박사

Tensile properties and resistance to hydrogen embrittlement of Si-added high Mn TWIP steels

이상민 2018년
논문상세정보
' Tensile properties and resistance to hydrogen embrittlement of Si-added high Mn TWIP steels' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • brittle fracture
  • deformation mode
  • grain size
  • hydrogen embrittlement
  • mechanical twinning
  • tensile property
  • transformation
  • twinning-induced plasticity (twip) steel
  • ε-martensitic
  • ε마르텐사이트 상변태
  • 결정립 크기
  • 기계적 쌍정
  • 변형모드
  • 수소취성
  • 쌍정 유기 소성
  • 인장특성
  • 취성파괴
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
373 0

0.0%

' Tensile properties and resistance to hydrogen embrittlement of Si-added high Mn TWIP steels' 의 참고문헌

  • 오스테나이트계 고망간강의 인장 특성에 미치는 결정 립 크기의 영향, Korean J. Mater
    이상인 조윤 황병철 Res. 26(6) 325-331 [2016]
  • Z. Zhang, G. Wen, P. Tang, S. Sridhar, The influence of Al2O3/SiO2 ratio on the viscosity of mold fluxes, ISIJ Int. 48(6) (2008) 739-746.
  • Z. Nishiyama, X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic, Sci. Rep. 23 (1934) 637.
  • Z. Nishiyama, K. Shimizu, K. Sugino, The martensite transformation in thin foils, Acta Metall. 9(6) (1961) 620-622.
  • Y.S. Han, S.H. Hong, The effect of Al on mechanical properties and microstructures of Fe–32Mn–12Cr–xAl–0.4C cryogenic alloys, Mater. Sci. Eng. A 222(1) (1997) 76-83.
  • Y.S. Chun, K.-T. Park, C.S. Lee, Delayed static failure of twinning- induced plasticity steels, Scr. Mater. 66(12) (2012) 960-965.
  • Y.S. Chun, J.S. Kim, K.-T. Park, Y.-K. Lee, C.S. Lee, Role of ɛ martensite in tensile properties and hydrogen degradation of high-Mn steels, Mater. Sci. Eng. A 533(0) (2012) 87- 95.
  • Y.S. Chun, J.S. Kim, K.-T. Park, Y.-K. Lee, C.S. Lee, Role of ɛ martensite in tensile properties and hydrogen degradation of high-Mn steels, Mater. Sci. Eng. A 533 (2012) 87-95.
  • Y.N. Dastur, W.C. Leslie, Mechanism of work hardening in Hadfield manganese steel, Metall. Trans. A 12 A(5) (1981) 749-759.
  • Y.G. Kim, J.M. Han, J.S. Lee, Composition and temperature dependence of tensile properties of austenitic Fe–Mn–Al–C alloys, Mater. Sci. Eng. A 114(0) (1989) 51-59.
  • Y.-K. Lee, Movement of γ/ε interfaces and coalescence of ε martensite variants under the tensile stress in an Fe-24 Wt Pct Mn alloy, Metall. Mater. Trans. A 32(2) (2001) 229-237.
  • Y.-K. Lee, C. Choi, Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system, Metall. Mater. Trans. A 31(2) (2000) 355-360.
  • Y. Vermeulen, B. Coletti, B. Blanpain, P. Wollants, J. Vleugels, Material evaluation to prevent nozzle clogging during continuous casting of Al killed steels, ISIJ Int. 42(11) (2002) 1234-1240.
  • Y. Koizumi, S. Suzuki, K. Yamanaka, B.-S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto, A. Chiba, Strain- induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy, Acta Mater. 61(5) (2013) 1648-1661.
  • Y. Dastur, W. Leslie, Mechanism of work hardening in Hadfield manganese steel, Metall. Mater. Trans. A 12(5) (1981) 749-759.
  • X. Yuan, L. Chen, Y. Zhao, H. Di, F. Zhu, Dependence of grain size on mechanical properties and microstructures of high manganese austenitic steel, Proc. Eng. 81 (2014) 143- 148.
  • X. Tian, Y. Zhang, Effect of Si content on the stacking fault energy in γ Fe–Mn–Si–C alloys: Part I. X-ray diffraction line profile analysis, Mater. Sci. Eng. A 516(1) (2009) 73-77.
  • W. Hall, X-ray line broadening in metals, Proc. Phys. Soc. Sect. A 62(11) (1949) 741.
  • T.W. Kim, Y.G. Kim, Properties of austenitic Fe–25Mn–1Al–0.3C alloy for automotive structural applications, Mater. Sci. Eng. A 160(2) (1993) 13-15.
  • T. Shun, C.M. Wan, J.G. Byrne, A study of work hardening in austenitic Fe–Mn–C and Fe–Mn–Al–C alloys, Acta Metall. Mater. 40(12) (1992) 3407-3412.
  • T. Shun, C. Wan, J. Byrne, A study of work hardening in austenitic Fe–Mn–C and Fe– Mn–Al–C alloys, Acta Metall. Mater. 40(12) (1992) 3407-3412.
  • T. Byun, On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels, Acta Mater. 51(11) (2003) 3063-3071.
  • S.Y. Jo, J. Han, J.-H. Kang, S. Kang, S. Lee, Y.-K. Lee, Relationship between grain size and ductile-to-brittle transition at room temperature in Fe–18Mn–0.6 C–1.5 Si twinninginduced plasticity steel, J. Alloy. Compds. 627 (2015) 374-382.
  • S.S. Sohn, S. Hong, J. Lee, B.-C. Suh, S.-K. Kim, B.-J. Lee, N.J. Kim, S. Lee, Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels, Acta Mater. 100 (2015) 39-52.
  • S.A. Raghavan KS, Marcinkowski MJ, Met Soc of AIME-Trans 245 (1969) 1569.
  • S.-M. Lee, I.-J. Park, J.-G. Jung, Y.-K. Lee, The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6 C-xSi twinning-induced plasticity steels, Acta Mater. 103 (2016) 264-272.
  • S.-J. Lee, J. Han, S. Lee, S.-H. Kang, S.-M. Lee, Y.-K. Lee, Design for Fe-high Mn alloy with an improved combination of strength and ductility, Sci. Rep. 7 (2017).
  • S. Vercammen, B. Blanpain, B. De Cooman, P. Wollants, Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP steel: the importance of deformation twinning, Acta Mater. 52(7) (2004) 2005-2012.
  • S. Takaki, T. Furuya, Y. Tokunaga, Effect of Si and Al additions on the low temperature toughness and fracture mode of Fe-27Mn alloys, ISIJ Int. 30(8) (1990) 632-638.
  • S. Sato, E.-P. Kwon, M. Imafuku, K. Wagatsuma, S. Suzuki, Microstructural characterization of high-manganese austenitic steels with different stacking fault energies, Mater. Charact. 62(8) (2011) 781-788.
  • S. Mahajan, The evolution of intrinsic-extrinsic faulting in fcc crystals, Metall. Mater. Trans. A 6(10) (1975) 1877-1886.
  • S. Mahajan, G. Chin, Formation of deformation twins in fcc crystals, Acta Metall. 21(10) (1973) 1353-1363.
  • S. Lee, Y. Estrin, B.C. De Cooman, Effect of the strain rate on the TRIP–TWIP transition in austenitic Fe-12 pct Mn-0.6 pct C TWIP steel, Metall. Mater. Trans. A 45(2) (2014) 717-730.
  • S. Kang, Y.-S. Jung, J.-H. Jun, Y.-K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe–18Mn– 0.6 C–1.5 Al TWIP steel, Mater. Sci. Eng. A 527(3) (2010) 745-751.
  • S. Kang, Y.-S. Jung, B.-G. Yoo, J.- i. Jang, Y.-K. Lee, Orientation-dependent indentation modulus and yielding in a high Mn twinning- induced plasticity steel, Mater. Sci. Eng. A 532 (2012) 500-504.
  • S. Kang, J.-G. Jung, M. Kang, W. Woo, Y.-K. Lee, The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe–18Mn–0.6C–1.5Al twinning- induced plasticity steel, Mater. Sci. Eng. A 652 (2016) 212-220.
  • S. Curtze, V.-T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate, Acta Mater. 58(15) (2010) 5129-5141.
  • S. Asgari, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins, Metall. Mater. Trans. A 28(9) (1997) 1781-1795.
  • S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys, Mater. Sci. Eng. A 387 (2004) 158-162.
  • R. Ueji, N. Tsuchida, H. Fujii, D. Kondo, K. Kunishige, Effect of grain size on tensile properties of TWIP steel, J. Jpn. Inst. Metal. 71(9) (2007) 815-821.
  • R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige, Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure, Scr. Mater. 59(9) (2008) 963-966.
  • R. Saha, R. Ueji, N. Tsuji, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scr. Mater. 68(10) (2013) 813-816.
  • R. Reed, R. Schramm, Relationship between stacking‐fault energy and x‐ray measurements of stacking‐fault probability and microstrain, J. Appl. Phys. 45(11) (1974) 4705-4711.
  • R. Gangloff, Hydrogen-assisted cracking in high-strength alloys. Comprehensive Structural Integrity, Volume 6: Environmentally-Assisted Fracture, Elsevier, Oxford, 2003.
  • R. Adler, H. Otte, C. Wagner, Determination of dislocation density and stacking fault probability from x-ray powder pattern peak profiles, Metall. Trans. 1(9) (1970) 2375-2382.
  • P.H. Adler, G.B. Olson, W.S. Owen, Strain hardening of Hadfield manganese steel, Metall. Trans. A 17 A(10) (1986) 1725-1737.
  • P. Ferreira, I.M. Robertson, H. Birnbaum, Influence of hydrogen on the stacking- fault energy of an austenitic stainless steel, Materials Science Forum, Trans. Tech. Publ. (1996) 93- 96.
  • O. Gr ssel, L. Kr ger, G. Frommeyer, L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application, Int. J. Plast. 16(10-11) (2000) 1391-1409.
  • O. Gr ssel, L. Kr ger, G. Frommeyer, L. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application, Int. J. Plast. 16(10) (2000) 1391- 1409.
  • O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Curr. Opin. Solid State. Mater. Sci. 15(4) (2011) 141-168.
  • O. Bouaziz, S. Allain, C. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Curr. Opi. Sol. Stat. Mater. Sci. 15(4) (2011) 141-168.
  • O. Bouaziz, S. Allain, C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning- induced plasticity steels, Scr. Mater. 58(6) (2008) 484-487.
  • O. Bouaziz, N. Guelton, Modelling of TWIP effect on work-hardening, Mater. Sci. Eng. A 319 (2001) 246-249.
  • N. Zan, H. Ding, X. Guo, Z. Tang, W. Bleck, Effects of grain size on hydrogen embrittlement in a Fe–22Mn–0.6 C TWIP steel, Int. J. Hydrogen Energy 40(33) (2015) 10687-10696.
  • M.B. Kannan, R.K.S. Raman, S. Khoddam, S. Liyanaarachchi, Corrosion behavior of twinning- induced plasticity (TWIP) steel, Mater. Corros. 64(3) (2013) 231-235.
  • M.-K. Sun, I.-H. Jung, H.-G. Lee, Morphology and chemistry of oxide inclusions after Al and Ti complex deoxidation, Metal. Mater. Int. 14(6) (2008) 791.
  • M. Koyama, T. Sawaguchi, K. Tsuzaki, Selective appearance of ε-martensitic transformation and dynamic strain aging in Fe–Mn–C austenitic steels, Philos. Mag. 92(24) (2012) 3051-3063.
  • M. Koyama, T. Sawaguchi, K. Tsuzaki, Premature fracture mechanism in an Fe–Mn–C austenitic steel, Metall. Mater. Trans. A 43(11) (2012) 4063-4074.
  • M. Koyama, E. Akiyama, T. Sawaguchi, D. Raabe, K. Tsuzaki, Hydrogen- induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel, Scr. Mater. 66(7) (2012) 459-462.
  • M. Koyama, E. Akiyama, T. Sawaguchi, D. Raabe, K. Tsuzaki, Hydrogen- induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel, Scr. Mater. 66 (2012) 459-462.
  • M. Koyama, E. Akiyama, K. Tsuzaki, Hydrogen- induced delayed fracture of a Fe– 22Mn–0.6C steel pre-strained at different strain rates, Scr. Mater. 66(11) (2012) 947-950.
  • M. Koyama, E. Akiyama, K. Tsuzaki, Hydrogen embrittlement in a Fe–Mn–C ternary twinning- induced plasticity steel, Corros. Sci. 54 (2012) 1-4.
  • M. Koyama, E. Akiyama, K. Tsuzaki, Hydrogen embrittlement in Al-added twinninginduced plasticity steels evaluated by tensile tests during hydrogen charging, ISIJ Int. 52(12) (2012) 2283-2287.
  • M. Koyama, E. Akiyama, K. Tsuzaki, Effect of hydrogen content on the embrittlement in a Fe–Mn–C twinning- induced plasticity steel, Corros. Sci. 59(0) (2012) 277-281.
  • M. Kang, W. Woo, Y.-K. Lee, B.-S. Seong, Neutron diffraction analysis of stacking fault energy in Fe–18Mn–2Al–0.6 C twinning- induced plasticity steels, Mater. Lett. 76 (2012) 93- 95.
  • L.M. Brown, A.R. Th l n, Shape of three- fold extended nodes, Discuss. Faraday Soc. 38 (1964) 35-41.
  • L. Remy, Kinetics of fcc deformation twinning and its relationship to stress-strain behaviour, Acta Metall. 26(3) (1978) 443-451.
  • L. Remy, A. Pineau, Twinning and strain- induced FCC→ HCP transformation in the Fe128 Mn-Cr-C system, Mater. Sci. Eng. 28(1) (1977) 99-107.
  • L. Mosecker, A. Saeed-Akbari, Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics, Sci. Tech. Adv. Mater. 14(3) (2013) 033001.
  • L. Darken, Diffusion of carbon in austenite with a discontinuity in composition, Trans. Aime. 180(430-438) (1949) 53.
  • K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, C.S. Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition, Mater. Sci. Eng. A 527(16-17) (2010) 3651-3661.
  • K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.H. Kim, N.J. Kim, Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels, Mater. Sci. Eng. A 528(6) (2011) 2922-2928.
  • K. Tsuzaki, Y. Natsume, Y. Tomota, T. Maki, Effect of solution hardening on the shape memory effect of Fe–Mn based alloys, Scr. Metall. Mater. 33(7) (1995) 1087-1092.
  • K. Renard, S. Ryelandt, P. Jacques, Characterisation of the Portevin-Le Ch telier effect affecting an austenitic TWIP steel based on digital image correlation, Mater. Sci. Eng. A 527(12) (2010) 2969-2977.
  • K. Rahman, V. Vorontsov, D. Dye, The effect of grain size on the twin initiation stress in a TWIP steel, Acta Mater. 89 (2015) 247-257.
  • K. Jeong, J.-E. Jin, Y.-S. Jung, S. Kang, Y.-K. Lee, The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning- induced plasticity steel, Acta Mater. 61(9) (2013) 3399-3410.
  • K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, M. Frazee, Development and evaluation of lime alumina-based mold powders for casting high-aluminum TRIP steel grades, AIST Trans. 8 (2011) 232-240.
  • J.R. Low Jr, The fracture of metals, Prog. Mater. Sci. 12(C) (1963) 3-96.
  • J.P. Hirth, Effects of hydrogen on the properties of iron and steel, Metall. Trans. A 11(6) (1980) 861-890.
  • J.E. Jin, Y.K. Lee, Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel, Mater. Sci. Eng. A 527(1-2) (2009) 157-161.
  • J.D. Yoo, K.-T. Park, Microband-induced plasticity in a high Mn–Al–C light steel, Mater. Sci. Eng. A 496(1) (2008) 417-424.
  • J.-E. Jin, Y.-K. Lee, Strain hardening behavior of a Fe–18Mn–0.6 C–1.5 Al TWIP steel, Mater. Sci. Eng. A 527(1) (2009) 157-161.
  • J.-E. Jin, Y.-K. Lee, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel, Acta Mater. 60(4) (2012) 1680-1688.
  • J. Yang, C. Wayman, Self-accomodation and shape memory mechanism of ε- martensite–II. Theoretical considerations, Mater. Charact. 28(1) (1992) 37-47.
  • J. Patel, M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metall. 1(5) (1953) 531-538.
  • J. Liao, Y. Zhang, S. Sridhar, X. Wang, Z. Zhang, Effect of Al2O3/SiO2 ratio on the viscosity and structure of slags, ISIJ Int. 52(5) (2012) 753-758.
  • J. Kim, S.-J. Lee, B.C. De Cooman, Effect of Al on the stacking fault energy of Fe– 18Mn–0.6C twinning- induced plasticity, Scr. Mater. 65(4) (2011) 363-366.
  • J. Kim, B. De Cooman, On the stacking fault energy of Fe–18Mn–0.6C–1.5Al twinninginduced plasticity steel, Metall. Mater. Trans. A 42(4) (2011) 932-936.
  • J. Hirth, Thermodynamics of stacking faults, Metall. Trans. 1(9) (1970) 2367.
  • J. Hermida, A. Roviglione, Stacking fault energy decrease in austenitic stainless steels induced by hydrogen pairs formation, Scr. Mater. 39(8) (1998) 1145-1149.
  • I.J. Park, K.H. Jeong, J.G. Jung, C.S. Lee, Y.K. Lee, The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe–18Mn–0.6C twinning- induced plasticity steels, Int. J. Hydrogen Energy 37(12) (2012) 9925-9932.
  • I.-J. Park, S.Y. Jo, M. Kang, S.-M. Lee, Y.-K. Lee, The effect of Ti precipitates on hydrogen embrittlement of Fe–18Mn–0.6 C–2Al–xTi twinning- induced plasticity steel, Corros. Sci. 89 (2014) 38-45.
  • I.-J. Park, S.-m. Lee, H.-h. Jeon, Y.-K. Lee, The advantage of grain refinement in the hydrogen embrittlement of Fe–18Mn–0.6C twinning- induced plasticity steel, Corros. Sci. 93 (2015) 63-69.
  • I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, H. Maier, Deformation of single crystal Hadfield steel by twinning and slip, Acta Mater. 48(6) (2000) 1345-1359.
  • I. Gutierrez-Urrutia, D. Raabe, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel, Acta Mater. 60(16) (2012) 5791-5802.
  • H.-S. Yang, J. Jang, H. Bhadeshia, D. Suh, Critical assessment: Martensite-start temperature for the γ→ε transformation, Calphad 36 (2012) 16-22.
  • H. Yin, G. Skoczylas, In-situ observations and thermodynamics of the chemical reaction between AlN particles and molten slag, Proc. AIST Tech. 6 (2006) 1-4.
  • H. Nakatsu, T. Miyata, S. Takaki, Effect of austenite grain size on the deformation induced gamma→epsilon martensitic transformation and mechanical properties in an Fe-27 mass% Mn alloy, J. Jpn. Inst. Metal. 60(10) (1996) 936-943.
  • H. Ji, I.-J. Park, S.-M. Lee, Y.-K. Lee, The effect of pre-strain on hydrogen embrittlement in 310S stainless steel, J. Alloy. Compds. 598 (2014) 205-212.
  • H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, P. Jacques, On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater. 58(7) (2010) 2464-2476.
  • H. Bhadeshia, Possible effects of stress on steel weld microstructures, Math. Model. Weld Phenom. 2 (1995) 71-118.
  • G.E. Dieter Jr, Mechanical Metallurgy, Metallurgy and Metallurgical Engineering Series, McGraw-Hill, New York, 1976.
  • G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1(1) (1953) 22-31.
  • G. Pressouyre, Trap theory of hydrogen embrittlement, Acta Metall. 28(7) (1980) 895- 911.
  • G. Pressouyre, A classification of hydrogen traps in steel, Metall. Mater. Trans. A 10(10) (1979) 1571-1573.
  • G. Olson, M. Cohen, A mechanism for the strain- induced nucleation of martensitic transformations, J. Less Comm. Metal. 28(1) (1972) 107-118.
  • G. Olson, M. Cohen, A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation, Metall. Trans. A 7(12) (1976) 1897-1904.
  • G. Frommeyer, U. Br x, P. Neumann, Supra-ductile and high-strength manganese- TRIP/TWIP steels for high energy absorption purposes, ISIJ Int. 43(3) (2003) 438-446.
  • G. Frommeyer, U. Br x, Microstructures and Mechanical Properties of High‐Strength Fe–Mn–Al–C Light‐Weight TRIPLEX Steels, Steel Res. Int. 77(9-10) (2006) 627-633.
  • G. Dini, R. Ueji, A. Najafizadeh, Grain size dependence of the flow stress of TWIP steel, Mater. Sci. Forum, 2010, 294-297.
  • E. Proverbio, P. Longo, Sub critical crack growth in hydrogen assisted cracking of cold drawn eutectoid steel, Corros. Sci. 49(6) (2007) 2421-2435.
  • E. Billur, T. Altan, Challenges in forming advanced high strength steels, Proc. New Dev. Sheet Metal Form. (2012) 285-304.
  • D.T. Pierce, J.A. Jim nez, J. Bentley, D. Raabe, C. Oskay, J. Wittig, The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe– Mn–(Al–Si) steels investigated by experiment and theory, Acta Mater. 68 (2014) 238-253.
  • D.R. Steinmetz, T. J pel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed– Akbari, T. Hickel, F. Roters, D. Raabe, Revealing the strain-hardening behavior of twinninginduced plasticity steels: Theory, simulations, experiments, Acta Mater. 61(2) (2013) 494-510.
  • D.B. Santos, A.A. Saleh, A.A. Gazder, A. Carman, D.M. Duarte, .A. Ribeiro, B.M. Gonzalez, E.V. Pereloma, Effect of annealing on the microstructure and mechanical properties of cold rolled Fe–24Mn–3Al–2Si–1Ni–0.06 C TWIP steel, Mater. Sci. Eng. A 528(10) (2011) 3545-3555.
  • D. Pierce, K. Nowag, A. Montagne, J. Jim nez, J. Wittig, R. Ghisleni, Single crystal elastic constants of high-manganese transformation-and twinning- induced plasticity steels determined by a new method utilizing nanoindentation, Mater. Sci. Eng. A 578 (2013) 134- 139.
  • D. Music, T. Takahashi, L. Vitos, C. Asker, I.A. Abrikosov, J.M. Schneider, Elastic properties of Fe–Mn random alloys studied by ab initio calculations, Appl. Phys. Lett. 91(19) (2007) 191904.
  • D. Han, S. Lee, S. Noh, S.-K. Kim, D.-W. Suh, Effect of aluminium on hydrogen permeation of high-manganese twinning- induced plasticity steel, Scr. Mater. 99 (2015) 45-48.
  • D. Dyson, B. Holmes, Effect of alloying additions on the lattice parameter of austenite, J Iron Steel Inst. 208(5) (1970) 469-474.
  • D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions, Mater. Sci. Eng. A 500(1) (2009) 196-206.
  • C. Wang, H. Ding, M. Cai, B. Rolfe, Characterization of microstructures and tensile properties of TRIP-aided steels with different matrix microstructure, Mater. Sci. Eng. A 610 (2014) 65-75.
  • C. Scott, B. Remy, J.-L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard, C. Curfs, Precipitation strengthening in high manganese austenitic TWIP steels, Int. J. Mater. Res. 102(5) (2011) 538-549.
  • B.D. Cullity, S.R. Cullity, S. Stock, Elements of X-ray Diffraction, 2001.
  • B.C. De Cooman, O. Kwon, K.-G. Chin, State-of-the-knowledge on TWIP steel, Mater. Sci. Tech. 28(5) (2012) 513-527.
  • B.C. De Cooman, High Manganese Advanced High Strength TWIP Steel for Automotive Applications, MRS Online Proceedings Library Archive 1296 (2011).
  • B. Warren, B. Averbach, The Separation of Stacking Fault Broadening in Cold‐Worked Metals, J. Appl. Phys. 23(9) (1952) 1059-1059.
  • A.E. Pontini, J.D. Hermida, X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel, Scr. Mater. 37(11) (1997) 1831-1837.
  • A.A.O.S. Highway, T. Officials, A.S.f. Testing, Materials, E8M-04 Standard Test Methods for Tension Testing of Metallic Materials (Metric) 1, ASTM international 2004.
  • A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Derivation and variation in compositiondependent stacking fault energy maps based on subregular solution model in high-manganese steels, Metall. Mater. Trans. A 40(13) (2009) 3076-3090.
  • A. Ruff, Measurement of stacking fault energy from dislocation interactions, Metall. Mater. Trans. B 1(9) (1970) 2391-2413.
  • A. Hamada, L. Karjalainen, M. Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels, Mater. Sci. Eng. A 467(1) (2007) 114-124.
  • A. Goldberg, O.A. Ruano, O.D. Sherby, Development of ultrafine microstructures and superplasticity in Hadfield manganese steels, Mater. Sci. Eng. A 150(2) (1992) 187-194.
  • A. Dumay, J.-P. Chateau, S. Allain, S. Migot, O. Bouaziz, Influence of addition elements on the stacking- fault energy and mechanical properties of an austenitic Fe–Mn–C steel, Mater. Sci. Eng. A 483 (2008) 184-187.