C. (2003). Physical activity and resting metabolic rate. Proceedings of The Nutrition Society, 62(03), 621-634.
  • Sloth, M., Sloth, D., Overgaard, K., & Dalgas, U. (2013). Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta ‐analysis. Scandinavian Journal of Medicine and Science in Sports, 23(6), e341-e352.
  • Sijie, T., Hainai, Y., Fengying, Y., & Jianxiong, W. (2012). High intensity interval exercise training in overweight young women. The Journal of sports medicine and physical fitness, 52(3), 255-262.
  • Sigal, R. J., Kenny, G. P., Boule, N. G., Wells, G.A., Prud'homme, D., Fortier, M., Reid, R. D., Tulloch, H., Coyle, D., Phillips, P., Jennings, A., Jaffey, J. (2007). Effects of aerobic training, resistance training, or both on glycemic control in type2 diabetes: a randomized trial. Ann Intern Med. 147: 357-369.
  • Shulman, G. I. (1999). Cellular mechanisms of insulin resistance in human. American Journal of Cardiology, 84, 3-10.
  • Sherwood, N. E., Jeffery, R. W. (2000). The behavioral determinants of exercise: implications for physical activity interventions. Annu Rev Nutr. 20: 21-44.
  • Shepherd, P. R., & Kahn, B. B. (1999). Glucose transporters and insulin action: implications forinsulin resistance and diabetes mellitus. New England Journal of Medicine, 341, 248-257.
  • Segerstrom, A. B., Glans, F., Eriksson, K. F., et al. (2008). Assessment of exercise capacity in women with type 2 diabetes. Clinical Physiology and Functional Imaging, 28(5), 294-298.
  • Segal, K. R., & Edono, A. (1991). Effects of exercise training on insulin sensitivity and glucose metabolism in lean, obesity, and diabetes men. Journal of Applied Physiology, 71, 2402-2411.
  • Safdar, A., Saleem, A., Tarnopolsky, M. A. (2016). The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol. 12(9):504-517.
  • Richter, E. A., Garetto, L. P., Goodman, M. N., & Ruderman, N. B. (1982). Muscle metabolism following exercise in the rat Increased sensitivity to insulin. Journal of Clinical Investigation, 69, 785-793.
  • Ren, J. M., Semenkovich, C. F., Gulve, E. A., Gao, J. & Holloszy, J. O. (1994). Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem, 269, 14396–14401.
  • Rector, R. S., Warner, S. O., Liu, Y., Hinton, P. S., Sun, G. Y., Cox, R. H., Stump, C. S., Laughlin, M .H., Dellsperger, K. C., Thomas, T. R. (2007). Exercise and diet induced weight loss improves measures of oxidative stress and insulin sensitivity in adults with characteristics of the metabolic syndrome. Am J Physiol Endocrinol Metab, 239(2), E500-506.
  • Reaven, G. M. (1988). Roleofinsulin resistancein human disease. Diabetes, 37(12), 1595-1607.
  • Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska, A., Ratajczak, M. Z. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 20(9): 1487-1495.
  • Praet, S. F. E., Van Rooij, E. S. J., Wijtvliet, A., et al. (2008). Brisk walking compared with an individualized medical fitness program for patients with type 2 diabetes: A randomized controlled trial. Diabetologia, 51, 736-746.
  • Perry, C. G., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 33(6), 1112-1123.
  • Okata, T., Kawano, Y., Sakakibara, T., Hazeki, O., & Ui, M. (1994). Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. Journal of Biology Chemistry, 269, 3568-3573.
  • Ojimaa, K. O. et al. (2014). Proteomic analysis of secreted proteins from skeletal muscle cells during differentiation. EuPA Open Proteom. 5, 1–9.
  • O'Gorman, D. J., Karlsson, H. K., McQuaid, S, Yousif, O., Rahman, Y., Gasparro, D., Glund, S., Chibalin, A. V., Zierath, J. R., Nolan, J. J. (2006). Exercise training increases insulinstimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia. 49: 2983-292.
  • Mougios, V., Kazaki, M., Christoulas, K., Ziogas, G., Petridou, A. (2006). Does the intensity of an exercise programme modulate body composition changes. Int J Sports Med. 27(3): 178-181.
  • Miyashita, M., Burns, S. F., & Stensel, D. J. (2009). Acute effects of accumulating exercise on postprandial lipemia and c-reactive protein concentrations in young men. International Journal of Sports Nutrition and Exercise Metabolism, 19, 569-582.
  • Miyashita, M., Burns, S. F., & Stensel, D. J. (2006). Accumulating short bouts of running exercise throughout the day reduces postprandial plasma triacylglycerol concentrations and resting blood pressure in healthy young men. Journal of Physical Activity and Health, 3, 112-123.
  • Michishita, R., Shono, N., Kasahara, T., & Tsuruta, T. (2008). Effects of low intensity exercise therapy on early phase insulin secretion in overweight subjects with impaired glucose tolerance and Type 2 diabetes mellitus. Diabetes Research and Clinical Practice, 82, 291-297.
  • Marcus, R. L., Smith, S., Morrell, G., et al. (2008). Comparison of combined aerobic and high force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus. Physical Therapy, 88(11), 1345-1353.
  • Malatesta, D., Werlen, C., Bulfaro, S., Cheneviere, X., & Borrani, F. (2009). Effect of high-intensity interval exercise on lipid oxidation during postexercise recovery. Medicine and Science in Sports and Exercise, 41(2), 364-374.
  • Magkos, F., Mohammed, B. S., Patterson, B. W., & Mittendorfer, B. (2009). Free fatty acid kinetics in the late phase of postexercise recovery: importance of resting fatty acid metabolism and exercise-induced energy deficit. Metabolism, 58(9), 1248-1255.
  • M ller G. (2012). Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes. 5: 247-282.
  • Lotvall, J. et al. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913.
  • Lazzer, S., Lafortuna, C., Busti, C., Galli, R., Agosti, F., & Sartorio, A.(2011). Effects of low-and high-intensity exercise training on body composition and substrate metabolism in obese adolescents. Journal of Endocrinological Investigation, 34(1), 45-52.
  • Larsen, I., Welde, B., Martins, C., & Tj nna, A. E. (2014). High‐and moderate intensity aerobic exercise and excess post‐exercise oxygen consumption in men with metabolic syndrome. Scandinavian Journal of Medicine and Science in Sports, 24(3), e174-e179.
  • Korea Diabetes Association (2015). Korean Diabetes Fact Sheet 2015. http://www.diabetes.or.kr/pro/news/admin.php?code=admin&number=1331&mode=view.
  • Kokkinos, P. F., Narayan, P., Papademetriou, V. (2001). Exercise as hypertension therapy. Cardiol Clin. 19(3): 507-516.
  • King, D. S., Staten, M. A., Kohrt, W. M., Dalsky, B. P., Elahi, D., Holloszy, J. (1990). Insulin secretory capacity in endurance-trained and untrained youngmen. Am J Physiol, 259(2Pt1), 155-161.
  • Kessler, H. S., Sisson, S. B., Short, K. R. (2012). The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 42(6): 489-509.
  • Johnson, J. L., Slentz, C. A., Houmard, J. A., Samsa, G. P., Duscha, B. D., Aiken, L. B., McCartney, J. S., Tanner, C. J., Kraus, W. E. (2007). Exercise training amount and intensity effects on metabolic syndrome (from Studies of a Targeted Risk Reduction Intervention through Defined Exercise). Am J Cardiol. 100(12): 1759-1766.
  • Jansson, E., & Kaijer, L. (1987). Substrate utilization and enzymes in skeletal muscle of extremely endurances trained men. Journal of Applied Physiology, 62, 199.
  • Irving, B. A., Davis, C.K., Brock, D. W., Weltman, J. Y., Swift, D., Barrett, E. J., Gaesser, G. A., Weltman, A. (2008). Effect of exercise training intensity on abdominal visceral fat and body composition. Med Sci Sports Exerc. 40(11): 1863-1872.
  • Ibanez, J., Izquierdo, M., Arguelles, I., Forga, L., Larrion, J. L., Garosiaga-Unciti M., Idoate, F., Gorostiaga, E. M. (2005). Twiceweekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care. 28: 662-667.
  • Hood, D. A. (2001). Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. Appl. Physiol. 90, 1137–1157.
  • Holten, M. K., Zacho, M., Gaster, M., Juel, C., Wojtaszewski, J. F., Dela, F. (2004). Strength training increases insulinmediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2diabetes. Diabetes. 53: 294-305.
  • Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise and circulating cortisol levels: the intensity threshold effect. Journal of Endocrinological Investigation, 31(7), 587-591.
  • Heath, G. W., Gavin, J. R., Hinderliter, J. M., Bloomfield, S. A., Holloszy, J. O., (1983). Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J Appl physiol, 55(2), 512-517.
  • Hazell, T. J., Olver, T. D., Hamilton, C. D., & Lemon, P. W. (2012). Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. International Journal of Sport Nutrition and Exercise Metabolism, 22(4), 276-283.
  • Hardin, D. S. B., Azzarelli, J., & Edwards, J. (1995). Mechanisms of enhanced insulin sensitivity in endurance-trained athletes: effectson blood flow and differential expression of GLUT4 in skeletal muscle. Journal of Clinical Endocrinology Metabolism, 80, 2347-2446.
  • Goodpaster, B. H., Katsiaras, A., Kelly, D. E. (2003). Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes, 52(9), 2191-2197.
  • Gist, N. H., Fedewa, M. V., Dishman, R. K., & Cureton, K. J. (2014). Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Medicine, 44(2), 269-279.
  • Gillen, J. B., Little, J. P., Punthakee, Z., Tarnopolsky, M. A., Riddell, M. C., Gibala, M. J. (2012). Acute high-intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes. Diabetes Obes Metab. 14(6): 575-577.
  • Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P. & Diez-Juan, A. (2016). Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc. Res. 109, 397–408.
  • Fruhbeis, C., Helmig, S., Tug, S., Simon, P. & KramerAlbers, E. M. (2015). Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell. Vesicles 4, 28239.
  • Forterre, A. et al. (2014). Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast–myotube cross talk? PLoS ONE 9, e84153.
  • Feene, E. P., & King, G. L. (1997). Vascular dysfunction in diabetes mellitus. Lancet, 350(1), 13-19.
  • Eriksson, J., & Taimela, S. (1997). Exercise and the metabolic syndrome. Diabetologia, 40, 125-135.
  • Dela, F. et al. (1994). Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes 43, 862–865.
  • Cuff, D. J., Meneilly, G.S., Martin, A., Ignaszewski, A., Tildesley, H. D., Frohlich JJ. (2003). Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care. 26: 2977-2982.
  • Colberg, S. R., Sigal, R. J., Fernhall, B., Regensteiner, J. G., Blissmer, B. J., Rubin, R. R., Chasan-Taber, L., Albright, A. L., Braun, B. (2010). Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care, 33:e, 147-67.
  • Christ-Roberts, C. Y., Pratipanawatr, T., Pratipanawatr, W., Berria, R., Belfort R, Kashyap, S., Mandarino, L. J. (2004). Exercisetraining increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2 diabetic subjects. Metabolism 53: 1233-42.
  • Christ, E. R., Zehnder, M., Boesch, C., Trepp, R., Mullis, P.E., Diem, P., Decombaz, J.(2006). The effect of increased lipid intake on hormonal responses during aerobic exercise in endurance-trainedmen. Eur. J. Endocrinol, 154:397-403.
  • Cartee, G. D., Young, D. A., Sleeper, M. D., Zierath, J., Wallberg-Henriksson, H., Holloszy, J. O. (1989). Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol. 256(1): 494-499.
  • Carsten, F., Helmig, S., Tug, S., Simon, P., Kr mer-Albers, E. M. (2015). Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 4: 28239.
  • Camussi, G., Deregibus, M. C., Bruno, S., Grange, C., Fonsato, V., Tetta, C. (2011). Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 1(1): 98-110.
  • Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78(9): 838-848.
  • Campos, E. Z., Bastos, F. N., Papoti, M., Freitas Junior, I. F., Gobatto, C. A., & Balikian Junior, P. (2012). The effects of physical fitness and body composition on oxygen consumption and heart rate recovery after high-intensity exercise. International Journal of Sports Medicine. 33(8): 621-627.
  • Campbell, L., Wallman, K., & Green, D. (2010). The effects of intermittent exercise on physiological outcomes in an obese population: continuous versus interval walking. Journal of Sports Science and Medicine. 9: 24-30.
  • Camacho, R. C., Galassetti, P., Davis, S. N., & Wasserman, D. H. (2005). Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exercise and Sport Sciences Reviews. 33(1): 17-23.
  • Bruce, R. A., Blackmon, J. R., Jones, J. W., & Strait, G. (2004). Exercising testing in adult normal subjects and cardiac patients. 1963. Annals of Noninvasive Electrocardiology. 9(3): 291-303.
  • Brehm, B. R., Zvizdic, M., Bernhard, R., Hoffmeister, H. M., Wolf, S. C., Karsch, K. R. (1998). Dynamic regulation of beta-adrenergic receptors by endothelin-1 in smooth-muscle cells. J Cardiovasc Pharmacol. 1: 77-80.
  • Boutcher, S. H. (2011). High-intensity intermittent exercise and fat loss. Journal of Obesity. 2011(Article ID: 868305): 1-10.
  • Bartlett, J. D., Close, G. L., MacLaren, D. P., Gregson, W., Drust, B., & Morton, J. P. (2011). High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. Journal of sports sciences. 29(6): 547-553.
  • Aswad, H. et al. (2014). Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia. 57: 2155–2164.
  • Assah, F. K., Brage, S., Ekelund, U., & Wareham, N. J. (2008). The association of intensity and overall level of physical activity energy expenditure with a marker of insulin resistance. Diabetologia. 51: 1399-1407.
  • Amer, A. S. (2002). Intracellular calcium ion response to glucose in beta-cells of calbindin-D28k nullmutant mice and in betaHC13 cells overexpressing calbindin-D28k. Endocrine. 18(3): 221-229.
  • Alkahtani, S. (2014). Comparing fat oxidation in an exercise test with moderate-intensity interval training. Journal of Sports Science and Medicine. 13(1): 51-58.
  • Alesci, S., De Martino M. U., Ilias I., Gold P. W., Chrousos G. P. (2005). Glucocorticoid-induced osteoporosis: from basic mechanisms to clinicalaspects. Neuroimmunomodulation. 12: 1-19.
  • Albert, M. A., Glynn, R. J., Ridker, P. M. (2004). Effect of physical activity on serum C-reactive protein. Am J Cardiol. 93(2): 221-225.
  • ACSM. (2000). ACSM Guidelines for exercise testing and prescription. 6th ed. Philadelpia, Lippincott Williams and Wilkins.