박사

Enhancement of aqueous dispersibility, stability and bioavailability of alpha-lipoic acid by complex formation with octenylsuccinylated high amylose starch

李奕璇 2018년
논문상세정보
' Enhancement of aqueous dispersibility, stability and bioavailability of alpha-lipoic acid by complex formation with octenylsuccinylated high amylose starch' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Alpha-lipoic acid
  • Bioavailabiity
  • Complex formation
  • Dispersibility
  • Encapsulation
  • Octenylsuccinylated high amylose starch
  • Stability
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
454 0

0.0%

' Enhancement of aqueous dispersibility, stability and bioavailability of alpha-lipoic acid by complex formation with octenylsuccinylated high amylose starch' 의 참고문헌

  • Zhang, Huang, Q. A., Luo, F. X., Fu, X. O., Jiang, H. X., & Jane, J. L. (2011). Effects of octenylsuccinylation on the structure and properties of high-amylose maize starch. Carbohydrate Polymers, 84(4), 1276–1281.
  • Yorek, M. A., Coppey, L. J., Gellett, J. S., Davidson, E. P., & Lund, D. D. (2004). Effect of fidarestat and alpha-lipoic acid on diabetes-induced epineurial arteriole vascular dysfunction. Experimental Diabesity Research, 5(2), 123–135.
  • Ying, Z., Kherada, N., Farrar, B., Kampfrath, T., Chung, Y., Simonetti, O., et al. (2010). Lipoic acid effects on established atherosclerosis. Life Sciences, 86, 95–102.
  • Yang, L.-J., Chen, W., Ma, S.-X., Gao, Y.-T., Huang, R., Yan, S.-J., & Lin, J. (2011). Host– guest system of taxifolin and native cyclodextrin or its derivative: Preparation, characterization, inclusion mode, and solubilization. Carbohydrate Polymers, 85, 629– 637.
  • Yang, Gu, Z. B., & Zhang, G. Y. (2009). Delivery of bioactive conjugated linoleic acid with self-assembled amylose−CLA complex. Journal of Agricultural and Food Chemistry, 57(15), 7125–7130.
  • Xu, J., Zhao, W. X., Ning, Y. W., Bashari, M., Wu, F. F., Chen, H. Y., et al. (2013). Improved stability and controlled release of omega 3/omega 6 polyunsaturated fatty acids by spring dextrin encapsulation. Carbohydrate Polymers, 92, 1633–1640.
  • Xia, N., Liu, T., Wang, Q., Xia, Q., & Bian, X. (2017). In vitro evaluation of α-lipoic acidloaded lipid nanocapsules for topical delivery. Journal of Microencapsulation, 1–11.
  • Win, K. Y., & Feng, S. S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713-2722.
  • Wada, N., Wakami, H., Konishi, T., & Matsugo, S. (2009). The degradation and regeneration of alpha-lipoic acid under the irradiation of UV light in the existence of homocysteine. Journal of Clinical Biochemistry and Nutrition, 44(3), 218–222.
  • Vasdev, S., Gill, V., Parai, S., & Gadag, V. (2005). Dietary lipoic acid supplementation attenuates hypertension in Dahl salt sensitive rats. Molecular and Cellular Biochemistry, 275(1-2), 135–141.
  • Ungell, A. L., & Artursson, P. (2009). An overview of Caco-2 and alternatives for prediction of intestinal drug transport and absorption. Drug Bioavailability: Estimation of solubility, permeability, absorption and bioavailability (2 ed., Vol. 40, pp. 133-159). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Uchida, R., Iwamoto, K., Nagayama, S., Miyajima, A., Okamoto, H., Ikuta, N., et al. (2015). Effect of γ-cyclodextrin inclusion complex on the absorption of R-α-lipoic acid in rats. International Journal of Molecular Sciences, 16(5), 10105–10120.
  • Tufvesson, F., Wahlgren, M., & Eliasson, A. C. (2003). Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starch - St rke, 55, 61–71.
  • Trentin, M., Carofiglio, T., Fornasier, R., & Tonellato, U. (2002). Capillary zone electrophoresis study of cyclodextrin-lipoic acid host-guest interaction. Electrophoresis, 23, 4117–4122.
  • Teichert, J., Kern, J., Tritschler, H. J., Ulrich, H., & Preiss, R. (1998). Investigations on the pharmacokinetics of alpha-lipoic acid in healthy volunteers. International Journal of Clinical Pharmacology and Therapeutics, 36(12), 625–628.
  • Teichert, J., Hermann, R., Ruus, P., & Preiss, R. (2003). Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. Journal of Clinical Pharmacology, 43(11), 1257–1267.
  • Takahashi, H., Bungo, Y., & Mikuni, K. (2011). The aqueous solubility and thermal stability of alpha-lipoic acid are enhanced by cyclodextrin. Bioscience Biotechnology and Biochemistry, 75, 633–637.
  • Sweedman, M. C., Tizzotti, M. J., Sch fer, C., & Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92(1), 905-920.
  • Souto, E. B., M ller, R. H., & Gohla, S. (2005). A novel approach based on lipid nanoparticles (SLN) for topical delivery of alpha-lipoic acid. Journal of Microencapsulation, 22(6), 581–592.
  • Sobel, R., Versic, R., & Gaonkar, A. G. (2014). Introduction to Microencapsulation and Controlled Delivery in Foods. Microencapsulation in the food industry: A practical implementation guide (1 ed., pp. 1-12). San Diego: Academic Press.
  • Smith, A. R., Shenvi, S. V., Widlansky, M., Suh, J. H., & Hagen, T. M. (2004). Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Current Medicinal Chemistry, 11(9), 1135–1146.
  • Shay, K. P., Moreau, R. F., Smith, E. J., Smith, A. R., & Hagen, T. M. (2009). Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochimica Et Biophysica Acta, 1790, 1149–1160.
  • Seo, T.-R., Kim, J.-Y., & Lim, S.-T. (2015). Preparation and characterization of crystalline complexes between amylose and C18 fatty acids. LWT-Food Science and Technology, 64(2), 889- 897.
  • Seo, T.-R., Kim, H.-Y., & Lim, S.-T. (2016). Preparation and characterization of aqueous dispersions of high amylose starch and conjugated linoleic acid complex. Food Chemistry, 211, 530-537.
  • Seneviratne, H. D., & Biliaderis, C. G. (1991). Action of α-amylases on amylose-lipid complex superstructures. Journal of Cereal Science, 13(2), 129–143.
  • Segall, A., Sosa, M., Alami, A., Enero, C., Hormaechea, F., Pizzorno, M. T., et al. (2004). Stability study of lipoic acid in the presence of vitamins A and E in o/w emulsions for cosmetic application. Journal of Cosmetic Science, 55(5), 449–461.
  • Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012(3), 195727–195736.
  • Rodrigues, E., Mariutti, L. R. B., Faria, A. F., & Mercadante, A. Z. (2012). Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Food Chemistry, 134(2), 704–711.
  • Rochette, L., Ghibu, S., Muresan, A., & Vergely, C. (2015). Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Canadian Journal of Physiology and Pharmacology, 93(12), 1021–1027.
  • Reed, L. J., Debusk, B. G., Gunsalus, I. C., & Hornberger, C. S. (1951). Crystalline alphalipoic acid - a catalytic agent associated with pyruvate dehydrogenase. Science, 114, 93– 94.
  • Reed, L. J. (2001). A trail of research from lipoic acid to α-keto acid dehydrogenase complexes. Journal of Biological Chemistry, 276(42), 38329-38336.
  • Rajan, R., & Pandit, A. B. (2001). Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics, 39, 235–255.
  • Racz, C. P., Santa, S., Tomoaia-Cotisel, M., Borodi, G., Kacso, I., Pirnau, A., & Bratu, I. (2013). Inclusion of alpha-lipoic acid in beta-cyclodextrin. Physical-chemical and structural characterization. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 76(1-2), 193–199.
  • Rabinow, B. E. (2004). Nanosuspensions in drug delivery. Nature Reviews: Drug Discovery, 3(9), 785–796.
  • R cz, C. P., Borodi, G., Pop, M. M., Kacso, I., S nta, S., & Tomoaia-Cotisel, M. (2012). Structure of the inclusion complex of β-cyclodextrin with lipoic acid from laboratory powder diffraction data. Acta Crystallographica. Section B, Structural Science, 68(Pt 2), 164–170.
  • Putseys, J. A., Lamberts, L., & Delcour, J. A. (2010). Amylose-inclusion complexes: Formation, identity and physico-chemical properties. Journal of Cereal Science, 51, 238– 247.
  • Podda, M., Zollner, T. M., Grundmann-Kollmann, M., Thiele, J. J., Packer, L., & Kaufmann, R. (2001). Activity of alpha-lipoic acid in the protection against oxidative stress in skin. Current Problems in Dermatology, 29, 43–51.
  • Petit, S., & Coquerel, G. (2006). The amorphous state. Polymorphism: In the Pharmaceutical Industry (Vol. 10, pp. 259-284). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Patel, M. S., & Packer, L. (Eds.). (2008). Lipoic acid: energy production, antioxidant activity and health effects. Boca Raton: CRC Press.
  • Paramera, E. I., Karathanos, V. T., & Konteles, S. J. (2014). Yeast cells and yeast-based materials for microencapsulation. Microencapsulation in the food industry: A practical implementation guide (1 ed., pp. 267-281). San Diego: Academic Press.
  • Packer, L., Witt, E. H., & Tritschler, H. J. (1995). Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine, 19(2), 227–250.
  • Packer, L., Kraemer, K., & Rimbach, G. (2001). Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition, 17(10), 888-895.
  • Odabasoglu, F., Halici, Z., Aygun, H., Halici, M., Atalay, F., Cakir, A., et al. (2011). Alphalipoic acid has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced acute and cotton pellet-induced chronic inflammations. British Journal of Nutrition, 105, 31–43.
  • Nikolai, S., Huebbe, P., Metges, C. C., Schloesser, A., Dose, J., Ikuta, N., et al. (2014). R-α lipoic acid γ-cyclodextrin complex increases energy expenditure: A 4-month feeding study in mice. Nutrition, 30(2), 228–233.
  • Nguyen, V. S., Rouxel, D., Hadji, R., Vincent, B., & Fort, Y. (2011). Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrasonics Sonochemistry, 18, 382–388.
  • Mura, P., Maestrelli, F., Cirri, M., Furlanetto, S., & Pinzauti, S. (2003). Differential scanning calorimetry as an analytical tool in the study of drug-cyclodextrin interactions. Journal of Thermal Analysis and Calorimetry, 73, 635–646.
  • Muhammad, M. T., & Khan, M. N. (2017). Kinetics, mechanistic and synergistic studies of Alpha lipoic acid with hydrogen peroxide. Journal of Saudi Chemical Society, 2(21), 123- 131.
  • Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles–a review. Tropical Journal of Pharmaceutical Research, 5(1), 561-573.
  • Matsugo, S., Han, D., Tritschler, H. J., & Packer, L. (1996). Decomposition of alpha-lipoic acid derivatives by photoirradiation-formation of dihydrolipoic acid from alpha-lipoic acid-. Biochemistry and Molecular Biology International, 38(1), 51–59.
  • Matsugo, S., Bito, T., & Konishi, T. (2011). Photochemical stability of lipoic acid and its impact on skin ageing. Free Radical Research, 45, 918–924.
  • Ma, U. V. L., Floros, J. D., & Ziegler, G. R. (2011). Formation of inclusion complexes of starch with fatty acid esters of bioactive compounds. Carbohydrate Polymers, 83(4), 1869–1878.
  • Loftsson, T., M sson, M., & Brewster, M. E. (2004). Self-association of cyclodextrins and cyclodextrin complexes. Journal of Pharmaceutical Sciences, 93, 1091–1099.
  • Liu, H. S., Yu, L., Xie, F. W., & Chen, L. (2006). Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydrate Polymers, 65, 357–363.
  • Liang, R., Shoemaker, C. F., Yang, X., Zhong, F., & Huang, Q. (2013). Stability and bioaccessibility of beta-carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry, 61, 1249–1257.
  • Li, Y.-X., & Lim, S.-T. (2016). Preparation of aqueous alpha-lipoic acid dispersions with octenylsuccinylated high amylose starch. Carbohydrate Polymers, 140, 253-259.
  • Li, Y. X., Park, E. Y., & Lim, S. T. (2018). Stabilization of alpha-lipoic acid by complex formation with octenylsuccinylated high amylose starch. Food Chemistry, 242, 389-394.
  • Li, J. Z. (2014). The use of starch-based materials for microencapsulation. Microencapsulation in the Food Industry: A Practical Implementation Guide (1 ed., pp. 195-210). San Diego: Academic Press.
  • Lalush, I., Bar, H., Zakaria, I., Eichler, S., & Shimoni, E. (2005). Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic acid. Biomacromolecules, 6(1), 121- 130.
  • L benberg, R., Amidon, G. L., & Vieira, M. (2000). Solubility as a limiting factor to drug absorption. Oral drug absorption: Prediction and assessment (Vol. 106, pp. 137–154). New York: Marcel Dekker Inc.
  • Kofuji, K., Nakamura, M., Isobe, T., Murata, Y., & Kawashima, S. (2008). Stabilization of α- lipoic acid by complex formation with chitosan. Food Chemistry, 109(1), 167–171.
  • Kofuji, K., Isobe, T., & Murata, Y. (2009). Controlled release of alpha-lipoic acid through incorporation into natural polysaccharide-based gel beads. Food Chemistry, 115(2), 483– 487.
  • Kisanuki, A., Kimpara, Y., Oikado, Y., Kado, N., Matsumoto, M., & Endo, K. (2010). Ringopening polymerization of lipoic acid and characterization of the polymer. Journal of Polymer Science Part A-Polymer Chemistry, 48(22), 5247–5253.
  • Kim, J.-Y., Seo, T.-R., & Lim, S.-T. (2013). Preparation of aqueous dispersion of β-carotene nano-composites through complex formation with starch dextrin. Food Hydrocolloids, 33, 256–263.
  • Kim, J.-Y., & Lim, S.-T. (2009). Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydrate Polymers, 76(1), 110-116.
  • Kim, J.-Y., & Huber, K. C. (2016). Preparation and characterization of corn starch-β-carotene composites. Carbohydrate Polymers, 136, 394–401.
  • Kim, E.-A., Kim, J.-Y., Chung, H.-J., & Lim, S.-T. (2012). Preparation of aqueous dispersions of coenzyme Q10 nanoparticles with amylomaize starch and its dextrin. LWT - Food Science and Technology, 47, 493–499.
  • Khare, A. R., & Vasisht, N. (2014). Nanoencapsulation in the food industry: Technology of the Future. Microencapsulation in the food industry: A practical implementation guide (1 ed., pp. 151-155). San Diego: Academic Press.
  • Kemper, W. D., Rosenau, R. C., & Klute, A. (1986). Aggregate stability and size distribution. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods (pp. 425–442). Madison: ASA.
  • Keller, J., Gr ger, G., Cherian, L., G nther, B., & Layer, P. (2001). Circadian coupling between pancreatic secretion and intestinal motility in humans. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280(2), G273–8.
  • Kataoka, H. (1998). Chromatographic analysis of lipoic acid and related compounds. Journal of Chromatography B, 717, 247–262.
  • Karkalas, J., Ma, S., Morrison, W. R., & Pethrick, R. A. (1995). Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohydrate Research, 268(2), 233-247.
  • Jeon, Y.-J., Vasanthan, T., Temelli, F., & Song, B.-K. (2003). The suitability of barley and corn starches in their native and chemically modified forms for volatile meat flavor encapsulation. Food Research International, 36, 349–355.
  • Janaswamy, S. (2014). Encapsulation altered starch digestion: Toward developing starchbased delivery systems. Carbohydrate Polymers, 101, 600–605.
  • Ikuta, N., Sugiyama, H., Shimosegawa, H., Nakane, R., Ishida, Y., Uekaji, Y., et al. (2013). Analysis of the enhanced stability of R(+)-alpha lipoic acid by the complex formation with cyclodextrins. International Journal of Molecular Sciences, 14(2), 3639–3655.
  • Ikuta, N., Okamoto, H., Furune, T., Uekaji, Y., Terao, K., Uchida, R., et al. (2016). Bioavailability of an R-α-Lipoic Acid/γ-Cyclodextrin Complex in Healthy Volunteers. International Journal of Molecular Sciences, 17(6), 949.
  • Holmquist, L., Stuchbury, G., Berbaum, K., Muscat, S., Young, S., Hager, K., et al. (2007). Lipoic acid as a novel treatment for Alzheimer's disease and related dementias. Pharmacology & Therapeutics, 113(1), 154–164.
  • Holm, J., Bj rck, I., Ostrowska, S., Eliasson, A. C., Asp, N. G., Larsson, K., & Lundquist, I. (1983). Digestibility of amylose-lipid complexes in-vitro and in-vivo. Starch- St rke, 35(9), 294-297.
  • He, Y., Fu, P., Shen, X., & Gao, H. (2008). Cyclodextrin-based aggregates and characterization by microscopy. Micron, 39, 495–516.
  • H rter, D., & Dressman, J. B. (2001). Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Advanced Drug Delivery Reviews, 46(1-3), 75–87.
  • Gorąca, A., Huk-Kolega, H., Piechota, A., Kleniewska, P., Ciejka, E., & Skibska, B. (2011). Lipoic acid - biological activity and therapeutic potential. Pharmacological Reports, 63(4), 849–858.
  • Godet, M. C., Bouchet, B., Colonna, P., Gallant, D. J., & Buleon, A. (1996). Crystalline amylose fatty acid complexes: Morphology and crystal thickness. Journal of Food Science, 61, 1196–1201.
  • Gharsallaoui, A., Saurel, R., Chambin, O., & Voilley, A. (2012). Pea (Pisum sativum, L.) protein isolate stabilized emulsions: a novel system for microencapsulation of lipophilic ingredients by spray drying. Food and Bioprocess Technology, 5(6), 2211–2221.
  • Gelders, G. G., Duyck, J. P., Goesaert, H., & Delcour, J. A. (2005). Enzyme and acid resistance of amylose-lipid complexes differing in amylose chain length, lipid and complexation temperature. Carbohydrate Polymers, 60(3), 379-389.
  • Foster, K. A., Yazdanian, M., & Audus, K. L. (2001). Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. Journal of pharmacy and pharmacology, 53(1), 57-66.
  • Fathi, M., Mart n, ., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in food science & technology, 39(1), 18-39.
  • Evans, J. L., & Goldfine, I. D. (2000). Alpha-lipoic acid: A multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technology & Therapeutics, 2(3), 401–413.
  • Englyst, H. N., Kingman, S. M., Hudson, G. J., & Cummings, J. H. (1996). Measurement of resistant starch in vitro and in vivo. British Journal of Nutrition, 75(05), 749–755.
  • Eliasson, A.-C. (Ed.). (2004). Starch in food: Structure, function and applications. CRC Press.
  • Eldridge, J. H., Hammond, C. J., Meulbroek, J. A., Staas, J. K., Gilley, R. M., & Tice, T. R. (1990). Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. Journal of Controlled Release, 11(1-3), 205-214.
  • Drusch, S., Serfert, Y., & Schwarz, K. (2006). Microencapsulation of fish oil with noctenylsuccinate- derivatised starch: Flow properties and oxidative stability. European Journal of Lipid Science and Technology, 108, 501–512.
  • Dima, Dima, C., & Iordăchescu, G. (2015). Encapsulation of Functional Lipophilic Food and Drug Biocomponents. Food Engineering Reviews, 7(4), 417–438.
  • Connors, K. A. (1997). The stability of cyclodextrin complexes in solution. Chemical Reviews, 97, 1325–1358.
  • Cheng, W., Luo, Z., Li, L., & Fu, X. (2015). Preparation and Characterization of Debranched- Starch/Phosphatidylcholine Inclusion Complexes. Journal of Agricultural and Food Chemistry, 63, 634–641.
  • Chen, J., Jiang, W., Cai, J., Tao, W., Gao, X., & Jiang, X. (2005). Quantification of lipoic acid in plasma by high-performance liquid chromatography–electrospray ionization mass spectrometry. Journal of Chromatography B, 824(1), 249-257.
  • Bustamante, J. (1998). Alpha-Lipoic acid in liver metabolism and disease. Free Radical Biology and Medicine, 24(6), 1023–1039.
  • Bucher, G., Lu, C., & Sander, W. (2005). The photochemistry of lipoic acid: Photoionization and observation of a triplet excited state of a disulfide. ChemPhysChem, 6(12), 2607– 2618.
  • Br ckner, M., Bade, M., & Kunz, B. (2007). Investigations into the stabilization of a volatile aroma compound using a combined emulsification and spray drying process. European Food Research and Technology, 226, 137–146.
  • Bilska, A., Dubiel, M., Sokołowska-Jez, M., Lorenc-Koci, E., & Włodek, L. (2007). Alphalipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain. Neuroscience, 146, 1758–1771.
  • Bhosale, R., & Singhal, R. (2006). Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66, 521–527.
  • Beitner, H. (2003). Randomized, placebo-controlled, double blind study on the clinical efficacy of a cream containing 5% α-lipoic acid related to photoageing of facial skin. British Journal of Dermatology, 149, 841–849.
  • Baranauskiene, R., Bylaite, E., Zukauskaite, J., & Venskutonis, R. P. (2007). Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. Journal of Agricultural and Food Chemistry, 55, 3027–3036.
  • Bao, J. S., Xing, J., Phillips, D. L., & Corke, H. (2003). Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starches. Journal of Agricultural and Food Chemistry, 51, 2283–2287.
  • Augustin, M. A., & Hemar, Y. (2009). Nano-and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews, 38(4), 902-912.
  • Ai, Y., Nelson, B., Birt, D. F., & Jane, J.-L. (2013). In vitro and in vivo digestion of octenyl succinic starch. Carbohydrate Polymers, 98(2), 1266–1271.
  • Ahmadi-Abhari, S., Woortman, A. J. J., Oudhuis, A. A. C. M., Hamer, R. J., & Loos, K. (2014). The effect of temperature and time on the formation of amylose-lysophosphatidylcholine inclusion complexes. Starch - St rke, 66, 251–259.