박사

열 전도성 입자 코팅과 필러 배향성을 이용한 열전도성 탄소섬유 복합재료 특성 및 판형 열교환기 적용 성능 특성 연구

정희여 2018년
논문상세정보
' 열 전도성 입자 코팅과 필러 배향성을 이용한 열전도성 탄소섬유 복합재료 특성 및 판형 열교환기 적용 성능 특성 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Boron Nitride (BN)
  • Carbon fiber reinforced polymer (CFRP)
  • electrophoretic deposition (EPD)
  • graphene
  • magnetic field
  • particle alignment
  • plate-type heat exchanger (PHE)
  • vacuum-assisted resin transfer molding (VARTM) process
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
320 0

0.0%

' 열 전도성 입자 코팅과 필러 배향성을 이용한 열전도성 탄소섬유 복합재료 특성 및 판형 열교환기 적용 성능 특성 연구' 의 참고문헌

  • Z.Y. Lin, Y. Liu, S. Raghavan, K.S. Moon, S.K. Sitaraman, C.P. Wong, Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation, ACS Applied Materials & Interfaces, 5 (2013) 7633-7640.
  • Y.S. Xu, D.D.L. Chung, Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments, Composite Interfaces, 7 (2000) 243-256.
  • Y.S. Xu, D.D.L. Chung, C. Mroz, Thermally conducting aluminum nitride polymer-matrix composites, Composites Part a-Applied Science and Manufacturing, 32 (2001) 1749-1757.
  • Y.A. Kim, S. Kamio, T. Tajiri, T. Hayashi, S.M. Song, M. Endo, M. Terrones, M.S. Dresselhaus, Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes, Applied Physics Letters, 90 (2007).
  • Y.-H. Zhao, Y.-F. Zhang, S.-L. Bai, X.-W. Yuan, Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties, Composites Part B: Engineering, 94 (2016) 102-108.
  • Y. Tominaga, D. Shimamoto, Y. Hotta, Improvement of thermal and mechanical properties of carbon fiber reinforced plastic composite with exfoliated hexagonal boron nitride particles, Journal of the Ceramic Society of Japan, 124 (2016) 808-812.
  • Y. Agari, A. Ueda, S. Nagai, Thermal-Conductivities of Composites in Several Types of Dispersion-Systems, Journal of Applied Polymer Science, 42 (1991) 1665- 1669.
  • X. Chen, Y. Su, D. Reay, S. Riffat, Recent research developments in polymer heat exchangers – A review, Renewable and Sustainable Energy Reviews, 60 (2016) 1367-1386.
  • W.S. Khan, R. Asmatulu, I. Ahmed, T.S. Ravigururajan, Thermal conductivities of electrospun PAN and PVP nanocomposite fibers incorporated with MWCNTs and NiZn ferrite nanoparticles, International Journal of Thermal Sciences, 71 (2013) 74-79.
  • W.G. Wang, B.L. Xiao, Z.Y. Ma, Evolution of interfacial nanostructures and stress states in Mg matrix composites reinforced with coated continuous carbon fibers, Composites Science and Technology, 72 (2012) 152-158.
  • W. Zheng, S.-C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites, Composites Science and Technology, 63 (2003) 225-235.
  • W. Zhao, H. Wang, H. Tang, G. Chen, Facile preparation of epoxy-based composite with oriented graphite nanosheets, Polymer, 47 (2006) 8401-8405.
  • W. Lee, S.B. Lee, O. Choi, J.W. Yi, M.K. Um, J.H. Byun, E.T. Thostenson, T.W. Chou, Formicary-like carbon nanotube/copper hybrid nanostructures for carbon fiber-reinforced composites by electrophoretic deposition, Journal of Materials Science, 46 (2011) 2359-2364.
  • W. Lee, S.B. Lee, J.W. Yi, B.S. Kim, J.H. Byun, Fabrication of Carbon Nanotube/Copper Hybrid Nanoplatelets Coated Carbon Fiber Composites by Thermal Vapor and Electrophoretic Depositions, Electrochemical and Solid State Letters, 14 (2011) K37-K39.
  • W. Hufenbach, M. Andrich, A. Langkamp, A. Czulak, Fabrication technology and material characterization of carbon fibre reinforced magnesium, Journal of Materials Processing Technology, 175 (2006) 218-224.
  • V. Gandikota, G.F. Jones, A.S. Fleischer, Thermal performance of a carbon fiber composite material heat sink in an FC-72 thermosyphon, Experimental Thermal and Fluid Science, 34 (2010) 554-561.
  • S.J. Pugh, G.F. Hewitt, H. Muller-Steinhagen, Fouling during the use of seawater as coolant - the development of a user guide, Heat transfer engineering, 26 (2005) 35-43.
  • S.J. Houle, P.A. Koning, G.M. Chrysler, Carbon-carbon and/or metal-carbon fiber composite heat spreaders, in, Google Patents, 2005.
  • S.I. Kundalwal, R.S. Kumar, M.C. Ray, Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes, International Journal of Heat and Mass Transfer, 72 (2014) 440-451.
  • S.G. Kandlikar, D. Schmitt, A.L. Carrano, J.B. Taylor, Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels, Physics of Fluids, 17 (2005).
  • S.A. Faroughi, C. Huber, Effective thermal conductivity of metal and non-metal particulate composites with interfacial thermal resistance at high volume fraction of nano to macro-sized spheres, Journal of Applied Physics, 117 (2015).
  • S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar, M. Roukes, A.Y. Chtchelkanova, D. Treger, Spintronics: a spin-based electronics vision for the future, Science, 294 (2001) 1488-1495.
  • S. Qingliang, L. Hejun, L. Lu, L. Yunyu, F. Qiangang, L. Hongjiao, S. Qiang, SiC nanowire reinforced carbon/carbon composites with improved interlaminar strength, Materials Science and Engineering: A, 651 (2016) 583-589.
  • S. Kutateladze, N. Gogonin, A. Dorokhov, V. Sosunov, Film Condensation of Flowing Vapor on a Bundle of Plain Horizontal Tubes, Thermal Engineering, 26 (1979) 270-273.
  • S. Han, D.D.L. Chung, Increasing the through-thickness thermal conductivity of carbon fiber polymer–matrix composite by curing pressure increase and filler incorporation, Composites Science and Technology, 71 (2011) 1944-1952.
  • S. Chand, Review Carbon fibers for composites, Journal of Materials Science, 35 (2000) 1303-1313.
  • R.M. Erb, R. Libanori, N. Rothfuchs, A.R. Studart, Composites Reinforced in Three Dimensions by Using Low Magnetic Fields, Science, 335 (2012) 199-204.
  • R. Rolfes, U. Hammerschmidt, Transverse thermal conductivity of CFRP laminates: A numerical and experimental validation of approximation formulae, Composites Science and Technology, 54 (1995) 45-54.
  • R. Moffat, Contributions to the theory of single-sample uncertainty analysis, ASME, Transactions, Journal of Fluids Engineering, 104 (1982) 250-258.
  • R. Kochetov, A.V. Korobko, T. Andritsch, P.H.F. Morshuis, S.J. Picken, J.J. Smit, Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix, Journal of Physics D-Applied Physics, 44 (2011).
  • Q. Wang, X.H. Han, A. Sommers, Y. Park, C. T' Joen, A. Jacobi, A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks, International Journal of Refrigeration, 35 (2012) 7-26.
  • Q. An, A.N. Rider, E.T. Thostenson, Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties, Carbon, 50 (2012) 4130-4143.
  • P.V. Kamat, K.G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, D. Meisel, Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field, Journal of the American Chemical Society, 126 (2004) 10757-10762.
  • P. Morgan, Carbon fibers and their composites, CRC press, 2005.
  • P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Physical review letters, 87 (2001).
  • P. Hvizdos, J.M.C. Moreno, J. Ocenasek, L. Ceseracciu, G. Anne, Mechanical properties of alumina/zirconia functionally graded material prepared by electrophoretic deposition, Fractography of Advanced Ceramics Ii, 290 (2005) 332- 335.
  • M.T. Huang, H. Ishida, Investigation of the boron nitride/polybenzoxazine interphase, Journal of Polymer Science Part B-Polymer Physics, 37 (1999) 2360- 2372.
  • M.L. Dunn, M. Taya, The Effective Thermal-Conductivity of Composites with Coated Reinforcement and the Application to Imperfect Interfaces, Journal of Applied Physics, 73 (1993) 1711-1722.
  • M.J. Yoo, D.S. Seo, S.H. Kim, W.S. Lee, T.G. Seong, S.H. Kweon, B.J. Jeong, Y.H. Jeong, S. Nahm, Electric field assembled anisotropic alumina composite for thermal dissipation applications, Journal of Composite Materials, 48 (2014) 201- 208.
  • M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon, 47 (2009) 2-22.
  • M. Web, Overview of materials for Epoxy, Cast, Unreinforced, in, 2012.
  • M. Wang, Q. Kang, N. Pan, Thermal conductivity enhancement of carbon fiber composites, Applied Thermal Engineering, 29 (2009) 418-421.
  • M. S nchez, M. Campo, A. Jim nez-Su rez, A. Ure a, Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM, Composites Part B: Engineering, 45 (2013) 1613-1619.
  • M. Li, Y. Wan, Z. Gao, G. Xiong, X. Wang, C. Wan, H. Luo, Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers, Materials & Design 51 (2013) 257-261.
  • M. Lee, Y. Choi, K. Sugio, K. Matsugi, G. Sasaki, Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process, Composites Science and Technology, 97 (2014) 1-5.
  • M. Hatami, D.D. Ganji, M. Gorji-Bandpy, A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery, Renewable and Sustainable Energy Reviews, 37 (2014) 168-181.
  • L. Zaheed, R.J.J. Jachuck, Review of polymer compact heat exchangers, with special emphasis on a polymer film unit, Applied Thermal Engineering, 24 (2004) 2323-2358.
  • L. Xia, B.B. Jia, J. Zeng, J.C. Xu, Wear and mechanical properties of carbon fiber reinforced copper alloy composites, Materials Characterization, 60 (2009) 363-369.
  • L. Jia, X. Peng, J. Sun, T. Chen, An experimental study on vapor condensation of wet flue gas in a plastic heat exchanger, Heat Transfer—Asian Research, 30 (2001) 571-580.
  • L. Feng, K.-z. Li, Z.-s. Si, Q. Song, H.-j. Li, J.-h. Lu, L.-j. Guo, Compressive and interlaminar shear properties of carbon/carbon composite laminates reinforced with carbon nanotube-grafted carbon fibers produced by injection chemical vapor deposition, Materials Science and Engineering: A, 626 (2015) 449-457.
  • L. Cheng, C.W.V.D. GELD, Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger, Heat transfer engineering, 26 (2005) 18-27.
  • K.C. Yung, H. Liem, Enhanced thermal conductivity of boron nitride epoxymatrix composite through multi-modal particle size mixing, Journal of Applied Polymer Science, 106 (2007) 3587-3591.
  • K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi, K. Watari, Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces, Journal of Materials Chemistry, 20 (2010) 2749-2752.
  • K. Kim, H. Ju, J. Kim, Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement, Composites Science and Technology, 123 (2016) 99-105.
  • J.R. Burns, R.J.J. Jachuck, Condensation studies using cross-corrugated polymer film compact heat exchanger, Applied Thermal Engineering, 21 (2001) 495-510.
  • J.K. Park, I.-H. Do, P. Askeland, L.T. Drzal, Electrodeposition of exfoliated graphite nanoplatelets onto carbon fibers and properties of their epoxy composites, Composites Science and Technology, 68 (2008) 1734-1741.
  • J.H. Guo, C.X. Lu, F. An, S.Q. He, Preparation and characterization of carbon nanotubes/carbon fiber hybrid material by ultrasonically assisted electrophoretic deposition, Materials Letters, 66 (2012) 382-384.
  • J. Pora, Composite materials in the airbus A380–from history to future, Proceedings of ICCM13, Plenary lecture, CD-ROM, (2001).
  • J. Li, R. Luo, Study of the mechanical properties of carbon nanofiber reinforced carbon/carbon composites, Composites Part A: Applied Science and Manufacturing, 39 (2008) 1700-1704.
  • J. Fern ndez-Seara, R. Diz, F.J. Uh a, Pressure drop and heat transfer characteristics of a titanium brazed plate-fin heat exchanger with offset strip fins, Applied Thermal Engineering, 51 (2013) 502-511.
  • J. Du, H.M. Cheng, The fabrication, properties, and uses of graphene/polymer composites, Macromolecular Chemistry and Physics, 213 (2012) 1060-1077.
  • H.S. Lim, J.W. Oh, S.Y. Kim, M.J. Yoo, S.D. Park, W.S. Lee, Anisotropically Alignable Magnetic Boron Nitride Platelets Decorated with Iron Oxide Nanoparticles, Chemistry of Materials, 25 (2013) 3315-3319.
  • H.R. Gurdal Z, Hajela P, Design and optimization of laminated composite materials, Wiley, New York, 1999.
  • H.-B. Cho, T. Nakayama, H. Suematsu, T. Suzuki, W. Jiang, K. Niihara, E. Song, N.S.A. Eom, S. Kim, Y.-H. Choa, Insulating polymer nanocomposites with highthermal- conduction routes via linear densely packed boron nitride nanosheets, Composites Science and Technology, 129 (2016) 205-213.
  • H.-B. Cho, N.C. Tu, T. Fujihara, S. Endo, T. Suzuki, S. Tanaka, W. Jiang, H. Suematsu, K. Niihara, T. Nakayama, Epoxy resin-based nanocomposite films with highly oriented BN nanosheets prepared using a nanosecond-pulse electric field, Materials Letters, 65 (2011) 2426-2428.
  • H. Salimkhani, P. Palmeh, A.B. Khiabani, E. Hashemi, S. Matinpour, H. Salimkhani, M.S. Asl, Electrophoretic deposition of spherical carbonyl iron particles on carbon fibers as a microwave absorbent composite, Surfaces and Interfaces, 5 (2016) 1-7.
  • H. Kim, A.A. Abdala, C.W. Macosko, Graphene/Polymer Nanocomposites, Macromolecules, 43 (2010) 6515-6530.
  • H. HC, Formation of deposition by electrophoresis, Trans Farad Soc, 36 (1940) 279-283.
  • G.P. Wu, D.H. Li, Y. Yang, C.X. Lu, S.C. Zhang, X.T. Li, Z.H. Feng, Z.H. Li, Carbon layer structures and thermal conductivity of graphitized carbon fibers, Journal of Materials Science, 47 (2012) 2882-2890.
  • G. Zhang, Thermal Transport in Carbon-Based Nanomaterials, 2017.
  • G. Ahmadi, Particle transport, deposition and removal.
  • F. Wu, J. Zhu, Morphology of second-phase precipitates in carbon-fiber- and graphite-fiber-reinforced magnesium-based metal-matrix composites, Composites Science and Technology, 57 (1997) 661-667.
  • F. Wang, Chapter 6 - Carbon Fibers and Their Thermal Transporting Properties A2 - Zhang, Gang, in: Thermal Transport in Carbon-Based Nanomaterials, Elsevier, 2017, pp. 135-184.
  • F. Macedo, J.A. Ferreira, Thermal contact resistance evaluation in polymerbased carbon fiber composites, Review of Scientific Instruments, 74 (2003) 828- 830.
  • F. MCCLINTOCK, Describing uncertainties in single-sample experiments, Mechanical Engineering, 75 (1953) 3-8.
  • F. Liu, N. Hu, M. Han, S. Atobe, H.M. Ning, Y.L. Liu, L.K. Wu, Investigation of interfacial mechanical properties of graphene-polymer nanocomposites, Molecular Simulation, 42 (2016) 1165-1170.
  • F. Cevolini, Rapid Manufacturing with carbon reinforced plastics: applications for motor sport, aerospace and automotive small lot production parts, in: Proceedings of the 2nd RM Technical Forum, Girona Spain, 2006.
  • F. An, X. Li, P. Min, H. Li, Z. Dai, Z.-Z. Yu, Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites, Carbon.
  • E. Moaseri, M. Karimi, M. Maghrebi, M. Baniadam, Two-fold enhancement in tensile strength of carbon nanotube-carbon fiber hybrid epoxy composites through combination of electrophoretic deposition and alternating electric field, International Journal of Solids and Structures, 51 (2014) 774-785.
  • E. Frank, L.M. Steudle, D. Ingildeev, J.M. Sporl, M.R. Buchmeiser, Carbon Fibers: Precursor Systems, Processing, Structure, and Properties, Angewandte Chemie-International Edition, 53 (2014) 5262-5298.
  • E. Fitzer, Pan-Based Carbon-Fibers Present State and Trend of the Technology from the Viewpoint of Possibilities and Limits to Influence and to Control the Fiber Properties by the Process Parameters, Carbon, 27 (1989) 621-645.
  • E. Fitzer, L.M. Manocha, Carbon reinforcements and carbon/carbon composites, Springer Science & Business Media, 2012.
  • D.D.L, Composite Materials, 2nd edn, Springer, London, New York, 2010.
  • D.D. EDIE, The effect of processing on the structure and properties of carbon fibers, Carbon 36 (1998) 345-362.
  • D. Duschlbauer, H.J. Bohm, H.E. Pettermann, Numerical simulation of thermal conductivity of MMCs: effect of thermal interface resistance, Materials Science and Technology, 19 (2003) 1107-1114.
  • C. Zweben, Thermal materials solve power electronics challenges, Power Electronics Technology, 32 (2006) 40-47.
  • C. Yuan, B. Duan, L. Li, B. Xie, M. Huang, X. Luo, Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets, ACS Applied Materials & Interfaces, 7 (2015) 13000-13006.
  • C. T'Joen, Y. Park, Q. Wang, A. Sommers, X. Han, A. Jacobi, A review on polymer heat exchangers for HVAC&R applications, International Journal of Refrigeration, 32 (2009) 763-779.
  • C. Kaya, F. Kaya, A.R. Boccaccini, K.K. Chawla, Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition, Acta Materialia, 49 (2001) 1189-1197.
  • C. Kaya, A.R. Boccaccini, K.K. Chawla, Electrophoretic deposition forming of nickel-coated-carbon-fiber-reinforced borosilicate-glass-matrix composites, Journal of the American Ceramic Society, 83 (2000) 1885-1888.
  • B.P. Rao, B. Sunden, S.K. Das, An experimental and theoretical investigation of the effect of flow maldistribution on the thermal performance of plate heat exchangers, ASME J. Heat Transfer, 127 (2005) 332-343.
  • A.R.J. Hussain, A.A. Alahyari, S.A. Eastman, C. Thibaud-Erkey, S. Johnston, M.J. Sobkowicz, Review of polymers for heat exchanger applications: Factors concerning thermal conductivity, Applied Thermal Engineering, 113 (2017) 1118- 1127.
  • A.R. Boccaccini, P. Karapappas, J.M. Marijuan, C. Kaya, TiO2 coatings on silicon carbide and carbon fibre substrates by electrophoretic deposition, Journal of Materials Science, 39 (2004) 851-859.
  • A.B. Strong, Fundamentals of composites manufacturing: materials, methods and applications, Society of Manufacturing Engineers, 2008.
  • A. Standard, Standard test method for tensile properties of polymer matrix composite materials, ASTM D3039/D 3039M, (2008).
  • A. Standard, Standard test method for short-beam strength of polymer matrix composite materials and their laminates, Annual book of ASTM standards, West Conshohocken, 15 (2007) 54-60.
  • A. Rodr guez-Guerrero, S.A. S nchez, J. Narciso, E. Louis, F. Rodr guez-Reinoso, Pressure infiltration of Al–12wt.% Si–X (X=Cu, Ti, Mg) alloys into graphite particle preforms, Acta Materialia, 54 (2006) 1821-1831.
  • A. Muley, R.M. Manglik, Enhanced heat transfer characteristics of single-phase flows in a plate heat exchanger with mixed chevron plates, Journal of Enhanced Heat Transfer, 4 (1997).
  • A. Godara, L. Mezzo, F. Luizi, A. Warrier, S.V. Lomov, A.W. van Vuure, L. Gorbatikh, P. Moldenaers, I. Verpoest, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, Carbon, 47 (2009) 2914-2923.
  • A. Chavez-Valdez, M.S.P. Shaffer, A.R. Boccaccini, Applications of Graphene Electrophoretic Deposition. A Review, Journal of Physical Chemistry B, 117 (2013) 1502-1515.
  • A. Bar-Cohen, R. Bahadur, M. Iyengar, Least-energy optimization of air-cooled heat sinks for sustainability-theory, geometry and material selection, Energy, 31 (2006) 579-619.