박사

저마루 구조물 배후에서의 평균수위 상승에 관한 실험연구

이기재 2018년
논문상세정보
' 저마루 구조물 배후에서의 평균수위 상승에 관한 실험연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 결합기법
  • 단면수리모형실험
  • 방파제 설계
  • 수위 상승
  • 유출유속
  • 이안제
  • 저마루 구조물
  • 평균 수위
  • 해수유동수치모형실험
  • 흐름장
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
29 0

0.0%

' 저마루 구조물 배후에서의 평균수위 상승에 관한 실험연구' 의 참고문헌

  • 동해지방해양수산청 주문진항 해수교환시설 준공후 모니터링조사용역 [2007]
  • 해양수산부 해수교환방파제의 실용화 연구(Ⅳ) [2001]
  • 제주특별자치도 제주항 탑동방파제 축조공사 실시설계용역 [2017]
  • 한국해양과학기술원 지속가능한 연안개발
    해양과학총서 6권, 168-173 [2014]
  • d'Angremond, K., Van Der Meer, J., & De Jong, R. (1997). Wave transmission at low-crested structures, In Coastal Engineering 1996, 2418-2427.
  • Zanuttigh, B., Martinelli, L., & Lamberti, A. (2008). Wave overtopping and piling-up at permeable low crested structures. Coastal Engineering, 55(6), 484-498.
  • Zanuttigh, B., & Lamberti, A. (2006). Experimental analysis and numerical simulations of waves and current flows around low-crested rubble-mound structures. Journal of waterway, port, coastal, and ocean engineering, 132(1), 10-27.
  • Zanuttigh, B. (2007). Numerical modelling of the morphological response induced by low-crested structures in Lido di Dante, Italy. Coastal Engineering, 54(1), 31-47.
  • Wang, B., van der Meer, J., Otta, A., Chadwick, A., & Horrillo-Caraballo, J. (2006). Reflection of obliquely incident waves at low-crested structures. In Coastal Dynamics 2005: State of the Practice, 1-12.
  • Wallingford, H., Park, H., & OX108BA, U. (2010). Prediction of overtopping. Handbook of Coastal and Ocean Engineering, 341-382.
  • Victor, L., & Troch, P. (2013). Experimental study on the overtopping behaviour of steep slopes: transition between mild slopes and vertical walls. In 33rd International Conferenc on coastal engineering, 1-24.
  • Vicinanza, D., C ceres, I., Buccino, M., Gironella, X., & Calabrese, M. (2009). Wave disturbance behind low-crested structures: Diffraction and overtopping effects. Coastal Engineering, 56(11), 1173-1185.
  • Verhagen, H., Steenaard, J., & Tuan, T. (2004). Infiltration of overtopping water in a breakwater crest. In Coastal Engineering Conference, 29(4), 4253.
  • Vanneste, D. (2012). Experimental and numerical study of wave-induced porous flow in rubble-mound breakwaters. Doctoral dissertation, Ghent University.
  • Vanlishout, V., Verhagen, H., & Troch, P. (2011). Oblique wave transmission through rough impermeable rubble mound submerged breawaters. Coastal Engineering Proceedings, 1(32), 22.
  • Van der Meer, J., Wang, B., Wolters, A., Zanuttigh, B., & Kramer, M. Oblique wave transmission over low-crested structures, 8(9), 6.
  • Van der Meer, J., Briganti, R., Zanuttigh, B., & Wang, B. (2005). Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change. Coastal Engineering, 52(10), 915-929.
  • Van der Meer, J., & Daemen, I. (1994). Stability and wave transmission at low-crested rubble-mound structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 120(1), 1-19.
  • Van Gent, M., & Van der Werf, I. (2011). Stability of breakwater roundheads during construction. Coastal Engineering Proceedings, 1(32), 33.
  • Van Gent, M. (2017). Low-exceedance wave overtopping events: Measurements of velocities and the thickness of water-layers on the crest and inner slope of dikes. DC1-322-3.
  • Van Gent, M. (2014). Oblique wave attack on rubble mound breakwaters. Coastal Engineering, 88, 43-54.
  • Van Gent, M. (2002). Wave overtopping events at dikes. In Coastal Engineering Conference, 2, 2203-2215.
  • Tirindelli, M., & Lamberti, A. (2004). Wave action on rubble mound breakwaters: the problem of scale effects. University of Bologna.
  • Suh, K., & Kang, J. (2011). Stability formula for Tetrapods. Journal of Waterway, Port, Coastal, and Ocean Engineering, 138(3), 261-266.
  • Soldini, L., Lorenzoni, C., Brocchini, M., Mancinelli, A., & Cappietti, L. (2009). Modeling of the Wave Setup Inshore of an Array of Submerged Breakwaters. Journal of Waterway, Port, Coastal, and Ocean Engineering ASCE.
  • Sierra, J., Gironella, X., S nchez-Arcilla, A., Sospedra, J., & Alsina, J. (2007). Hybrid modelling of scouring-deposition in front of a coastal structure. J ournal of Coastal Research, 364-368.
  • Sierra, J., Gironella, X., Alsina, J., Oliveira, T., C ceres, I., M sso, C., & Mestres, M. (2009). Physical and numerical modeling of beach response to permeable low-crested coastal structures. Journal of Coastal Research, 1065-1069.
  • Sierra, J., Dowding, D., Persetto, V., Oliveira, T., Gironella, X., M sso, C., & Mestres, M. (2011). Wave reflection, transmission and spectral changes at permeable low-crested structures. J ournal of Coastal Research, (64), 593-597.
  • Sharifahmadian, A., & Simons, R. (2014). A 3D numerical model of nearshore wave field behind submerged breakwaters. Coastal engineering, 83, 190-204.
  • Sanchez-Arcilla, A., Alsina, J., Caceres, I., Gonzalez-Marco, D., Sierra, J., & Pena, C. (2004). Morphodynamics on a beach with a submerged detached breakwater. In Coastal Engineering Conference, 29(3), 2836.
  • STEENDAM, G., VAN DER MEER, J., VERHAEGHE, H., BESLEY, P., FRANCO, L., & VAN GENT, M. (2005). THE INTERNATIONAL DATABASE ON WAVE OVERTOPPING. In Coastal Engineering 2004, 4, 4301-4313.
  • Reddy, M., & Neelamani, S. (2005). Hydrodynamic studies on vertical seawall defenced by low-crested breakwater. Ocean engineering, 32(5), 747-764.
  • RUOL, P., FAEDO, A., & PARIS, A. (2005). Physical model study of water piling-up behind low-crested structures. In Coastal Engineering 2004, 4, 4165-4177.
  • Muttray, M., ten Oever, E., & Reedijk, B. (2012). Stability of Low Crested and Submerged Breakwaters with Single Layer Armouring. Journal of Shipping and Ocean Engineering, 2, 140-152.
  • Martinelli, L., Zanuttigh, B., Clementi, E., Guerrero, M., & Lamberti, A. (2004). Experimental analysis and 2DH numerical simulations of morphodynamics around Low-Crested Structures. In Coastal Engineering Conference, 9(3), 2810.
  • Makris, C., & Memos, C. (2007). Wave transmission over submerged breakwaters: Performance of formulae and models. In The Seventeenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
  • Loveless, J., Debski, D., & MacLeod, A. (1998). Sea level set-up behind detached breakwaters. In Coastal Engineering 1998, 1665-1678.
  • Losada, I., Lara, J., & Garcia, N. (2004). 2-D Experimental and numerical analysis of wave interaction with low-crested breakwaters including breaking and flow recirculation. In Coastal Structures 2003, 863-875.
  • Lorenzoni, C., Postacchini, M., Mancinelli, A., & Brocchini, M. (2012). The morphological response of beaches protected by different breakwater configurations. Coastal Engineering Proceedings, 1(33), 52.
  • Lomonaco, P., Vidal, C., Losada, I., Garcia, N., & Lara, J. (2005). Flow Measurements and Numerical Simulation on Low-Crested Structures for Coastal Protection. In Environmentally Friendly Coastal Protection, 191-210.
  • Liao, Y., Jiang, J., Wu, Y., & Lee, C. (2013). EXPERIMENTAL STUDY OF WAVE BREAKING CRITERIA AND ENERGY LOSS CAUSED BY A SUBMERGED POROUS BREAKWATER ON HORIZONTAL BOTTOM. Journal of Marine Science and Technology, 21(1), 35-41.
  • Lee, K., Bae, J., An, S., Kim, D., & Bae, K. (2016). Numerical Analysis on Wave Characteristics around Submerged Breakwater in Wave and Current Coexisting Field by OLAFOAM. J ournal of Korean Society of Coastal and Ocean Engineers, 28(6), 332-349.
  • Lamberti, A., Martinelli, L., & Zanuttigh, B. (2007). Prediction of wave induced water flow over and through the structure, of set-up and rip- currents.
  • Lamberti, A., Archetti, R., Kramer, M., Paphitis, D., Mosso, C., & Di Risio, M. (2005). European experience of low crested structures for coastal management. Coastal Engineering, 52(10), 841-866.
  • Kramer, M., Zanuttigh, B., Van der Meer, J., Vidal, C., & Gironella, F. (2005). Laboratory experiments on low-crested breakwaters. Coastal Engineering, 52(10), 867-885.
  • Kramer, M. & Burcharth, H.(2003), Wave basin experiment Delos. Report(DELOS EVK3_CT_2000_00041).
  • Johnson, H., Karambas, T., Avgeris, I., Zanuttigh, B., Gonzalez-Marco, D., & Caceres, I. (2005). Modelling of waves and currents around submerged breakwaters. Coastal Engineering, 52(10), 949-969.
  • Hur, D., Lee, W., Kim, M., & Yoon, J. (2013). Application of 3-D Numerical Method(LES-WASS-3D) to Estimation of Nearshore Current at Songdo Beach with Submerged Breakwaters. Journal of Ocean Engineering and Technology, 27(4), 14-21.
  • Hur, D., Lee, W., Goo, N., Jeon, H., & Jeong, Y. (2017). Development of New Thpe of Submerged Breakwater for Reducing Mean Water Level behind Structure. J ournal of Ocean Engineering and Technology, 31(2), 130-140.
  • Hur, D., Lee, W., & Cho, W. (2012). Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet. Ocean Engineering, 44, 100-116.
  • Hur, D., & Kim, D. (2003). Numerical Simulation of Velocity Fields and Vortex Generation around the Submerged Breakwater on the Sloped Bottom. Journal of Korean Society of Coastal and Ocean Engineers, 15(3), 151-158.
  • Haller, M., Honegger, D., & Catalan, P. (2013). Rip current observations via marine radar. Journal of waterway, port, coastal, and ocean engineering, 140(2), 115-124.
  • Goda, Y., (1975). Random seas and design of maritime structures. World Scientific Publishing.
  • Garcia, R., & Kobayashi, N. (2014). Trunk and head damage on a low-crested breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering, 141(2), 04014037.
  • Garcia, N., Lara, J., & Losada, I.. (2004b). 2-D numerical analysis of near-field flow at low-crested permeable breakwaters. Coastal Engineering, 51(10), 991-1020.
  • Garcia, N., Lara, J. L., Lomonaco, P., & Losada, I. (2004a). Flow at low-crested structures under breaking conditions. In Coastal Engineering Conference, 29(4), 4240.
  • Etemad-Shahidi, A., & Jafari, E. (2014). New formulae for prediction of wave overtopping at inclined structures with smooth impermeable surface. Ocean Engineering, 84, 124-132.
  • Diskin, M., Vajda, M., & Amir, I. (1970). Piling-up behind low and submerged permeable breakwaters. Journal of the Waterways, Harbors and Coastal Engineering Division, 96(2), 359-372.
  • Dean, R., Chen, R., & Browder, A. (1997). Full scale monitoring study of a submerged breakwater, Palm Beach, Florida, USA. Coastal Engineering, 29(3-4), 291-315.
  • De Waal, J. P., & Van der Meer, J. W. (1993). Wave runup and overtopping on coastal structures. In Coastal Engineering 1992, 1758-1771.
  • Carevic, D., Loncar, G., & Prsic, M. (2013). Wave parameters after smooth submerged breakwater. Coastal engineering, 79, 32-41.
  • Cappietti, L., Sherman, D., & Ellis, J. (2012). Wave transmission and water setup behind an emergent rubble-mound breakwater. Journal of Coastal Research, 29(3), 694-705.
  • Cappietti, L., Clementi, E., Aminti, P., & Lamberti, A. (2006). Piling-up and filtration at low crested breakwaters of different permeability. In Coastal Engineering Conference, 30(5), 4957-4969.
  • Calabrese, M., Vicinanza, D., & Buccino, M. (2008). 2D Wave setup behind submerged breakwaters. Ocean Engineering, 35(10), 1015-1028.
  • Calabrese, M., Vicinanza, D., & Buccino, M. (2005). Verification and re-calibration of an engineering method for predicting 2d wave setup behind submerged breakwaters. In Proceedings of International Coastal Symposium, 5.
  • Calabrese, M., Vicinanza, D., & Buccino, M. (2003). Low-crested and submerged breakwaters in presence of broken waves. In International Conference Towards a Balanced Methodology in European Hydraulic Research, 8-1-8-23.
  • Calabrese, M., Vicinanza, D., & Buccino, M. (2002). Large-scale experiments on the behaviour of low crested and submerged breakwaters in presence of broken waves. In Coastal Engineering Conference, 2, 1900-1912.
  • C ceres, I., Stive, M. J., & S nchez-Arcilla, A. (2008). Quantification of changes in current intensities induced by wave overtopping around low-crested structures. Coastal Engineering, 55(2), 113-124.
  • C ceres, I., S nchez-Arcilla, A., Zanuttigh, B., Lamberti, A., & Franco, L. (2005). Wave overtopping and induced currents at emergent low crested structures. Coastal Engineering, 52(10), 931-947.
  • Burcharth, H. F., Kramer, M., Lamberti, A., & Zanuttigh, B. (2006). Structural stability of detached low crested breakwaters. Coastal Engineering, 53(4), 381-394.
  • Burcharth, H. F., Hawkins, S. J., Zanuttigh, B., Lamberti A. (2007). Environmental Design Guidelines for Low Crested Coastal Structures. Elsevier.
  • Buccino, M., Vicinanza, D., C ceres, I., & Calabrese, M. (2009). 3D wave field behind impermeable low crested structures. J ournal of Coastal Research, 477-481.