박사

Creep crack growth (CCG) test method using small punch specimens with surface crack and derivation of high temperature fracture parametersCreep crack growth test method using small punch specimens with surface crack and derivation of high temperature fracture parameters

논문상세정보
' Creep crack growth (CCG) test method using small punch specimens with surface crack and derivation of high temperature fracture parametersCreep crack growth test method using small punch specimens with surface crack and derivation of high temperature fracture parameters' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Creep crack growth
  • Ct-integral
  • Small punch test
  • finiteelementanalyses
  • surface crack
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
13 0

0.0%

' Creep crack growth (CCG) test method using small punch specimens with surface crack and derivation of high temperature fracture parametersCreep crack growth test method using small punch specimens with surface crack and derivation of high temperature fracture parameters' 의 참고문헌

  • Zhai, P. C., Hashida, T., Komazaki, S., Zhang, Q. J. (2004) Numerical analysis for small punch creep tests by finite-element method, J. Test. Eval., 32, 298-303.
  • Zhai, P. C., Chen, G., Hashida, T. and Zhang, Q. J. (2005) Evaluation on small punch creep test by finite element method. Key Eng. Mater. 297– 300, 377–383
  • Zahoor, A. (1991) Ductile fracture handbook. Electric Power Research Institute.
  • Yoon, K. B., Park, T. G., Shim, S. H., and Jeong, I. S. (2001) Assessment of creep properties of 9Cr steel using small punch creep testing. Transact. KSME (A) (in Korean), 25, 1493–1500.
  • Yoon, K. B., Park, T. G., Saxena, A. (2003) Creep crack growth analysis of elliptic surface cracks in pressure vessels, Int. J. Pres. Ves. Pip. 80, 465- 479.
  • Yang, Z., Wang, Z. W. (2003) Relationship between strain and central deflection in small punch creep specimens. Int. J. Press. Vessel. Pip. 80, 397-404.
  • Yagawa, G., Kitajima, Y., Ueta, H. (1993) Three-dimensional fully plastic solutions for semi-elliptical surface cracks. Int. J. Pres. Ves. Pip., 53, 457 -510.
  • Viswanathan, R. (1989) Damage Mechanisms and Life Assessment of High-Temperature Components. ASM International, Metals Park, Ohio.
  • Ule, B., Šuštar, T., Dobeš, F., Milička, K., Bicego, V., Tettamanti, S., Klaput, J. (1999) Small punch test method assessment for the determination of the residual creep life of service exposed components: outcomes from an inter-laboratory exercise. Nucl. Eng. and Desi. 192, 1- 11.
  • Timoshenko, S. Timoshenko, S. P., Timoshenko, S. P., & Timoshenko, S. P. (1956) Strength of Materials, Part II Advanced theory and problems, 3rd Princeton, Van Nostrand, NJ.
  • Tanaka, K., Amita, T., Satou, T., Koba, K., Kusumoto, J., Kanaya, A. (2009) Evaluation on high temperature fracture toughness of CrMoV cast steel by small punch testing. Int. J. Press. Vessel. Pip., 86, 643-648.
  • Smith, F. W., Alavi, M. J. (1971) Stress intensity factors for a penny shaped crack in a half space. Eng. Fract. Mech., 3, 241-254.
  • Saxena, A. (1998) Nonlinear fracture mechanics for engineers. Boca Raton: CRC press.
  • Saxena, A. (1991) Creep crack growth in high temperature ductile materials. Engineering fracture mechanics, 40, 721-736.
  • Saxena, A. (1986) Creep crack growth under non-steady-state conditions. In Fracture Mechanics: Seventeenth Volume. ASTM International.
  • Saxena, A. (1980) Evaluation of C* for the characterization of creepcrack- growth behavior in 304 stainless steel, In Fracture Mechanics, ASTM International.
  • Sattari-Far, I., Dillstr m, P. (2004) Local limit load solutions for surface cracks in plates and cylinders using finite element analysis. Int. J. Press. Vessel. Pip., 81, 57-66.
  • Riedel, R, Rice, J. R. (1986) Tensile cracks in creeping solids, ASTM STP 700, 112–30.
  • Riedel, H (1983) Crack-tip stress fields and crack growth creep-fatigue conditions, ASTM STP 803, I505–I520.
  • Raju, I. S., Newman, J. C. (1979) Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates. Eng. Fract. Mech., 11, 817-829.
  • Pilkey, W. D. (1993) Formulas for stress, strain, and structural matrices. John Wiley & Sons, Inc.
  • Parker, J. D., James, J. D. (1994) Creep behavior of miniature disc specimens of low alloy steel, developments in a progressing technology. ASME PVP 279, 167–172.
  • Park, T. G., Shim, S. H., Yoon, K. B., and Jang, C. H. (2002) A study on parameters measured during small punch creep testing. Transact. KSME (A) (in Korean), 26, 171–178.
  • Nikbin, K. M., Webster, G. A., Turner, C. E. (1976) Relevance of nonlinear fracture mechanics to creep cracking, In Cracks and fracture, ASTM International.
  • Newman, J. C., Raju, I. S. (1981) An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech., 15, 185-192.
  • Miller A. G. (1988) Review of limit loads of structures containing defects. Int. J. Pres. Ves. Pip., 32, 191-327.
  • Miliˇcka, K., Dobeˇs, A. (2006) Small punch testing of P91 steel, Int. J. Press. Vessel Pip., 83, 625–634.
  • Mao, X., Takahashi, H (1987) Development of a further-miniaturized specimen of 3 mm diameter for tem disk (Φ 3 mm) small punch tests. J. Nuclear. Mater. 150, 42-52.
  • Mao, X., Shoji, T., Takahashi, H. (1987) Characterization of fracture behaviour in small punch test by combined recrystallization-etch method and rigid plastic analysis. J. Test. Evaluat., 15, 30-37.
  • Manahan, M. P., Argon, A. S., Harling, O. K. (1981) The development of a miniaturized disk bend test for the determination of post-irradiation mechanical properties. J. Nucl. Mater. 103 & 104, 1545-1550.
  • Ma, Y. W., Yoon, K. B. (2010) Estimation of Ct parameter in transversely isotropic materials under transient creep conditions. Eng. Fract. Mech., 77, 3246-3260.
  • Ma, Y. W., Shim, S., Yoon, K. B. (2009) Assessment of power law creep constants of Gr91 steel using small punch creep tests. Fatigue Fract. Eng. Mater. Struct. 32, 951-960.
  • Lei, Y (2004) J-integral and limit load analysis of semi-elliptical surface cracks in plate tension. Int. J. Pres. Ves. Pip., 81, 21-30.
  • Landes, J. D., Begley, J. A. (1976) A fracture mechanics approach to creep crack growth, ASTM STP 590, 695-700.
  • Kumar. V., German. M. D., (1981) An engineering approach for elasticplastic fracture analysis. NP-1931, EPRI.
  • Komazaki, S., Hashida, T., Shoji, T., Suzuki, K. (2000) Development of small punch tests for creep property measurement of tungsten-alloyed 9%Cr ferritic steels, J. Test. Eval., 28, 249–256.
  • Kobayashi, A. S., Polvanich, N., Emery, A. F., Love, W. J. (1975) Surface flaws in a plate in bending. In Society of Engineering Science, Annual Meeting, 12 th, 343-352.
  • Killian, D. E., Yoon, K. K., (1995) J estimation method for a semielliptical surface flaw in a cylinder. Int. J. Pres. Ves. Pip., 117, 66-66.
  • Ju, J. B., Jang, J. I., Kwon, D. (2003) Evaluation of fracture toughness by small-punch testing techniques using sharp notched specimens. Int. J. Press. Vessel. Pip., 80, 221-228.
  • Joo, Y. H., Hashida, T., Takahashi, H., Shimomura, K. (1992) The use of small punch (bulge) tests to estimate fracture stress in the lower shelf regime. J. Test. Evaluat., 20, 336-342.
  • Joo YH, Hashida T, Takahashi H, Shimomura K. (1992) The use of small punch (bulge) tests to estimate fracture stress in the lower shelf regime. J. Test. Eval. 20, 336-342.
  • Izaki, T., Kobayashi, T., Kusumoto, J., Kanaya, A. (2009) A creep life assessment method for boiler pipes using small punch creep test. Int. J. Press. Vessel. Pip. 86, 637-642.
  • Ibanez, A. R., Srinivasan, V. S., Saxena, A. (2006) Creep deformation and rupture behaviour of directionally solidified GTD 111 superalloy. Fatigue Fract. Eng. Mater. Struct.,29, 1010-1020.
  • Htun, N. C. Z., Nguyen, T. T., Won, D., Nguyen, M. H., Yoon, K. B. (2017) Creep fracture behaviour of SUS304H steel with vanadium addition based on small punch creep testing. Mater. High Temp. 34, 33- 40.
  • Habbitt, H. D., Karlsson, B. I., Sorensen, E. P., (2014) ABAQUS user’s manual V6.13-1, Pawtucket RI, USA.
  • Ha JS, Fleury E. (1998) Small punch tests to estimate the mechanical properties of steels for steam power plant: II. Fracture toughness. Int. J. Press. Vessel. Pip. 75, 707-713.
  • Cuesta, I. I., and Alegre, J. M. (2011) Determination of the fracture toughness by applying a structural integrity approach to pre-cracked small punch test specimens. Eng. Fract. Mech., 78, 289-300.
  • Cuesta, I. I., Alegre, J. M., Garc a, T. E., Rodr guez, C. (2015) Influence of the notch shape of pre-notched small punch specimens on the creep failure time. Eng. Fail. Anal. 56, 332-337.
  • Chen, J., Ha, Ma, Y. M., Yoon, K. B. (2010) Finite element study for determination of material’s creep parameters from small punch creep test. J. Mech. Sci. Tech. 24, 1195–1201.
  • C rdenas, E., Belzunce, F. J., Rodriguez, C., Penuelas, I., Beteg n, C. (2012) Application of the small punch test to determine the fracture toughness of metallic materials. Fatigue Fract. Eng. Mater. Struct., 35, 441-450.
  • Budzakoska, E., Carr, D. G., Stathers, P. A., Li, H., Harrison, R. P., Hellier, A. K., Yeung, W. Y. (2007) Predicting the J integral fracture toughness of Al 6061 using the small punch test. Fatigue Fract. Eng. Mater. Struct., 30, 796-807.
  • Alejandro, R. I. (2003) Modeling creep behavior in a directionally solidified nickel base superalloy, Ph.D. Thesis, Georgia Institute of Technology, USA.
  • Alegre, J. M., Cuesta, I. I., Barbachano, H. L. (2015) Determination of the fracture properties of metallic materials using pre‐cracked small punch tests. Fatigue Fract. Eng. Mater. Struct., 38, 104-112.