박사

Corrosion and fracture characteristics of low-alloy steels for power plants

논문상세정보
' Corrosion and fracture characteristics of low-alloy steels for power plants' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Acid corrosion
  • Carbon steel
  • Fracture mechanics
  • Microbiologically influenced corrosion
  • Stress intensity factor
  • low-alloy steel
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
76 0

0.0%

' Corrosion and fracture characteristics of low-alloy steels for power plants' 의 참고문헌

  • http://www.substech.com.
  • http://www.deryckgibson.com/energy-services/babcock-wilcox/
  • Z. Y. Chen, L. Huang, G. A. Zhang, Y. B. Qiu. X. P. Guo, Benzotriaziole as a volatile corrosion inhibitor during the early stage of copper corrosion under absorbed thin electrolyte layers, Corros. Sci. 65 (2012) 214-222.
  • Z. Liu, Y. Kobayashi, K. Nagai, J. Yang, and M. Kuwabara, Morphology control of copper sulfide in strip casting of low carbon steel, ISIJ Int.46 (2006) 744-753.
  • Y.S. Choi, J.G. Kim, Corrosion 61, 5 (2005).
  • Y. Zou, J. Wang, Y. Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel.
  • Y. Zou, J. Wang, Y. Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel in seawater, Corros. Sci. 53 (2011) 208-216.
  • Y. Yazawa, Y. Ozaki, Y. Kato, JSAE Rev 24, 483 (2003).
  • Y. Y. Chen, S. C. Chung, and H. C. Shih, CHEN, Y. Y.; CHUNG, S. C.; SHIH, H. C. Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride, Corros. Sci.48 (2006) 3547-3564.
  • Y. Y. Chen, H. J. Tzeng, L. I. Wei, H. C. Shih, RETRACTED: Mechanical properties and corrosion resistance of low-alloy steels in atmospheric conditions containing chloride, Mater. Sci. and Eng. A398 (2005) 47-59.
  • Y. W. Jang, J.H. Hong, J. G. Kim, Effects of copper on the corrosion properties of low-alloy steel in an acid-chloride environment, Met. Mater. Int. 15 (2009) 623-629.
  • Y. Park, L.J. Chung, S.H. Lee, POSCO Tech. Rep. 12, 23 (2007).
  • Y. Ishiguro, K. Sato, T. Murayama, Precipitation of copper sulphide in ultra low carbon steel containing residual level of copper, Mater. Transac. 46 (2005) 769-778.
  • X. Li, H. Wang, C. Hu, M. Yang, H. Hu, J. Niu, Characteristics of biofilms and iron corrosion scales with ground and surface waters in drinking water distribution systems Corros. Sci. 90 (2015) 331-339.
  • W.S. Li, J.L. Luo, Corros. Sci. 44, 1695 (2002).
  • W.S. Ji, Y. W. Jang, J.G. Kim, Met. Mater. Int. 17, 463 (2011).
  • W.C. Luu, W.C. Chiang, J.K. Wu, Mater. Lett. 59, 3295 (2005).
  • W. Wang, A. Zhou, G. Fu, C. Q. Li, D. Robert, M. Mahmoodian, Evaluation of stress intensity factor for cast iron pipes with sharp corrosion pits, Eng. Fail. Anal. 81 (2017) 254-269.
  • W. P. Dow, H. S. Huang, Roles of chloride in microvia filling by copper electrodeposiotion: I. Studies using SEM and optical microscope, J. Electrochem. Soc.152 (2005) C67-C76.
  • W. P. Dow, H. S. Huang, M. Y. Yen, H. H Chen, Roles of chloride in microvia filling by copper electrodeposiotion : II. Studies using EPR and galvanostatic measurements, J. Electrochem. Soc. 152 (2005) C77-C88.
  • W. Hou , C. Liang, Corrosion 55, 1 (1999).
  • W. H. LI, J. H. YE, and S. F. Y. LI, Electrochemical deposition of Copper on patterned Cu/Ta (N)/SiO2 surfaces for super filling of sub-micron features, Appl. Electrochem.31 (2001) 1395-1397.
  • V.J. Drazic, D.M. Drazic, V. Jevtic, J. Serb. Chem. Soc. 52, 711 (1987).
  • V. Shankar Rao, V. S. Raja, R. G. Baligidad, and R. Raman, Corros. Eng. Sci. Tech. 38, 235 (2003).
  • V. Shankar Rao, H.S. Kwon, J Electrochem. Soc. 154, C255 (2007).
  • V. Shankar Rao, Electrochim. Acta 49, 4533 (2004).
  • V. S. Sastri, Corrosion Inhibitors: Principles and Applications, John Wiley & Sons Ltd., Chichester, 1998.
  • T.V. Shibaeva, V.K. Laurinavichyute, G.A. Tsirlina, A.M. Arsenkin, K. V. Grigorovich, Corros. Sci. 80, 299 (2014).
  • T. Tereshchenko, N. Nord, The importance of increased knowledge on reliability of district heating pipes, Procedia Eng. 146 (2016) 415-423.
  • T. Misawa, N. Kobayashi, S. Komazaki, Size effect of copper precipitation particles on electrochemical nanoscopic galvanic behaviour in Cu-added ultra low carbon steel, Mater. Trans. 43 (2002) 1348-1351.
  • T. L. Gerber et al., Acceptance criteria for structural evaluation of errosion-corrosion thinning in carbon steel piping(NP-5911), EPRI 1757-61 Final Report, Electric Power Research Institute, July 1988.
  • T. L. Anderson, Fracture Mechanics-Fundamentals and Applications, 2nd Ed., CRC Press, TX, 1995.
  • T. Kamimura, S. Nasu, T. Segi, T. Tazaki, H. Miyuki, S. Morimoto, and T. Kudo, Influence of cations and anions on the formation of β-FeOOH, Corros.Sci.47 (2005) 2531-2542.
  • T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, and T. Kudo, The role of chloride ion on the atmospheric corrosion of steel and corrosion resistance of Sn-bearing steel, Corros. Sci.62 (2012) 34-41.
  • T. Harry, D.J. Bacon, Computer simulation of the core structure of the < 111> screw dislocation in α-iron containing copper precipitates: I. structure in the matrix and a precipitate, Acta Mater. 50 (2002) 195-208.
  • T. D. Burleigh, A. T. Smith, A simple impedance spectra method to measure the thichness of nonporous anodic oxides on aluminum, J. Electrochem. Soc. 138 (1991) L34-L35.
  • Spyros I, Tseregounis, Appl. Surf. Sci. 64, 147 (1993).
  • S.W. Dean, Handbook on Corrosion Testing and Evaluation, John Wiley & Son, New York (1971)
  • S.H. Lee, K.J. Jeong, Y.H. Park, S.G. Hong, POSCO Tech. Rep. 11, 46 (2006).
  • S.A. Park, W.S. Ji, J.G. Kim, Int. J. Electrochem. Sci. 8, 7498 (2013).
  • S.A. Park, S.I. Jang, J.G. Kim, B.H. Lee, J.B. Yoon, Korean J. Met. Mater. 857 (2014).
  • S.A. Park, S.H. Lee, J.G. Kim, Met. Mater. Int. 18, 975 (2012).
  • S.A. Park, S.H. Lee, J.G. Kim, Met. Mater. Int. 18, 957 (2012).
  • S.A. Park, J.G. Kim, J.B. Yoon, Corrosion 70, 196 (2014).
  • S.A. Park, J.G. Kim, B.H. Lee, J.B. Yoon, Korean J. Met. Mater. 837 (2014).
  • S.A. Park, D.P. Le, J.G. Kim, Mater. Trans. 54, 1770 (2013).
  • S. Yang, C. Q. Li, W. Yang, Analytical model of elastic fracture toughness for steel pipes with internal cracks, Eng. Fract. Mech. 153 (2016) 50-60.
  • S. Y. Lee, W. K. Oh, J. G. Kim, Acceleration and quantitative evaluation of degradation for corrosion protective coatings on buried pipeline: Part II. Application to the evaluation of polyethylene and coal-tar enamel coatings, Prog. Org. Coat. 76 (2013) 784-789.
  • S. Y. Choi, K. Y. Yoo, J. B. Lee, C. B. Shin, M. J. Park, Mathematical modelling and control of thermal plant in the district heating system of Korea, App. Therm. Eng. 30 (2010) 2067-2072.
  • S. Venkataraman, B. Bartusch, C. Mickel, K. B. Kim, J. Das, S. Scudino, M. Stoica, D. J. Sordlet, J. Eckert, Metallic glass formation in the Cu47Ti33Zr11Ni8Si1 alloy, Mater. Sci. Eng. A 444 (2007) 257-264.
  • S. T. Kim and Y. S. Park, Corrosion 63, 114 (2007).
  • S. Sundar, J. Chakravarty, Int. J. Environ. Res. Public Heath 7, 4267 (2010).
  • S. S. Zumdahl, Chemistry, 3rd Ed., D. C. Health&Co, Toronto, 1993.
  • S. S. El-Egamy, Corrosion and corrosion inhibition of Cu–20% Fe alloy in sodium chloride solution, Corros. Sci. 50 (2008) 928-937.
  • S. Rimkevicius, A. Kaliatka, M. Valincius, G. Dundulis, R. Janulionis, A. Grybenas, I. Zutaite, Development of approach for reliability assessment of pipeline network systems, Appl. Energ. 94 (2012) 22–33.
  • S. Rajagopal, H. A. Jenner, V. P. Venugopalan, Operational and Environmental Consequences of Large Industrial Cooling Water Systems, Springer, NY, 2012.
  • S. Mishra, V. Kumar, Co-precipitation of copper-manganese sulphide in Fe-3% Si steel, Mater.Sci. Eng. B32 (1995) 177-184.
  • S. J. Yuan, S. O. Pehkonen, Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study, Colloids. Surf., B 59 (2007) 87-99.
  • S. H. Lee, W. K. Oh, J. G. Kim, Acceleration and quantitative evaluation of degradation for corrosion protective coatings on buried pipeline: Part II. Application to the evaluation of polyethylene and coal-tar enamel coatings, Prog. Org. Coat. 76 (2013) 784-789.
  • S. H. Kim, S. H. Park, J. G. Kim, K. S. Shin, Y. S. He, Alloying effect of copper on the corrosion properties of low-ally steel for flue gas desulfurization system, Met. Mat. Int. 21 (2015) 232-241.
  • S. H. Kim, S. A. Park, J. G. Kim, K. S. Shin, and Y. S. He, Alloying effect of copper on the corrosion properties of low-alloy steel for flue gas desulfurization system, Met. Mater. Int. 21 (2015) 232.
  • S. H. Kim, M. S. Kwon, J. G. Kim, Effect of immersion time in a modified green death solution on the rust layer of Cu-containing low-alloy steel, Met. Mat. Int 23 (2017) 82-91.
  • S. H. Kim, M. S. Kwon, Effect of Immersion Time in a Modified Green Death Solution on the Rust Layer of Cu-containing Low-Alloy Steel, Met. Mater. Int. 23 (2008) 82-91.
  • S. C. Tjong, Appl. Surf.Sci. 45, 141 (1990).
  • S. A. Park, W. S. Ji, J. G. Kim, Effect of chromium on the corrosion behaviour of low-alloy steels containing copper in FGD environment, Int. J. Electrochem. Sci. 8 (2013) 7498-7509.
  • S. A. Park, S. H. Lee, and J. G. Kim, Effect of chromium on the corrosion behavior of low alloy steel in sulfuric acid, Met. Mater.Int. 18 (2012) 975-987.
  • S. A. M. Refaey, G. S. Schwitzgebel, O. Schmeider, Electrochemical impedance studies on oxidative degradation, overoxidative degradation, deactivation and reactivation of conducting polymers, Synth. Met. 98 (1999) 183-192.
  • S, Ghafghazi, T Sowlati, S. Sokhansanj, S. Melin, A multicriteria approach to evaluate district heating system options, Appl. Energy 87 (2010) 1134-1140.
  • R.L. Zeller III, L. Salvati Jr., Corrosion 50, 6 (1994).
  • R. Walter, and M. B. Kannan, In-vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid, Mater. Lett. 65 (2011) 748-750.
  • R. G. Baligidad, U. Prakash, V. Ramakrishna Rao, P. K. Rao, and N. B. Ballal, ISIJ Int. 36, 1453 (1996).
  • Q. Xu, Q. Chen, W. Li, J. Ma, Pipe break prediction based on evolutionary data-driven methods with brief recorded data, Reliab. Eng. Syst. Safe. 96(8) (2011) 942–948.
  • P. Sury, Corros.Sci.16, 879 (1976).
  • P. R. Roberge, Corrosion Engineering Principles and practice, McGraw-Hill, NY, 2008.
  • P. C. Singer, W. Stumm, Acidic mine drainage: the rate-determining step, Science 167 (1970) 1121-1123.
  • P. C. Baerjee, R. K. S. Raman, Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, Electrochim. Acta 56 (2011) 3790-3798.
  • N.R. Taylor, K.L Stierhoff, District Heating Handbook, 4th ed., International District Heating Association, Washington, D.C., 1983.
  • N.D. Tomashov, Prot. Met. 22 (1986) 679
  • N.D. Tomashov, Corrosion 14 (1958) 229.
  • N.D. Nam, W.C. Kim, J.G. Kim, Mater. Corros. 63, 1004 (2012).
  • N.D. Nam, J.G. Kim, Corros. Sci. 52, 3377 (2010)
  • N.D Nam, M.J. Kim, Y.W. Jang, J.G. Kim, Effect of tin on the corrosion behaviour of low-alloy steel in an acid chloride solution, Corros. Sci. 52 (2010) 14-20. 179
  • N. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D, J. Zurauski, Chloride ion catalysis of the copper deposition reaction, J. Elelctrochem. Soc.142 (1995) L87-L89.
  • N. Fujita, K. Ohmura, A. Yamamoto, Mater. Sci. Eng., A 351, 272 (2003).
  • N. Fujita, H. Bhadeshia, M. Kikuchi, Modelling Simul. Mater. Sci. Eng. 12, 273 (2004).
  • N. D. Nam, and J. G. Kim, Effect of niobium on the corrosion behaviour of low alloy steel in sulfuric acid solution, Corros. Sci. 52 (2010) 3377-3384.
  • N. D. Nam, M. Mathesh, M. Forsyth, and D. S. Jo, Effect of manganese additions on the corrosion behavior of an extruded Mg–5Al based alloy, J. Alloys and Compd.542 (2012) 199-206.
  • N. D. Nam Effect of niobium on the corrosion behaviour of low alloy steel in sulfuric acid solution, Corros. Sci. 52 (2010) 3377-3384.
  • N. Bui, A. Irhzo, F. Dabosi, Y. Limouzine-Maire, Corrosion 39, 491 (1983).
  • N. Boulay, M. Edwards, Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water, Water Res. 35 (2001) 683–690.
  • Model 273 Potentiostat/Galvanostat Operating Manual, (Princeton, NJ: EG&G Princeton Applied Research, 1985).
  • Masahiro Seo, Gunnar Hultquist, Christofer Leygraf and Norio Sato, Corros. Sci. 26, 949 (1986).
  • M.S. Vakasovich and J.P.G. Farr, Mater. Perform., Vol 25 (No. 5), 1986, p 9.
  • M.R. Ali, C.M. Mustafa, M. Habib, Effect of molybdate, nitrite and zinc ions on the corrosion inhibition of mild steel in aqueous chloride media containing cupric ions, J. Sci. Res. 1 (2009) 82–91.
  • M.J. Kim, S.H. Lee, J.G. Kim, J.B. Yoon, Corrosion 66, 1250051 (2010).
  • M.J. Kim, S. H. Lee, J.G. Kim, J. B. Yoon, Effect of phosphorus on the corrosion behaviour of carbon steel in sulphuric acid, Corrosion 66 (2010) 1250051-1250059.
  • M.G. Fontana, Corrosion Engineering, 3rd ed.. (New York: McGraw-Hill, 1986): p. 499.
  • M.G. Fontana and D.N. Green, Corrosion Engineering, 2nd ed., McGraw-Hill, 1978, p 28–113.
  • M.F. Obrecht and M. Pourbaix, J. Am. Water Works Assoc., Vol 59, 1967, p 977.
  • M.E. Orazem, J.M. Esteban, K.J. Kennelley, and R.M. Degerstedt, Corrosion 53 (1997): 427.
  • M.E. Orazem, J.M. Esteban, K.J. Kennelley, and R.M. Degerstedt, Corrosion 53 (1997): 264.
  • M. Straman, K. Bohnenkamp, T. Ramchandran, The influence of copper upon the atmospheric corrosion of iron, Corros. Sci. 27 (1987) 905-926.
  • M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, 1966.
  • M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Elmsford, New York (1966).
  • M. Mouanga, and P. Bercot, Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part II: Electrochemical analyses, Corros. Sci.52 (2010) 3993- 4000.
  • M. Metikos-Hukovic and B. Lovrecek, Electrochim. Act. 25, 717 (1979).
  • M. Kissi, M. Bouklah, B. Hammouti, M. Benkaddour, Establishmen of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution, Appl. Surf. Sci. 252 (2006) 4190-4197.
  • M. J. Kim, S. H. Lee, J. G. Kim, J. B. Yoon, Effect of phosphorus on the corrosion behaviour of carbon steel in sulfuric acid, Corrosion 66 (2010) 1250051-1250059.
  • M. J. Kim, S. H. Le, J. G. Kim, J. B. Yoon, Effect of phosphorus on the corrosion behaviour of carbon steel in sulfuric acid, Corrosion 66 (2010) 1250051-1250059.
  • M. Itagaki, T. Suzuki, K. Watanabe, Corros. Sci. 40, 1255 (1998).
  • M. H. Gaysso, G. Z. Olivares, N. R. Ordaz, C. J. Ramirez, R. G. Esquivel, A. P. Viveros, Microbial consortium influence upon steel corrosion rate, using polarization resistance and electrochemical noise techniques, Electrochim. Acta 49 (2004) 4295- 4301.
  • M. Cohen and M.J. Pryor, J. Electrochem. Soc., Vol 98, 1951, p 263.
  • M. C. Zhao, Mater. Sci. Eng., A 355, 126 (2003).
  • M. Ahammed, R. E. Melchers, Reliability of underground pipelines subject to corrosion, J. Transp. Eng. 120 (1994) 989-1002.
  • M. A. Quraishi, Electrochemical and theoretical investigation of triazole derivatives on corrosion inhibition behavior of copper in hydrochloric acid medium, Corros. Sci. 70 (2013) 161-169.
  • Lj. Vracar, D.M. Drazic, J. Electrochem. Soc. 110, 703 (1963).
  • L.L. Shreir, Metal/Environment Reactions, 2nd ed., Newnes-Butterworths, Oxford, 1976.
  • L. S. McNeill, M. Edwards, Iron pipe corrosion in distribution systems, J. Am. Water Works Assoc. 93 (2001) 88-100. [2] S, Ghafghazi, T Sowlati, S. Sokhansanj, S. Melin, A multicriteria approach to evaluate district heating system options, Appl. Energy 87 (2010) 1134-1140.
  • L. S. McNeill, M. Edwards, Iron pipe corrosion in distribution systems, J. Am. Water Works Assoc. 93 (2001) 88-100.
  • L. Li, A. A. Sagues, Chloride corrosion threshold of reinforcing steel in alkaline solutions-Open-circuit immersion tests, Corros. 57 (2001) 19-28.
  • L. L. Wikstorm, N. T. Thomas, K. Nobe, Electrochem. Soc. 122, 1201 (1975).
  • L. Bonou, M. Eyraud, R. Denoyel, and Y. Massiani, Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by nonelectrochemical measurements, ElectrochimicaActa 47 (2002) 4139-4148.
  • K.H. Kim, S.H. Lee, N.D. Nam, Corros. Sci. 53, 3576 (2013).
  • K. Nisancioglu, Corrosion 43 (1987): 100.
  • K. Nilsson, Master’s Thesis, pp. 1-70, Lulea University of Technology, Sweden (2006).
  • K. M. Usher, A. H. Kaksonen, J. Cole, D. Marney, Critical review: microbially influenced corrosion of buried carbon steel pipes, Int. Biodeterior, Biodegard. 93 (2014) 84-106.
  • K. Inoue, Corros. Sci. 50, 811 (2008).
  • K. Hashimoto, M. Naka, K. Asami, Corros. Sci. 19, 165 (1979).
  • K. Hashimoto, K. Asami, K. Teramoto, Corros. Sci. 19, 3 (1979).
  • K. Hashimoto, B. P. Jang, Sci. Rep. RITU 43, 2 (1997).
  • K. H. Kim, S. H. Lee, Nguyen Dang Nam, J. G. Kim, Effect of cobalt on the corrosion resistance of low alloy steel in sulphuric acid solution, Corros. Sci. 53 (2011) 3576- 3587.
  • K. H. Kim, S. H. Lee, N. D. Nam, J. G. Kim, Effect of cobalt on the corrosion resistance of low alloy steel in sulfuric acid solution, Corros. Sci. 53 (2011) 3576-3587.
  • K. Eliseev, District Heating System in Finland and Russia, Mikkeli University of Applied Sciences, 2011.
  • J.N. Alhajaji, M.R. Reda, Corrosion, 49, 5 (1997).
  • J.F.D. Stott, Assessment and control of microbially-induced corrosion, Met. Mater. 4 (1988) 224.
  • J.F. Yan, S.N.R. Pakalapati, T.V. Nguyen, R.E. White, and R.B. Griffin, Journal of the Electrochemical Society 139 (1992): 1932.
  • J.C. Scully, The Fundamentals of Corrosion, 2nd ed., Pergamon Press, Oxford, 1975.
  • J.B. Cotton, W.R. Jacob, Prevention of corrosion in domestic hot water central heating systems, Br. Corros. J. 6 (1971) 42.
  • J.A. von Fraunhofer, Corrosion in hot water central heating, Br. Corros. J. 6 (1971) 23.
  • J. Xu, Y. Wang, Z. Zhang, Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions, J. Phys. Chem. C116 (2012) 5689- 5699.
  • J. Stanislaw, L. Mariusz, S. Waclaw, United States Patent, 3,864,123 (1975).
  • J. Sanchez, S. F. Lee, M. A. Martin-Rengel, J. Fullea, C. Andrade, J. Ruiz-Herv as, Measurement of hydrogen and embrittlement of high strength steels, Eng. Fail. Anal. 59 (2016) 467–477.
  • J. Sanchez, J. Fullea, C. Andrade, Corrosion-induced brittle failure in reinforcing steel, Theor. App. Fract. Mech. http://dx.doi.org/10.1016/j.tafmec.2017.08.006.
  • J. Sanchez, J. Fullea, C. Andrade, C. Alonso, Stress corrosion cracking mechanism of prestressing steels in bicarbonate solutions, Corros. Sci. 49 (2007) 4069–4080.
  • J. S. Kim, P. J. Xiang, K. Y. Kim, Corrosion 61, 174 (2005).
  • J. Okamoto, A. Usami, H. Mimura, Nippon Steel Tech. Rep. 87, 46 (2003).
  • J. Okamoto, A. Usami, A. Soeno, H. Mimura, T. Ishitsuka, Nippon Steel Tech. Rep. 90, 98 (2004).
  • J. Okamoto, A. Usami, A. Soeno, H. Mimura, T. Ishitsuka, New S-TENTM 1. steel tubes Reneal of sulfuric-acid-resistant steel, S-TENTM 1 -, Nippon Steel Technical Report 90 (2004) 98-103.
  • J. Lis, A. Lis, C. Kolan, Mater. Charact. 59, 1021 (2008).
  • J. L. Mora-Mendora, S. Turgoose, Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions, Corros. Sci. 44 (2002) 1223- 1246.
  • J. J. Shim, Y. S. Choi, J. G. Kim, J. Kor. Inst. Met&Mater. 41, 9 (2003).
  • J. J. Shim, S. J. You Y. S. Choi, J. G. Kim, J. Y. Yoo, J. Kor. Inst. Met&Mater. 41, 12 (2003).
  • J. H. Wang, F. I. Wei, H. C. Shin, Modeling of atmospheric corrosion behaviour of weathering steel in sulphur dioxide-polluted atmospheres, Corrosion 52 (1996) 900- 909.
  • J. H. Hong, S. H. Lee, J. G. Kim, J. B. Yoon, Corrosion behaviour of copper containing low alloy steels in sulphuric acid, Corros. Sci. 54 (2012) 174-182.
  • J. Guo, M. Seo, Y. Sato, Electrochemical behaviour and surface composition of copper containing ferritic stainless steel in sulphuric acid solution, J. Corros. Eng. 35 (1986) 283-288.
  • J. G. Kim, Y.W. Kim, Cathodic protection criteria of thermally insulated pipeline buried in soil, Corros. Sci. 43 (2001) 2011–2021.
  • J. G. Kim, Y. W. Kim, Cathodic protection criteria of thermally insulated pipline buried in soil, Corros. Sci. (2001) 2011-2021.
  • J. E. Harbottle, and S. B. Fisher, Copper sulphide Cu1. 8S (Digenite I) precipitation in mild steel, Nature299 (1982) 139-140.
  • J. Duan, S. Wu, X. Zhang, G. Huang, M. Du, B. Hou, Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater, Electrochim. Acta 54 (2008) 22- 28.
  • I.L. Rozenfeld, Corrosion Inhibitors, McGraw-Hill, New York, 1981.
  • I. Raju, J. Newman, Stress-intensity factors for internal and external surface cracks in pipes, ASME J. Press. Vessels Technol. 104 (1982) 293–298.
  • I. Costa, M. C. L. Oliveira, H. G. de Melo, and R. N. Faria, The effect of the magnetic field on the corrosion behavior of Nd–Fe–B permanent magnets, J. Magn. Magn, Mater.278 (2004) 348-358.
  • Hiroki Tamura, J. Colloid Interface Sci. 195, 192 (1997).
  • Hiroki Tamura, Corros. Sci. 50, 1872 (2008).
  • Herbert T. Kalmus, and K. B. Blake, J. Indust. Eng. Chem. 9, 2 (1917).
  • H.H. Uhlig, R.W. Revie, Corrosion and Corrosion Control, 4th ed., Wiley- Interscience, New Jersey (1996).
  • H.E. Townsend, Corrosion 57, 6 (2001).
  • H. Zhao, D. Zhang, F. Wang, T. Wu, J. Gao, Process Saf. Environ. Prot. 86, 448 (2008).
  • H. Yan, H. Bi, X. Li, Z. Xua, Mater. Charact. 60, 204 (2009).
  • H. Wang, L. K. Ju, H. Castaneda, G. Cheng, B. M. Zhang Newby, Corrosion of Carbon steel C1010 in the presence of iron oxidizing bacteria Acidthiobacillus ferrooxidance, Corro. Sci. 89 (2014) 250-257.
  • H. Okada, Y. Hosoi, Electrochemical reduction of thick rust layers formed on steel surfaces, Corrosion 26 (1970) 429-430.
  • H. M. Thomas, Pipe and vessel failure probability, Reliab. Eng. Syst. Safe. 2(2) (1981) 83–124.
  • H. Liu, T. Gu, G. Zhang, W. Wang, S. Dong, Y. Cheng, Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of ironoxidizing bacteria and inhibitors, Corros Sci. 105 (2016) 149-160.
  • H. Liu, C. Fu, T. Gu, G. Zhang, Y. Lv, H. Wang, Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water, Corros. Sci. 100 (2015) 484-495.
  • H. Kajimura, M. Harada, Corrosion 51, 7 (2004) .
  • H. Kaiser, Selective dissolution of high and low diffusivity alloys-A comparison of kinetical and micromorphological aspects, Corros. Sci. 34 (1993) 683-699.
  • H. J. Cleary and N. D. Greene, Corros. Sci. 7, 821 (1967).
  • H. Fang, X. Hui, G. Chen, J. Alloys Compd. 464, 292 (2000).
  • H. E. Townsend, T. C. Simpson and G. L. Jhonson, Corrosion 50, 546 (1994).
  • H. E. Townsend, Corrosion 57, 497 (2001).
  • H. A. Sorkhabi, M. M. Haghighi, G. Zarrini, R. Javaherdashti, Corrosion behaviour of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants, Biodigrad. 23 (2012) 69-79.
  • Guojin Lu, Giovanni Zangari, Electrochim. Acta 47, 2969 (2002).
  • G.B. Hatch and P.H. Ralston, Mater. Prot., Vol 3 (No. 8), 1964, p 35.
  • G.B. Hatch and P.H. Ralston, Mater. Prot. Perform., Vol 11 (No. 1), 1972, p 39.
  • G. Wranglen, Pitting and sulphide inclusions in steel, Corros. Sci. 14 (1974) 331-349.
  • G. W. Whitman, R. P. Russell, V. J. Altieri, Effect of hydrogen-ion concentration on the submerged corrosion of steel, Ind. Eng. Chem. 16 (1924).
  • G. W. Warren, M. E. Wadsworth, S. M. El-Raghy, and L. Li, Passive and transpassive anodic behavior of chalcopyrite in acid solutions. Journal of Electronic Materials, Journal of Electronic Materials 21 (1992) 571-579.
  • G. Viramontes-Gamboa, B. F. Rivera-Vasquez, and D. G. Dixon, The active-topassive transition of chalcopyrite. ECS Transactions, ECS Trans. 2 (2006) 165-175.
  • G. Moretti, G. Guidi, G. Grion, Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid, Corros. Sci. 46 (2004) 387-403.
  • G. Moretti, F. Guidi, G. Grison, Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid, Corros. Sci. 46 (2004) 387-403.
  • G. G. Lang, M. Ujvari, and G. Horanyi, New EQCM, voltammetric and radiotracer evidences proving the role of Cu+ ions in the behavior of the Cu2+–Cu system, J. Electroanal. Chem.522 (2002) 179-188.
  • G. E. Dieter, Mechanical Metallurgy, SI Metric Ed., MaGraw-Hill, London, 1988.
  • G. C. Sih, Handbook of Stress-Intensity Factors, Institute of Fracture and Solid Mechanics, Lehigh University, Pennsylvania.
  • G. Butler, H.C.K. Ison, A.D. Mercer, Some important aspects of corrosion in central heating systems, Br. Corros. J. 6 (1971) 31.
  • Fmerican Lifeline Alliance, 2005. Guidelines for the Design of Buried Steel Pipes. American Society of Civil Engineers.
  • F. U. Renner, G. N. Ankah, A. Pareek, In-situ surface-sensitive X-ray diffraction study on the influence of iodide over the selective electrochemical etching of Cu 3 Au (111), Surf. Sci. 606 (2012) L37-L40.
  • F. Galliano, D. Landolt, Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steel, Prog. Org. Coat. 44 (2002) 217–225.
  • F. Bentiss, M. Lebrini, H. Vezin, F. Chai, M. Traisnel, Enhanced corrosion resistance of carbon steel in normal sulfuric acid medium by some macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety:AC impedance and computational studies, Corros. Sci. (2009) 2165-2173.
  • F. Bentiss, M. Lagernee, B. Elmehdi, B. Mernari, M. Traisnel, H. Vezin, Electrochemical and quantum chemical studies of 3,5-Di(n-Tolyl)-4-amino-1,2,4- triazole adsorption on mild Steel in acidic media, Corrosion 58 (2002) 399-406.
  • E.J. Felton, J. Less-Common Metals 9, 206 (1996).
  • E. D. D. During, Corrosion Atlas: A collection of illustrated case histories, Elsevier, Amsterdam, 1997.
  • E. A. Greene, C. Hubert, M. Nemati, G. E. Jenneman, G. Voordouw, Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphideoxidizing bacteria, Environ. Microbiol. 5 (2003) 607-617.
  • D.R.H. Jones, Corrosion of central heating systems, Eng. Fail. Anal. 4 (1997) 179- 194.
  • D.P. Riemer, and M.E. Orazem, “Models for Cathodic Protection of Multiple Pipelines with Coating Holidays.” Cathodic Protection: Theory and Applications. Ed. M. E. Orazem. (Houston, TX: NACE, 1999).
  • D.P. Riemer, and M.E. Orazem, “Development of Mathematical Models for Cathodic Protection of Multiple Pipelines in a Right of Way.” Proceedings of the 1998 International Gas Research Conference. Ed. Dan A. Dolenc. (Chicago: Gas Research Institute, 1998): p. 11.
  • D.P. Le, W.S. Ji, J.G. Kim, Corros. Sci. 50, 1195 (2008).
  • D.C. Silverman, Aqueous Corrosion, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 190–195.
  • D.A. Jones, Principles and Prevention of Corrosion. (Upper Saddle River, NJ: Prentice-Hall, 1996): p. 144.
  • D. Y. Lee, W. C. Kim, and J. G. Kim, Effect of nitrite concentration on the corrosion behaviour of carbon steel pipelines in synthetic tap water, Corros. Sci.64 (2012) 105- 114.
  • D. Y. Lee, W. C. Kim, J. G. Kim, Effect of nitrite concentration on the corrosion behaviour of carbon steel pipelines in synthetic tap water, Corros. Sci. 64 (2012) 105- 114.
  • D. Thierry, D. Persson and D. Leygraf, Corros. Sci. 32, 273 (1991).
  • D. P. Le, W. S. Ji, J. G. Kim, K. J. Jeong, and S. H. Lee, Corros. Sci. 50, 1195 (2008).
  • D. P. Le, W. S. Ji, J. G. Kim, K. J. Jeong, S. H. Lee, Effect of antimony on the corrosion behaviour of low-alloy steel for flue gas desulfurization system, Corros. Sci. 50 (2008) 1195-1204.
  • D. M. Soares, S. Wasle. K. G. Weil, and K. Doblhofer, Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, J. Electroanal. Chem.532 (2002) 353-358.
  • D. K. Kim, S. H. Lee and H. S. Song, Met. Mater. Int. 4, 508 (1998).
  • D. H. Lee, T. H. Nam, I. J. Park, J. G. Kim, Corrosion behavior of aluminum alloy for heat exchanger in an exhaust gas recirculation system of diesel engine, Corrosion 69 (2013) 828-836.
  • D. Emerson, C. Moyer, Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH, App. Environ. Microb. 63 (1997) 4784-4792.
  • D. A. Lopez, and S. N. Simison, The influence of steel microstructure on CO 2 corrosion. EIS studies on the inhibition efficiency of benzimidazole, Electrochim. Acta48 (2003) 845-854.
  • D. A. Lopez, S. N. Simison, S. R. de Snachez, The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of mebzimidazole, Electrochm. Acta 48 (2003) 845-854.
  • D. A. Jones, Principles and Prevention of Corrosion, Prentice-Hall, NJ, 1996.
  • CMS100 Corrosion Measurement System Operator’s Manual, (Langhorne, PA: Gamry Instruments, 1992).
  • C. T. Liu, J. K. Wu, Corros. Sci. 49, 2198 (2007).
  • C. S. Oh, N. H. Kima, Y. J. Kim. Comparison of fracture strain based ductile failure simulation with experimental results, Int. J. Pres. Ves. Pip. 88 (2011) 434–447.
  • C. S. Oh, N. H. Kima, Y. J. Kim, A finite element ductile failure simulation method using stress-modified fracture strain model, Eng. Fract. Mech. 78 (2011) 124–137.
  • C. Pillay, J. Lin, Metal corrosion by aerobic bacteria isolated from simulated corrosion systems: Effects of additional nitrate sources, Int. Biodeterior. Biodegrad. 83 (2003) 158-165.
  • C. L. Rempel, R. W. Evitts, M. Nemati, Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir, J. Ind. Microbiol. Biotechnol. 33 (2006) 878-886.
  • C. K. Oh, Y. J. Kim, J. H. Baek, Ductile failure analysis of API X65 pipes with notchtype defects using a local fracture criterion, Int. J. Pres. Ves. Pip. 84 (2007) 512–525.
  • C. K. Oh, Y. J. Kim, J. H. Baek, A phenomenological model of ductile fracture for API X65 steel, Int. J. Mech. Sci. 49 (2007) 1399–1412.
  • C. Hubert, M. Nemati, G. Jenneman, G. Voordouw, Corrosion risk associated with microbial souring control using nitrate or nitrite, Appl. Microbiol. Biotechnol 68 (2005) 272-282.
  • C. Hubert, M. Nemati, G. Jenneman, G. Voordouw, Containment of biogenic sulfide production in continuous up-flow packedbed bioreactors with nitrate or nitrite, Biotechnol. Progr. 19 (2003) 338-345.
  • C. H. Hsu, F. Mansfeld, Technical Note: Concerning the conversion of the constant phase element parameter Y0 into a capacitance, Corros. 57 (2001) 747-748.
  • BP. Boffardi, Corrosion Inhibitors in the Water Treatment Industry, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 891–906.
  • B.P. Boffardi and G.W. Schweitzer, “Advances in the Chemistry of Alkaline Cooling Water reatment,” Paper 132, presented at Corrosion/85 (Boston, MA), National Association of Corrosion Engineers, March 1985.
  • B.M. IM, E. AKIYAMA, Corros. Sci. 37, 5 (1995).
  • B.G. Hatch, Ind. Eng. Chem., Vol 44 (No. 8), 1952, p 1780.
  • B. Zhang, C. He, C. Wang, P. Sun, F. Li, Y. Lin, Synergistic corrosion inhibition of environment-friendly inhibitors on the corrosion of carbon steel in soft water, Corros. Sci. 94 (2015) 6-20.
  • B. Weiz and M. Melcher, Spectrochim. Actal 36, 439 (1981).
  • B. Skagestad, P. Mildenstein, District Heating and Cooling Connection Handbook, IEA District Heating and Cooling, 1999.
  • B. M. Sch nbauer, S. E. Stanzl-Tschegg, A. Perlega, R. N. Salzman, N. F. Rieger, S. Zhou, A. Turnbull, D. Gandy, Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios, Inter. J. Fatigue, 65 (2014) 33-43.
  • B. Lin, R. Hu, C. Ye, Y.Li, C. Lin, Electrochim. Acta 55, 6542 (2010).
  • B. Lin, J. Lu, G. Kong, Synergistic corrosion protection for galvanized steel by phosphating and sodium silicate post-sealing, Surf. Coat. Technol. 202 (2008) 1831– 1838.
  • B. Jegdic, D.M. Drazic, J.P. Popic, Corros. Sci. 50, 1235 (2008).
  • Allen J. Bard, R. Parsons, Joseph Jordan, Standard Potentials in Aqueous Solution, p. 213, Marcel Dekker, Inc., New York (1985).
  • ASTM G 61-86, Standard method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron, nickel-, or cobalt-based alloys, Annual Book of ASTM Standards, pp. 2-6, ASTM International, West Conshohochen, USA (2014).
  • ASM Handbook: Vol. 19, Fatigue and Fracture, 1996.
  • ASM Handbook, vol. 13 (Corrosion), p. 52, ASM International, OH (1987).
  • ASM Hanbook: Vol. 13B, Corrosion: Materials, 2003.
  • ASM Hanbook: Vol. 13A, Corrosion: Fundamentals, Testing and Protection, 2003.
  • ANSI/ASME B31.3. Process Piping. New York, USA: The American Society of Mechanical Engineers Code, 2002.
  • A.Y. El-Etre, M. Abdallah, Natural honey as corrosion inhibitor for metals and alloys. II. C-steel in high saline water, Corros. Sci. 42 (2000) 731–738.
  • A. Usami, M. Okushima, S. Sakamoto, S. Nishimura, T. Kusunoki, K. Kojima, Nippon Steel Tech. Rep. 90, 25 (2004).
  • A. T. Diamantoudis, G. N. Labeas, Stress intensity factors of semi-elliptical surface cracks in pressure vessels by global-local finite element methodology, Eng. Fract. Mech. 72 (2005) 1299–1312.
  • A. R. Daud, Corrosion at sulphide inclusions in stainless steel, Pertanika J. Sci. Technol. 4 (1996) 201-207.
  • A. Pardo, M. C. Merino, M. Carbonearas, F. Viejo, R. Arrabal and J. Munoz, Corros. Sci. 48, 1075 (2006).
  • A. Needleman, V. Tvergaard, Analysis of ductile rupture in notched bar, J. Mech. Phys. Solids 32 (1984) 461–90.
  • A. Mirmoheni, A. Oladegaragoze, Anti-corrosive properties of polyaniline coating on iron, Synthetic Met.114 (2000) 105-108.
  • A. Machiels, Recommendations for an Effective Flow-Accelerated Corrosion Program (NSAC-202L-R3), EPRI 1011838 Final Report, Electric Power Research Institute, May 2006.
  • A. L. Rudd, C. B. Breslin, F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corros. Sci. 42 (2000) 275-288.
  • A. Higginson, R.C. Newman, R. P. M. Procter, The passivation of Fe-Cr-Ru alloys in acidic solutions, Corros. Sci. 29 (1989) 1293-1318.
  • A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, K.U. Kainer, Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy, Surf. Coat. Technol. 202 (2008) 3513-3518.
  • A. Ghahremaninezhad, E. Asselin, and D. G. Dixon, Electrochemical evaluation of the surface of chalcopyrite during dissolution in sulfuric acid solution, Electrochim. Acta 55 (2010) 5041-5056.
  • A. Amirat, A. Mohamed-Chateauneuf, K. Chaoui, Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress, Int. J. Press Vessels Pip. 83 (2006) 107-117.
  • A. A. Hermas, K. Ogura, T. Adachi, Accumulation of copper layer on a surface in the anodic polarization of stainless steel containing Cu at different temperatures, Electrochim. Acta 40 (1995) 837-844.
  • A. A. Hermas, K. Ogura and T. Adachi, Electrochim. Acta 40, 837 (1995).
  • .P. Boffardi, in Metals Handbook: Corrosion, ninth ed., Vol. 13, American Society for Metals, Metals Park, OH, 1987.