박사

연약암반의 크립특성을 고려한 갱도와 지보재의 장기거동 연구 = A study on the long-term behavior of the mine tunnels and supports considering the creep characteristic of weak rockmass

김경만 2017년
논문상세정보
    • 저자 김경만
    • 형태사항 삽도: 108 L. :: 30 cm
    • 일반주기 강원대학교 논문은 저작권에 의해 보호받습니다, 참고문헌 : L.103-107
    • 학위논문사항 강원대학교 일반대학원, 학위논문(박사)-, 지구시스템공학과, 2017. 8
    • KDC 6, 559.65
    • 발행지 춘천
    • 언어 kor
    • 출판년 2017
    • 발행사항 강원대학교 일반대학원
    유사주제 논문( 0)
' 연약암반의 크립특성을 고려한 갱도와 지보재의 장기거동 연구 = A study on the long-term behavior of the mine tunnels and supports considering the creep characteristic of weak rockmass' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기타 공학
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1 0

0.0%

' 연약암반의 크립특성을 고려한 갱도와 지보재의 장기거동 연구 = A study on the long-term behavior of the mine tunnels and supports considering the creep characteristic of weak rockmass' 의 참고문헌

  • 화강암의 열역학적 거동에 대한 실험 및 수치해석적 연구
    장명환 (박사학위논문), 전남대학교 대학원. 광주 [1996]
  • 현장계측 및 수치해석을 이용한 탄중 갱도내 지보변형 거동에 관한 연구
    김종우 박의섭 이희근 한국자원공학회지, 28(6), 472-483 [1991]
  • 한국광물자원공사. OO 광산 연약암반에 적합한 지보시스템 개발
    원주: KORES [2013]
  • 터널의 내공변위 자동화 계측기술 분석
    정소걸 터널과 지하공간, 15(1), 1-8 [2005]
  • 응력수준 및 함수비에 다른 이암의 creep 특성에 관한 연구
    이영휘 정강복 한국지반환경공학회 논문집, 13(3), 39-51 [2012]
  • 유한차분법. 한국안반공학회 (편), 암반공학 수치해석 (Vol. 1)
    정용복 서울: 건설정보사 [2005]
  • 연약지반 강지보를 이용한 지보시스템 개선 및 효율적인 갱내 운영시스템 연구
    장명환 원주: KORES [2015]
  • 연약암반 creep 비선형 함수 전산화를 위한 mechanism 분석
  • 암석역학개론. 이희근 & 양형식 (편), 응용암석역학
    김택곤 이대혁 서울: 서울대학교출판부 [1997]
  • 새로운 암반분류법의 제안
    김민권 이영생 한국지반공학회논문집, 24(11), 43-53 [2008]
  • 구조지질학 (김영석 역)
    Fossen, H. 서울: 시그마프레스 [2013]
  • Zhu, W. & Zhao, J. (2004). Stability analysis and modelling of underground excavations in fractured rocks (Vol. 1): Elsevier
  • Zhang, Y., Xu, W.-y., Shao, J.-f., Zhao, H.-b. & Wang, W. (2015). Experimental investigation of creep behavior of clastic rock in xiangjiaba hydropower project. Water Sci. Eng., 8(1), 55-62.
  • Zhang, Y., Xu, W.-y., Gu, J.-j. & Wang, W. (2013). Triaxial creep tests of weak sandstone from fracture zone of high dam foundation. J. Cent. South Univ., 20(9), 2528-2536.
  • Zhang, Y., Shao, J., Xu, W. & Jia, Y. (2016). Time-dependent behavior of cataclastic rocks in a multi-loading triaxial creep test. Rock Mech. Rock Eng., 49(9), 3793-3803.
  • Zhang, C., Chu, W., Liu, N., Zhu, Y. & Hou, J. (2011). Laboratory tests and numerical simulations of brittle marble and squeezing schist at jinping ii hydropower station, china. J. Rock Mech. Geotech. Eng., 3(1), 30-38.
  • Yu, C., Li, H., Wu, R. & Sun, Y. (2016). A novel method for stress calculation considering the creep behaviour of shale gas reservoir. J. Eng. Sci. Technol. Rev., 9(4), 120- 127.
  • Yang, W., Zhang, Q., Li, S. & Wang, S. (2014). Estimation of in situ viscoelastic parameters of a weak rock layer by time-dependent plate-loading tests. Int. J. Rock Mech. Min. Sci., 66, 169-176.
  • Wu, Y., Zhang, J.-w. & Wang, C. (2014). Time-dependent deformation and stress analyses of xibeikou concrete face rockfill dam. Electron. J. Geotech. Eng., 19, 6739-6747.
  • Weijermars, R. (2011). Principles of rock mechanics. Amsterdam: Alboran Science Publishing.
  • Wang, Y.-H., Lau, Y. M. & Gao, Y. (2014). Examining the mechanisms of sand creep using dem simulations. Granular Matter, 16(5), 733-750.
  • Vlachopoulos, N. & Diederichs, M. S. (2009). Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels. Rock Mech. Rock Eng., 42(2), 131-146.
  • Tian, H. M., Chen, W. Z., Yang, D. S. & Gong, Z. (2015). Experimental and numerical analysis of the time-dependent behaviour of argillaceous red sandstone under high in situ stress. Bull. Eng. Geol. Environ., 74(2), 567-575.
  • Sonmez, H., Gokceoglu, C., Nefeslioglu, H. A. & Kayabasi, A. (2006). Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int. J. Rock Mech. Min. Sci., 43(2), 224-235.
  • Sonmez, H., Gokceoglu, C. & Ulusay, R. (2004). Indirect determination of the modulus of deformation of rock masses based on the gsi system. Int. J. Rock Mech. Min. Sci., 41(5), 849-857.
  • Song, Z.-P., Yang, T.-T., Jiang, A.-N., Zhang, D.-F. & Jiang, Z.-B. (2016). Experimental investigation and numerical simulation of surrounding rock creep for deep mining tunnels. J. South African Inst. Min. Metall., 116(12), 1181-1188.
  • Shen, J., Karakus, M. & Xu, C. (2012). A comparative study for empirical equations in estimating deformation modulus of rock masses. Tunn. Undergr. Sp. Technol., 32, 245-250.
  • Sharifzadeh, M., Tarifard, A. & Moridi, M. A. (2013). Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method. Tunn. Undergr. Sp. Technol., 38, 348-356.
  • Paraskevopoulou, C. (2016). Time-dependency of rocks and implications associated with tunneling. (Ph. D. thesis), Queen's Universiy, Ontario.
  • Panet, M. (1993). Understanding deformations in tunnels. In J. A. Hudson, E. T. Brown, C. Fairhurst & E. Hoek (Eds.), Comprehensive rock engineering (Vol. 1, pp. 663-690). London: Pergamon.
  • Oreste, P. P. (2003). Analysis of structural interaction in tunnels using the covergence– confinement approach. Tunn. Undergr. Sp. Technol., 18(4), 347-363.
  • Nomikos, P., Rahmannejad, R. & Sofianos, A. (2011). Supported axisymmetric tunnels within linear viscoelastic burgers rocks. Rock Mech. Rock Eng., 44(5), 553-564.
  • Nicholson, G. A. & Bieniawski, Z. T. (1990). A nonlinear deformation modulus based on rock mass classification. Int. J. Min. Geol. Eng., 8(3), 181-202.
  • Nadimi, S., Shahriar, K., Sharifzadeh, M. & Moarefvand, P. (2011). Triaxial creep tests and back analysis of time-dependent behavior of siah bisheh cavern by 3-dimensional distinct element method. Tunn. Undergr. Sp. Technol., 26(1), 155-162.
  • Malan, D. F., Vogler, U. W. & Derscher, K. (1997). Time-dependent behaviour of hard rock in deep level gold mines. J. South African Inst. Min. Metall., 97(3), 135-147.
  • Liu, Z. B., Xie, S. Y., Shao, J. F. & Conil, N. (2015). Effects of deviatoric stress and structural anisotropy on compressive creep behavior of a clayey rock. Appl. Clay Sci., 114, 491-496.
  • Jaeger, J. C., Cook, N. G. W. & Zimmerman, R. W. (2007). Fundamentals of rock mechanics (4 ed.): Blackewll Publishing.
  • ITASCA. (2005). Flac optional features. Minneapolis: ITASCA Consulting Group Inc.
  • Hume, C. D. (2011). Numerical validation and refinement of empirical rock mass modulus estimation. (Master thesis), Queen's University, Ontario.
  • Hudson, J. A. & Harrison, J. P. (1997). Engineering rock mechanics: An introduction to the principles. UK: Pergamon.
  • Hoek, E., Kaiser, P. K. & Bawden, W. F. (1995). Support of underground excavations in hard rock. Rotterdam: Balkema.
  • Hoek, E. (2001). Big tunnels in bad rock. ASCE J. Geotech. Geoenviron. Eng., 127(9), 726- 740.
  • Hoek, E. & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci., 43(2), 203-215.
  • Hoek, E. & Brown, E. T. (1997). Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186.
  • Hoek, E. & Brown, E. T. (1980). Underground excavations in rock. London: Institution of Mining and Metallury.
  • Gschwandtner, G. G. & Galler, R. (2012). Input to the application of the convergence confinement method with time-dependent material behaviour of the support. Tunn. Undergr. Sp. Technol., 27(1), 13-22.
  • Grošić, M. & Arbanas, Z. (2014). Time-dependent behaviour of reinforced cuts in weathered flysch rock masses. Acta Geotech. Solv., 11(1), 4-16.
  • Grgic, D., Homand, F. & Hoxha, D. (2003). A short- and long-term rheological model to understand the collapses of iron mines in lorraine, france. Comput. Geotech., 30(7), 557-570.
  • Goodman, R. E. (1989). Introduction to rock mechanics. New York: John Wiley & Sons.
  • Galera, J. M., lvarez, M. & Bieniawski, Z. T. (2005). Evaluation of the deformation modulus of rock masses: Comparison of pressuremeter and dilatometer tests with rmr prediction. Proc. ISP5-PRESSIO 2005 Int. Symp., Madrid, Spain.
  • Fortsakis, P. & Kavvadas, M. (2009). Estimation of time dependent ground parameters in tunnelling using back analysis of convergence data. Proc. 2nd Int. Conf. Comput. Methods Tunn., Bochum, Germany.
  • Fenner, R. (1938). Untersuchungen zur erkenntnis des gebirgsdrucks. Essen: Glückauf.
  • Duncan-Fama, M. E. (1993). Numerical modeling of yield zones in weak rock. In J. A. Hudson (Ed.), Comprehensive rock engineering (Vol. 2, pp. 49-75). London: Pergamon.
  • Chin, H.-P. & Rogers, J. D. (1987). Creep parameters of rocks on an engineering scale. Rock Mech. Rock Eng., 20(2), 137-146.
  • Chern, J. C., Shiao, F. Y. & Yu, C. W. (1998). An empirical safety criterion for tunnel construction. Paper presented at the Proc. Regional Symp. on Sedimentary Rock Engineering, Taipei, Taiwan.
  • Carranza-Torres, C. & Fairhurst, C. (2000). Application of the convergence-confinement method of tunnel design to rock masses that satisfy the hoek-brown failure criterion. Tunn. Undergr. Sp. Technol., 15(2), 187-213.
  • Carranza-Torres, C. & Diederichs, M. (2009). Mechanical analysis of circular liners with particular reference to composite supports. For example, liners consisting of shotcrete and steel sets. Tunn. Undergr. Sp. Technol., 24(5), 506-532.
  • Bonini, M., Debernardi, D., Barla, M. & Barla, G. (2007). The mechanical behaviour of clay shales and implications on the design of tunnels. Rock Mech. Rock Eng., 42(2), 361.
  • Boidy, E., Bouvard, A. & Pellet, F. (2002). Back analysis of time-dependent behaviour of a test gallery in claystone. Tunn. Undergr. Sp. Technol., 17(4), 415-424.
  • Bieniawski, Z. T. (1989). Engineering rock mass classifications: A complete manual for engineers and geologists in mining, civil, and petroleum engineering: John Wiley & Sons.
  • Bieniawski, Z. T. (1976). Rock mass classifications in rock engineering. Paper presented at the Proc. Symp. Explor. Rock Eng,, Rotterdam, Netherlands.
  • Aydan, ., Ulusay, R. & Tokashiki, N. (2014). A new rock mass quality rating system: Rock mass quality rating (rmqr) and its application to the estimation of geomechanical characteristics of rock masses. Rock Mech. Rock Eng., 47(4), 1255-1276.
  • Aydan, . (2016). Time-dependency in rock mechanics and rock engineering. Netherlands: CRC Press.
  • Asadollahpour, E., Rahmannejad, R., Asghari, A. & Abdollahipour, A. (2014). Back analysis of closure parameters of panet equation and burger ׳s model of babolak water tunnel conveyance. Int. J. Rock Mech. Min. Sci., 68, 159-166.