박사

탄소폼의 기계적·열적 물성 향상을 위한 공정 변수에 관한 연구

송승아 2018년
논문상세정보
' 탄소폼의 기계적·열적 물성 향상을 위한 공정 변수에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 직물
  • Carbon foam
  • Cell density
  • Microwave
  • Phenolic foam
  • Zinc oxide
  • electrodeposition
  • 마이크로파
  • 셀 밀도
  • 전기전착
  • 징크옥사이드
  • 탄소폼
  • 페놀폼
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
467 0

0.0%

' 탄소폼의 기계적·열적 물성 향상을 위한 공정 변수에 관한 연구' 의 참고문헌

  • Z. Xuefei, L. Shiquan, L. Hongzha, and G. Lijuan, "Preparation and characterization of activated carbon foam from phenolic resin," Journal of Environmental Sciences, vol. 21, pp. S121- S123, 2009.
  • Y. Tao, M. Fu, A. Zhao, D. He, and Y. Wang, "The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method," Journal of Alloys and Compounds, vol. 489, pp. 99-102, 2010.
  • Y. Lin, G. Ehlert, and H. A. Sodano, "Increased interface strength in carbon fiber composites through a ZnO nanowire interphase," Advanced functional materials, vol. 19, pp. 2654-2660, 2009.
  • Y. J. Huang, C. H. Wang, Y. L. Huang, G. Guo, and S. R. Nutt, "Enhancing specific strength and stiffness of phenolic microsphere syntactic foams through carbon fiber reinforcement," Polymer Composites, vol. 31, pp. 256-262, 2010.
  • Y. Ha et al., "Polyimide multilayer thin films prepared via spin coating from poly (amic acid) and poly (amic acid) ammonium salt," Macromolecular research, vol. 16, pp. 725-733, 2008.
  • X. Wu, Y. g. Liu, M. Fang, L. Mei, and B. Luo, "Preparation and characterization of carbon foams derived from aluminosilicate and phenolic resin," Carbon, vol. 49, pp. 1782-1786, 2011.
  • X. Wang, R. Luo, Y. Ni, R. Zhang, and S. Wang, "Properties of chopped carbon fiber reinforced carbon foam composites," Materials Letters, vol. 63, pp. 25-27, 2009.
  • W. Liu et al., "Simultaneous catalyzing and reinforcing effects of imidazole-functionalized graphene in anhydride-cured epoxies," Journal of Materials Chemistry, vol. 22, pp. 18395-18402, 2012.
  • W. Lin et al., "Thermal conductivities, thermal diffusivities, and volumetric heat capacities of core samples obtained from the Japan Trench Fast Drilling Project (JFAST)," Earth, Planets and Space, vol. 66, p. 48, 2014.
  • V. Kumar and N. P. Suh, "A process for making microcellular thermoplastic parts," Polymer Engineering & Science, vol. 30, pp. 1323-1329, 1990.
  • V. Kumar and K. Seeler, "Cellular and microcellular materials, vol. 53," New York: The American Society of Mechanical Engineers, 1994.
  • V. Jourdain and C. Bichara, "Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition," Carbon, vol. 58, pp. 2-39, 2013.
  • T. Matsumoto, "Mesophase pitch and its carbon fibers," Pure and applied chemistry, vol. 57, pp. 1553-1562, 1985.
  • S.-K. Kang, D.-B. Lee, and N.-S. Choi, "Fiber/epoxy interfacial shear strength measured by the microdroplet test," Composites Science and Technology, vol. 69, pp. 245-251, 2009.
  • S. Zhu, C.-H. Su, S. Lehoczky, I. Muntele, and D. Ila, "Carbon nanotube growth on carbon fibers," Diamond and Related Materials, vol. 12, pp. 1825-1828, 2003.
  • S. Sharma, R. Kamath, and M. Madou, "Porous glassy carbon formed by rapid pyrolysis of phenol-formaldehyde resins and its performance as electrode material for electrochemical double layer capacitors," Journal of Analytical and Applied Pyrolysis, vol. 108, pp. 12-18, 2014.
  • S. O. Kasap, Principles of electronic materials and devices. McGraw-Hill New York, 2006.
  • S. Lei, Q. Guo, J. Shi, and L. Liu, "Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength," Carbon, vol. 48, pp. 2644-2646, 2010.
  • S. Farhan, R.-M. Wang, H. Jiang, and N. Ul-Haq, "Preparation and characterization of carbon foam derived from pitch and phenolic resin using a soft templating method," Journal of Analytical and Applied Pyrolysis, vol. 110, pp. 229-234, 2014.
  • S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, pp. 309-319, 1938.
  • S. A. Song, Y. S. Chung, and S. S. Kim, "The mechanical and thermal characteristics of phenolic foams reinforced with carbon nanoparticles," Composites Science and Technology, vol. 103, pp. 85-93, 2014.
  • S. A. Song, Y. Lee, Y. S. Kim, and S. S. Kim, "Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles," Composite Structures, vol. 173, pp. 1-8, 2017.
  • S. A. Song, H. J. Oh, B. G. Kim, and S. S. Kim, "Novel foaming methods to fabricate activated carbon reinforced microcellular phenolic foams," Composites science and technology, vol. 76, pp. 45-51, 2013.
  • S. A. Song, C. K. Lee, Y. H. Bang, and S. S. Kim, "A novel coating method using zinc oxide nanorods to improve the interfacial shear strength between carbon fiber and a thermoplastic matrix," Composites Science and Technology, vol. 134, pp. 106- 114, 2016.
  • S. A. Al-Ajlan, "Measurements of thermal properties of insulation materials by using transient plane source technique," Applied thermal engineering, vol. 26, pp. 2184-2191, 2006.
  • R. Mehta, D. P. Anderson, and J. W. Hager, "Graphitic opencelled carbon foams: processing and characterization," Carbon, vol. 41, pp. 2174-2176, 2003.
  • R. Gong, Q. Xu, Y. Chu, X. Gu, J. Ma, and R. Li, "A simple preparation method and characterization of epoxy reinforced microporous phenolic open-cell sound absorbent foam," RSC Advances, vol. 5, pp. 68003-68013, 2015.
  • Q. Zhang, J. Liu, R. Sager, L. Dai, and J. Baur, "Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties," Composites Science and Technology, vol. 69, pp. 594-601, 2009.
  • P. Lv, Y.-y. Feng, P. Zhang, H.-m. Chen, N. Zhao, and W. Feng, "Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers," Carbon, vol. 49, pp. 4665-4673, 2011.
  • O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, "Fabrication of glassy carbon microstructures by soft lithography," Sensors and Actuators A: Physical, vol. 72, pp. 125-139, 1999.
  • N.-S. Choi and J.-E. Park, "Fiber/matrix interfacial shear strength measured by a quasi-disk microbond specimen," Composites Science and Technology, vol. 69, pp. 1615-1622, 2009.
  • N. C. Gallego and J. W. Klett, "Carbon foams for thermal management," Carbon, vol. 41, pp. 1461-1466, 2003.
  • M. H. Malakooti, H.-S. Hwang, and H. A. Sodano, "Morphology- Controlled ZnO Nanowire Arrays for Tailored Hybrid Composites with High Damping," ACS Applied Materials & Interfaces, vol. 7, pp. 332-339, 2015.
  • M. F. Ashby and L. J. Gibson, "Cellular solids: structure and properties," Cambridge, UK: Press Syndicate of the University of Cambridge, pp. 183-231, 1997.
  • M. Abdalla, D. Dean, P. Robinson, and E. Nyairo, "Cure behavior of epoxy/MWCNT nanocomposites: the effect of nanotube surface modification," Polymer, vol. 49, pp. 3310-3317, 2008.
  • L.-L. Yang, Q. Zhao, M. Willander, and J. Yang, "Effective way to control the size of well-aligned ZnO nanorod arrays with twostep chemical bath deposition," Journal of Crystal Growth, vol. 311, npp. 1046-1050, 2009.
  • L. Zhang, E. D. Yilmaz, J. Schj dt-Thomsen, J. C. Rauhe, and R. Pyrz, "MWNT reinforced polyurethane foam: Processing, characterization and modelling of mechanical properties," Composites Science and Technology, vol. 71, pp. 877-884, 2011.
  • L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, and G. Xu, "Polymer nanocomposite foams," Composites Science and Technology, vol. 65, pp. 2344-2363, 2005.
  • L. J. Gibson and M. F. Ashby, "Cellular solids: structure and properties. 1997," ed: Cambridge university press Cambridge, 2009.
  • L. Halldahl, "Methods for measuring thermal transport properties of materials, unclassified report, hot disk AB," Uppsala, Sweden.
  • L. Girifalco, M. Hodak, and R. S. Lee, "Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential," Physical Review B, vol. 62, p. 13104, 2000.
  • L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, "Solution-Grown Zinc Oxide Nanowires," Inorganic Chemistry, vol. 45, pp. 7535-7543, 2006.
  • K. Tao et al., "Effects of carbon nanotube fillers on the curing processes of epoxy resin‐based composites," Journal of Applied Polymer Science, vol. 102, pp. 5248-5254, 2006.
  • K. Khun, Z. Ibupoto, M. AlSalhi, M. Atif, A. Ansari, and M. Willander, "Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer," Materials, vol. 6, p. 4361, 2013.
  • K. Kawamura and G. M. Jenkins, "Mechanical properties of glassy carbon fibres derived from phenolic resin," Journal of Materials Science, journal article vol. 7, pp. 1099-1112, 1972.
  • J. S. Kim, "Analysis of dielectric sensors for the cure monitoring of resin matrix composite materials," Sensors and Actuators B: Chemical, vol. 30, pp. 159-164, 1996.
  • J. Bae, J. Jang, and S. H. Yoon, "Cure Behavior of the Liquid‐ Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction," Macromolecular Chemistry and Physics, vol. 203, pp. 2196- 2204, 2002.
  • I. Javni, W. Zhang, V. Karajkov, Z. Petrovic, and V. Divjakovic, "Effect of nano-and micro-silica fillers on polyurethane foam properties," Journal of cellular plastics, vol. 38, pp. 229-239, 2002.
  • H. Ghayour, H. R. Rezaie, S. Mirdamadi, and A. A. Nourbakhsh, "The effect of seed layer thickness on alignment and morphology of ZnO nanorods," Vacuum, vol. 86, pp. 101-105, 2011.
  • H. G. Kim, "Dielectric cure monitoring for glass/polyester prepreg composites," Composite structures, vol. 57, pp. 91-99, 2002.
  • H. E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W. I. Milne, and G. A. Amaratunga, "Rapid synthesis of aligned zinc oxide nanowires," Nanotechnology, vol. 19, p. 255608, 2008.
  • G. de Carvalho, J. A. Pimenta, W. N. dos Santos, and E. Frollini, "Phenolic and lignophenolic closed cells foams: Thermal conductivity and other properties," Polymer-plastics technology and engineering, vol. 42, pp. 605-626, 2003.
  • G. J. Ehlert and H. A. Sodano, "Zinc Oxide Nanowire Interphase for Enhanced Interfacial Strength in Lightweight Polymer Fiber Composites," ACS Applied Materials & Interfaces, vol. 1, pp. 1827-1833, 2009.
  • G. De Carvalho, E. Frollini, and W. N. D. Santos, "Thermal conductivity of polymers by hot‐wire method," Journal of applied polymer science, vol. 62, pp. 2281-2285, 1996.
  • F. C. Cowlard and J. C. Lewis, "Vitreous carbon — A new form of carbon," Journal of Materials Science, journal article vol. 2, pp. 507-512, 1967.
  • E. J. Kuncir, R. W. Wirta, and F. L. Golbranson, "Load-bearing characteristics of polyethylene foam: an examination of structural and compression properties," Journal of rehabilitation research and development, vol. 27, p. 229, 1990.
  • D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, and N. Katsarakis, "pH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth," Thin Solid Films, vol. 515, pp. 8764-8767, 2007.
  • D. Puglia, L. Valentini, and J. Kenny, "Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy," Journal of applied polymer science, vol. 88, pp. 452-458, 2003.
  • D. Polsongkram et al., "Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method," Physica B: Condensed Matter, vol. 403, pp. 3713-3717, 2008.
  • D. Kim and S. Lee, "Properties and thermal characteristics of phenol foam for heat insulating materials," JOURNAL OF KOREAN INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 17, p. 357, 2006.
  • D. Dollimore, P. Spooner, and A. Turner, "The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas," Surface Technology, vol. 4, pp. 121-160, 1976.
  • C.-H. Hung and W.-T. Whang, "A novel low-temperature growth and characterization of single crystal ZnO nanorods," Materials Chemistry and Physics, vol. 82, pp. 705-710, 2003.
  • C. M. Stafford, T. P. Russell, and T. J. McCarthy, "Expansion of polystyrene using supercritical carbon dioxide: effects of molecular weight, polydispersity, and low molecular weight components," Macromolecules, vol. 32, pp. 7610-7616, 1999.
  • C. Chen, E. B. Kennel, A. H. Stiller, P. G. Stansberry, and J. W. Zondlo, "Carbon foam derived from various precursors," Carbon, vol. 44, pp. 1535-1543, 2006.
  • C. Chen, B. Liang, A. Ogino, X. Wang, and M. Nagatsu, "Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave- Excited Surface-Wave Plasma Treatment," The Journal of Physical Chemistry C, vol. 113, pp. 7659-7665, 2009.
  • B. S. Schueller and R. T. Yang, "Ultrasound enhanced adsorption and desorption of phenol on activated carbon and polymeric resin," Industrial & engineering chemistry research, vol. 40, pp. 4912-4918, 2001.
  • B. A. Patterson, U. Galan, and H. A. Sodano, "Adhesive Force Measurement between HOPG and Zinc Oxide as an Indicator for Interfacial Bonding of Carbon Fiber Composites," ACS Applied Materials & Interfaces, vol. 7, pp. 15380-15387, 2015.
  • A. Standard, "C365, Standard test method for flatwise compressive properties of sandwich cores," ed: ASTM C365-94. West Conshohocken, Philadelphia, Pa: ASTM International, 1994.
  • A. Desai, S. Nutt, and M. Alonso, "Modeling of fiber-reinforced phenolic foam," Journal of cellular plastics, vol. 44, pp. 391-413, 2008.
  • A. ASTM, "C1557, Standard Test Method for Tensile Strength and Young’s Modulus of Fibers," West Conshohocken, PA, USA: American Society for Testing and Materials, 2008.