박사

플렉서블 기판상의 비정질 실리콘 및 실리콘저마늄 태양전지에 관한 연구 = Study on amorphous silicon and silicon germanium thin film solar cells on flexible substrates

이유정 2018년
논문상세정보
' 플렉서블 기판상의 비정질 실리콘 및 실리콘저마늄 태양전지에 관한 연구 = Study on amorphous silicon and silicon germanium thin film solar cells on flexible substrates' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • amorphous silicon solar cell
  • flexible solar cell
  • silicon germanium solar cell
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
8 0

0.0%

' 플렉서블 기판상의 비정질 실리콘 및 실리콘저마늄 태양전지에 관한 연구 = Study on amorphous silicon and silicon germanium thin film solar cells on flexible substrates' 의 참고문헌

  • Y.T. Chae, J. Kim, H. Park, B. Shin (2014), ‘Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semitransparent solar cells’, Applied Energy, 129, 217–227.
  • Y. Xiao, J. Y. Lin, S. Y. Tai, S. W. Chou, G. Yue, J. Wu (2012), ‘Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells’, Journal of Materials Chemistry, 22, 19919.
  • Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. M ller-Meskamp, K. Leo (2011), ‘Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells’, Advanced Functional Materials, 21, 1076-1081.
  • Y. -F. Liu, J. Feng, Y. -F. Zhang, H. -F. Cui, D. Yin, Y. -G. Bi, J. -F. Song, Q. -D. Chen, H. -B. Sun (2015), ‘Improved efficiency of indium-tin-oxidefree organic light-emitting devices using PEDOT: PSS/graphene oxide composite anode’, Organic Electronics, 26, 81-85.
  • X. Xu, J. Yang, S. Guha (1996), ‘Hydrogen dilution effects on a-Si: H and a-SiGe: H materials properties and solar cell performance’, Journal of noncrystalline solids, 198, 60-64.
  • X. Deng, X. Liao, S. Han, H. Povolny, P. Agarwal (2000), ‘Amorphous silicon and silicon germanium materials for high-efficiency triple-junction solar cells’, Solar Energy Materials and Solar cells, 62, 89-95.
  • T. S derstr ma, F.-J. Haug, V. Terrazzoni-Daudrix, C. Ballif (2008), ‘Optimization of amorphous silicon thin film solar cells for flexible photovoltaics’, Journal of Applied Physics, 103, 114509.
  • T. Merdzhanova, J. Woerdenweber, T. Zimmermann, U. Zastrow, A. J. Flikweert, H. Stiebig, W. Beyer. A. Gordijn (2012), ‘Single-chamber processes for a-Si:H solar cell deposition’, Solar Energy Materials and Solar Cells, 98, 146-153.
  • S.J. Yun, Kim, S. H. Lee, Y. J. Lee, J. W. Lim (2013), ‘Phase transition of hydrogenated SiGe thin films in plasma-enhanced chemical vapor deposition’, Thin Solid Films, 546, 362-366.
  • S. Y. Myong, K. S. Lim (2005), ‘Natural hydrogen treatment effect during formation of double amorphous silicon-carbide p layer structures producing high-efficiency pin-type amorphous silicon solar cells’, Applied Physics Letters, 86, 033506.
  • S. Ummartyotin, J. Juntaro, C. Wu, M. Sain, H. Manuspiya (2011), ‘Deposition of PEDOT: PSS nanoparticles as a conductive microlayer anode in OLED’s device by desktop inkjet printer’, Journal of Nanomaterials, 606714.
  • S. J. Yun, J. K. Kim, J. W. Lim (2012), ‘Amorphous SiGe: H thin film solar cells with light absorbing layers of graded bandgap profile’, Electrochemical and Solid-State Letters, 15, B9-12.
  • S. J. Jeong, G. Xia, B. H. Kim, D. O. Shin, S. H. Kwon, S. W. Kang, S. O. Kim (2008), ‘Universal Block Copolymer Lithography for Metals, Semiconductors, Ceramics, and Polymers’, Advanced Materials, 20, 1898- 1904.
  • S. Hamma, P.R. i Cabarrocas (2001), ‘Low-temperature growth of thick intrinsic and ultrathin phosphorous or boron-doped microcrystalline silicon films: Optimum crystalline fractions for solar cell applications’, Solar Energy Materials and Solar Cells, 69, 217-239.
  • S. Guha, J. Yang, A. Banerjee, B. Yan, K. Lord (2003), ‘High quality amorphous silicon materials and cells grown with hydrogen dilution’, Solar Energy Materials and Solar cells, 78, 329-347.
  • S. C. Lee (1984). ‘Boron contamination in the intrinsic layers of amorphous silicon solar cells’, Journal of Applied Physics, 55, 4426.
  • Richard Zallen (2008), ‘The physic of amorphous solid’, John Wiley & Sons.
  • R. Singh, S. Prakash, N. N. Shukla, R. Prasad (2004), ‘Sample dependence of the structural, vibrational, and electronic properties of a−Si:H: A densityfunctional- based tight-binding study’ Physics Review B, 70, 115213.
  • R. Platz, D. Fischer, S. Dubail, A. Shah (1997), ‘a-Si:H/mc-Si:H stacked cell from VHF-deposition in a single chamber reactor with 9% stabilized efficiency’, Solar Energy Materials and Solar Cells, 46, 157–172.
  • Q.H. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, X. Deng (2010), ‘High efficiency silicon–germanium thin film solar cells using graded absorber layer’, Solar Energy Materials and Solar Cells, 94, 1300-1302.
  • O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuK ck, B. Rech, H. Wagner (2000), ‘Intrinsic microcrystalline silicon: A new material for photovoltaics’, Solar Energy Materials and Solar Cells, 62, 97-108.
  • N. Yamamoto, H. Makino, T. Yamamoto (2011), ‘Young’s modulus and coefficient of linear thermal expansion of ZnO conductive and transparent ultra-thin films’, Advances in Materials Science and Engineering, 2011, 136127.
  • M. Stutzmann, R. A. Street, C. C. Tsai, J. B. Boyce, R. E. Ready, (1989), ‘Structural, optical, and spin properties of hydrogenated amorphous silicongermanium alloys’, Journal of applied physics, 66, 569-592.
  • M. S. Jeon, K. Kamisako (2009), ‘Hydrogenated amorphous silicon thin films as passivation layers deposited by microwave remote pecvd for heterojunction solar cells’, TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 10, 75-79.
  • M. Pagliaro, R. Ciriminna, G. Palmisano (2008), ‘Flexible solar cells’, ChemSusChem, 1, 880-891.
  • M. Kondo, A. Matsuda (2001), ‘Low temperature growth of microcrystalline silicon and its application to solar cells’, Thin Solid Films 383, 1-6.
  • M. Funde, A. G. Nasibulin, H. G. Syed, A. S. Anisimov, A. Tsapenko, P. Lund, J. D. Santos, I. Torres, J. J. Gand a, J. C rabe, A. D. Rozenberg, I. A. Levitsky (2016), ‘Carbon nanotube – amorphous silicon hybrid solar cell with improved conversion efficiency’, Nanotechnology, 27, 185401.
  • L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda (1998). ‘High Rate Deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition’, Japanese Journal of Applied Physics, 37, 1116– 1118.
  • K. Akhmad, A. Kitamura, F. Yamamoto, H. Okamoto, H. Takakura, Y. Hamakawa (1997), ‘Outdoor performance of amorphous silicon and polycrystalline silicon PV modules’, Solar Energy Materials and Solar Cells, 46, 209–218.
  • K. A. Nagamatsu, S. Avasthi, J. Jhaveri, J. C. Sturm (2014), ‘A 12% Efficient Silicon/PEDOT:PSS Heterojunction Solar Cell Fabricated at<100 C’, IEEE Journal of Photovoltaics, 4, 260–264.
  • J.W. Chung, J.W. Park, Y.J. Lee, S.W. Ahn, H.M. Lee, O. Park (2012), ‘Graded layer modification for high efficiency hydrogenated amorphous silicon–germanium solar cells’ Japanese Journal of Applied Physics, 51, 10NB16.
  • J.-B. Lee, K. Rana, B. H. Seo, J. Y. Oh, U. Jeong, J.-H. Ahn (2015), ‘Influence of nonionic surfactant-modified PEDOT:PSS on graphene’, Carbon, 85, 261–268.
  • J. Zimmer, H. Stiebig, H. Wagner (1998), ‘a-SiGe:H based solar cells with graded absorption layer’, Journal of Applied Physics, 84, 611.
  • J. Y. Oh, M. Shin, J. B. Lee, J. -H. Ahn, H. K. Baik, U. Jeong (2014), ‘Effect of PEDOT nanofibril networks on the conductivity, flexibility, and coatability of PEDOT:PSS films’, ACS Applied Materials and Interfaces, 6, 6954–6961.
  • J. Xu, S. Miyazaki, M. Hirose (1996), ‘High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells’, Journal of Non-Crystalline Solids, 208, 277-281.
  • J. Tauc, R. Grigorovici, A. Vancu (1966), ‘Optical Properties and Electronic Structure of Amorphous Germanium’, Physica Status Solidi (b), 15, 627-637
  • J. Ramanujam, A. Verma (2012), ‘Photovoltaic properties of a-Si:H films grown by plasma enhanced chemical vapor deposition: a review’, Materials Express, 2, 177–196.
  • J. M. Pearce (2007), ‘Optimization of open circuit voltage in amorphous silicon solar cells with mixed-phase (amorphous+nanocrystalline) p-type contacts of low nanocrystalline content’ Journal of Applied Physics, 101, 114301.
  • J. Koh, H. Fujwara, C. R. Wronski, R. W. Collings (1998), ‘Optimization of hydrogenated amorphous silicon peien solar cells with two-step i layers guided by real-time spectroscopic ellipsometry’, Applied Physics Letters, 73, 1526-1528.
  • J. K. Kim, S. J. Yun, J. W. Lim, S. H. Lee (2011), ‘Effect of deposition conditions and crystallinity of substrate on phase transition of hydrogenated Si films’, Journal of The Electrochemical Society, 158, D430.
  • J. Ballutaud, A. A. Howling, L. Sansonnes, Ch. Hollenstein, U. Kroll, I. Schoenbae-cher, C. Bucher, M. Poppeller, J. Weichart, A. Buelech, F. Jomard (2002), ‘Plasma deposition of p–i-n devices using a single PECVD chamber : study of the boron concentration’ in : Proceedings of the 29th EPS Conference on Plasma Physics and Controlled Fusion, 26B, 2.029.
  • I. Mathieson, R. H. Bradley (1996), ‘Improved adhesion to polymers by UV/ozone surface oxidation‘, International Journal of Adhesion and Adhesives, 16, 29-31.
  • I. Massiot, C. Colin, N. P r -Lapernr, P.R.i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, S. Collin (2012), ‘Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells’, Applied Physics Letter, 101, 163901-1.
  • H. H. Jung, D. H. Kim, C. S. Kim, T. Bae, K. B. Chung, S. Y. Ryu (2013), ’Organic-inorganic hybrid thin film solar cells using conducting polymer and gold nanoparticles’, Applied Physics Letters, 102, 183902.
  • H-Y. Kim, K-Y. Lee, J-Y. Lee (1997), ‘The influence of hydrogen dilution ratio on the crystallization of hydrogenated amorphous silicon films prepared by plasma-enhanced chemical vapor deposition’, Thin Solid Films, 302, 17- 24.
  • G. Ganguly, A. Matsuda (1996), ‘Role of hydrogen dilution in improvement of a-SiGe:H alloys’ Journal of non-crystalline solids, 198, 60-64.
  • F. Meillaud, M. Boccard, G. Bugnon, M. Despeisse, S. H nni, F.J. Haug, J. Persoz, J.W. Sch ttauf, M. Stuckelberger, C. Ballif (2015), ’Recent advances and remaining challenges in thin-film silicon photovoltaic technology’, Materials Today, 18, 278–284.
  • F. Jansen, M. A. Machonkin, N. Palmieri, D. Kuhman (1987), ‘Thermal expansion and elastic properties of plasma-deposited amorphous silicon and silicon oxide films’, Applied Physics Letters, 50, 1059-1061.
  • E. L. Williams, G. E. Jabbour, Q. Wang, S. E. Shaheen, D. S. Ginley, E. A. Schiff (2005), ’Conducting polymer and hydrogenated amorphous silicon hybrid solar cells’, Applied Physic Letters, 87, 223504.
  • D. Lundszien, F. Finger, H. Wagner (2002), ‘A-Si:H buffer in a-SiGe:H solar cells’, Solar Energy Materials and Solar Cells, 74, 365–372.
  • D. Alemu, H. Y. Wei, K. C. Ho, C. W. Chu (2012), ‘Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells’, Energy & environmental science, 2, 9662-9671.
  • C. Zhang, Y. Zhang, H. Guo, Z. Zhang, C. Zhang (2017), ‘Hole-transporting layer treatment of planar hybrid n-Si/PEDOT:PSS solar cells with power conversion efficiency up to 14.5%’, International Journal of Photoenergy, 3192197.
  • C. Yeon, S. J. Yun, J. Kim, J. W. Lim (2015), ‘PEDOT:PSS films with greatly enhanced conductivity via nitric acid treatment at room temperature and their application as Pt/TCO-free counter electrodes in dye-sensitized solar cells’, Advanced Electronic Materials, 1500121.
  • C. Yeon, G. Kim, J. W. Lim, S. J. Yun (2017), ‘Highly Conductive PEDOT:PSS Treated by Sodium Dodecyl Sulfate for Stretchable Fabric Heaters’, RSC Advances, 7, 5888-5897.
  • C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham, A. Tuantranont (2012), ‘Inkjet-printed graphene- PEDOT:PSS modified screen printed carbon electrode for biochemical sensing’, Journal of Materials Chemistry, 22, 5478.
  • Beyer, W., 2010. Amorphous silicon-germanium and silicon-carbon alloys, in: Shah, A. (Eds.), Thin-film silicon solar cells. EPFL Press, pp. 76-87.
  • A. Virtuani, D. Pavanello, G. Friesen (2010), ‘Overview of temperature coefficients of different thin film photovoltaic technologies’, Proc. 25th Europ. Photovolt. Solar Energy Conf., 4248–4252.
  • A. V. Shah, H. Schade, M. Vanecek, J. Meier, J. E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat (2004), ‘Thin-film silicon solar cell technology’, Progress in Photovoltaics, 12, 113-142.
  • A. Terakawa, M. Shima, K. Sayama, H. Tarui, H. Nishiwaki, S. Tsuda (1995), ‘Optimization of a-SiGe: H alloy composition for stable solar cells’, Jpn. J. Appl. Phys., 34, 1741.
  • A. Skumanich, A. Frova, N. M. Amer (1985), ‘Urbach tail and gap states in hydrogenated a-SiC and a-SiGe alloys’, Solid state communications, 54, 597- 601.
  • A. Shah (2010), ‘Thin-film solar cells’ EPFL Press. 311-315.