박사

Development of Magnetic Nanoparticle-based Multi-mode Nanoprobes and Their Biomedical Applications : 자성 나노입자 기반의 다중모드 나노프로브 개발 및 생물 의학적 응용에 대한 연구

논문상세정보
' Development of Magnetic Nanoparticle-based Multi-mode Nanoprobes and Their Biomedical Applications : 자성 나노입자 기반의 다중모드 나노프로브 개발 및 생물 의학적 응용에 대한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 화학과 응용과학
  • Magnetic Nanoparticle
  • Magnetic Resonance Imaging
  • Magnetotaxis
  • Multi-modal Imaging
  • Stem Cell
  • nanoprobe
  • 나노프로브
  • 다중모드 이미징
  • 자기공명 영상
  • 자성나노입자
  • 주자성
  • 줄기세포
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,654 0

0.0%

' Development of Magnetic Nanoparticle-based Multi-mode Nanoprobes and Their Biomedical Applications : 자성 나노입자 기반의 다중모드 나노프로브 개발 및 생물 의학적 응용에 대한 연구' 의 참고문헌

  • Zhou, Z.J.; Huang, D.T.; Bao, J.F.; Chen, Q.L.; Liu, G.; Chen, Z.; Chen, X.Y., and Gao, J.H., A synergistically enhanced T1-T2 dual-modal contrast agent. Adv. Mater., 2012. 24(46): p. 6223-6228.
  • Zhao, H.P.; Steiger, A.; Nohner, M., and Ye, H., Specific intensity direct current (DC) electric field improves neural stem cell migration and enhances differentiation towards beta-iii-tubulin plus neurons. Plos One, 2015. 10(6).
  • Yoo, D.; Lee, J.H.; Shin, T.-H., and Cheon, J., Theranostic magnetic nanoparticles. Acc. Chem. Res., 2011. 44(10): p. 863-874.
  • Yi, D.K.; Lee, S.S.; Papaefthymiou, G.C., and Ying, J.Y., Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater., 2006. 18(3): p. 614-619.
  • Xue, L.P.; Wang, J.K.; Wang, W.M.; Yang, Z.Y.; Hu, Z.L.; Hu, M., and Ding, P., The effect of stromal cell-derived factor 1 in the migration of neural stem cells. Cell Biochem. Biophys., 2014. 70(3): p. 1609-1616.
  • Xu, C.J.; Xu, K.M.; Gu, H.W.; Zheng, R.K.; Liu, H.; Zhang, X.X.; Guo, Z.H., and Xu, B., Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc., 2004. 126(32): p. 9938-9939.
  • Weissleder, R.; Nahrendorf, M., and Pittet, M.J., Imaging macrophages with nanoparticles. Nat. Mater., 2014. 13(2): p. 125-138.
  • Verwey, E.J.W.; Overbeek, J.T.G., and Overbeek, J.T.G., Theory of the stability of lyophobic colloids. Dover books in science and mathematics. 1999: Dover Publications.
  • Temple, S., The development of neural stem cells. Nature, 2001. 414(6859): p. 112-117.
  • Taupitz, M.; Wagner, S., and Schnorr, J., Phase I clinical evaluation of citratecoated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol., 2004. 39(10): p. 625-625.
  • Shin, T.-H.; Choi, Y.; Kim, S., and Cheon, J., Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev., 2015.
  • Shin, T.-H.; Choi, J.S.; Yun, S.; Kim, I.S.; Song, H.T.; Kim, Y.; Park, K.I., and Cheon, J., T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano, 2014. 8(4): p. 3393-3401.
  • Shin, J.M.; Anisur, R.M.; Ko, M.K.; Im, G.H.; Lee, J.H., and Lee, I.S., Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew. Chem. Int. Ed., 2009. 48(2): p. 321-324.
  • Seo, W.S.; Lee, J.H.; Sun, X.M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P.C.; McConnell, M.V.; Nishimura, D.G., and Dai, H.J., FeCO/graphiticshell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater., 2006. 5(12): p. 971-976.
  • Seo, D.; Southard, K.M.; Kim, J.W.; Lee, H.J.; Farlow, J.; Lee, J.U.; Litt, D.B.; Haas, T.; Alivisatos, A.P.; Cheon, J.; Gartner, Z.J., and Jun, Y.W., A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell, 2016. 165(6): p. 1507-1518.
  • Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Aberg, C.; Mahon, E., and Dawson, K.A., Transferrinfunctionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol., 2013. 8(2): p. 137-143.
  • Richard, C.; Doan, B.T.; Beloeil, J.C.; Bessodes, M.; Toth, E., and Scherman, D., Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: Toward powerful T1 and T2 mri contrast agents. Nano Lett., 2008. 8(1): p. 232-236.
  • Reardon, S., Electroceuticals spark interest. Nature, 2014. 511(7507): p. 18-18.
  • Petit, I., G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and upregulating CXCR4. Nat. Immunol., 2002. 3(8): p. 787-787.
  • Park, K.I.; Teng, Y.D., and Snyder, E.Y., The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol., 2002. 20(11): p. 1111-1117.
  • Moffitt, E.A., Blood substitutes. Can. Anaesth. Soc. J., 1975. 22(1): p. 12-19.
  • Ming, G.L. and Song, H.J., Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 2011. 70(4): p. 687-702.
  • Massoud, T.F. and Gambhir, S.S., Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes & Dev., 2003. 17(5): p. 545-580.
  • Mahata, P. and Natarajan, S., The first observation of a Na2TiS2 related structure in a 2-D anionic manganese trimesate intercalated by cationic imidazole. CrystEngComm, 2009. 11(4): p. 560-563.
  • Lu, Y.; Yin, Y.D.; Mayers, B.T., and Xia, Y.N., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002. 2(3): p. 183-186.
  • Liu, Z.; Cai, W.B.; He, L.N.; Nakayama, N.; Chen, K.; Sun, X.M.; Chen, X.Y., and Dai, H.J., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007. 2(1): p. 47-52.
  • Li, L.; El-Hayek, Y.H.; Liu, B.S.; Chen, Y.H.; Gomez, E.; Wu, X.H.; Ning, K.; Li, L.J.; Chang, N.; Zhang, L.; Wang, Z.G.; Hu, X., and Wan, Q., Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells, 2008. 26(8): p. 2193-2200.
  • Lee, N.; Kim, H.; Choi, S.H.; Park, M.; Kim, D.; Kim, H.C.; Choi, Y.; Lin, S.; Kim, B.H.; Jung, H.S.; Kim, H.; Park, K.S.; Moon, W.K., and Hyeon, T., Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc. Nat. Acad. Sci., 2011. 108(7): p. 2662-2667.
  • Lee, J.-H.; Huh, Y.-M.; Jun, Y.-w.; Seo, J.-w.; Jang, J.-t.; Song, H.-T.; Kim, S.; Cho, E.-J.; Yoon, H.-G.; Suh, J.-S., and Cheon, J., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med., 2007. 13(1): p. 95-99.
  • Lee, H.; Shin, T.-H.; Cheon, J., and Weissleder, R., Recent developments in magnetic diagnostic systems. Chem. Rev., 2015. 115(19): p. 10690-10724.
  • Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V., and Muller, R.N., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008. 108(6): p. 2064-2110.
  • Kim, S.W.; Kim, S.; Tracy, J.B.; Jasanoff, A., and Bawendi, M.G., Phosphine oxide polymer for water-soluble nanoparticles. J. Am. Chem. Soc., 2005. 127(13): p. 4556-4557.
  • Jun, Y.W.; Huh, Y.M.; Choi, J.S.; Lee, J.H.; Song, H.T.; Kim, S.; Yoon, S.; Kim, K.S.; Shin, J.S.; Suh, J.S., and Cheon, J., Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc., 2005. 127(16): p. 5732-5733.
  • Jun, Y.W.; Choi, J.S., and Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed., 2006. 45(21): p. 3414-3439.
  • Josephson, L.; Tung, C.H.; Moore, A., and Weissleder, R., High-efficiency intracellular magnetic labeling with novel superparamagnetic-TAT peptide conjugates. Bioconjugate Chem., 1999. 10(2): p. 186-191.
  • Jeong, J.W.; Shin, G.; Il Park, S.; Yu, K.J.; Xu, L.Z., and Rogers, J.A., Soft materials in neuroengineering for hard problems in neuroscience. Neuron, 2015. 86(1): p. 175-186.
  • Jang, J.-t.; Nah, H.; Lee, J.-H.; Moon, S.H.; Kim, M.G., and Cheon, J., Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed., 2009. 121(7): p. 1260-1264.
  • Jain, T.K.; Reddy, M.K.; Morales, M.A.; Leslie-Pelecky, D.L., and Labhasetwar, V., Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm., 2008. 5(2): p. 316-327.
  • Imitola, J.; Raddassi, K.; Park, K.I.; Mueller, F.J.; Nieto, M.; Teng, Y.D.; Frenkel, D.; Li, J.X.; Sidman, R.L.; Walsh, C.A.; Snyder, E.Y., and Khoury, S.J., Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1 alpha/CXC chemokine receptor 4 pathway. Proc. Nat. Acad. Sci., 2004. 101(52): p. 18117-18122.
  • Huang, H.J.; Zhang, X.; Hu, X.Q.; Shao, Z.X.; Zhu, J.X.; Dai, L.H.; Man, Z.T.; Yuan, L.; Chen, H.F.; Zhou, C.Y., and Ao, Y.F., A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Biomaterials, 2014. 35(36): p. 9608-9619.
  • Hu, M.; Chen, J.Y.; Li, Z.Y.; Au, L.; Hartland, G.V.; Li, X.D.; Marquez, M., and Xia, Y.N., Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev., 2006. 35(11): p. 1084-1094.
  • Hamer, O.W.; Schlottmann, K.; Sirlin, C.B., and Feuerbach, S., Technology insight: Advances in liver imaging. Nat. Clin. Pract. Gastroenterol. & Hepatol., 2007. 4(4): p. 215-228.
  • Gupta, A.K. and Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995- 4021.
  • Gould, J.L., Animal navigation: A map for all seasons. Curr. Biol., 2014. 24(4): p. R153-R155.
  • Gao, X.H.; Cui, Y.Y.; Levenson, R.M.; Chung, L.W.K., and Nie, S.M., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004. 22(8): p. 969-976.
  • Frey, N.A.; Peng, S.; Cheng, K., and Sun, S.H., Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev., 2009. 38(9): p. 2532-2542.
  • Feng, J.F.; Liu, J.; Zhang, X.Z.; Zhang, L.; Jiang, J.Y.; Nolta, J., and Zhao, M., Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cells, 2012. 30(2): p. 349-355.
  • Deisseroth, K., Optogenetics. Nat. Methods, 2011. 8(1): p. 26-29.
  • Cornell, R.M. and Schwertmann, U., The iron oxides: Structure, properties, reactions, occurrences and uses. 2006: Wiley.
  • Choi, J.-s.; Lee, J.-H.; Shin, T.-H.; Song, H.-T.; Kim, E.Y., and Cheon, J., Selfconfirming “AND” logic nanoparticles for fault-free MRI. J. Am. Chem. Soc., 2010. 132(32): p. 11015-11017.
  • Carter, C.B. and Norton, M.G., Ceramic materials: Science and engineering. Springerlink : B cher. 2013: Springer New York.
  • Bulte, J.W.M. and Kraitchman, D.L., Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed., 2004. 17(7): p. 484-499.
  • Breunig, J.J.; Haydar, T.F., and Rakic, P., Neural stem cells: Historical perspective and future prospects. Neuron, 2011. 70(4): p. 614-625.
  • Boussif, O.; Lezoualch, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B., and Behr, J.P., A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo polyethylenimine. Proc. Nat. Acad. Sci., 1995. 92(16): p. 7297-7301.
  • Bae, K.H.; Kim, Y.B.; Lee, Y.; Hwang, J.; Park, H., and Park, T.G., Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging. Bioconjug. Chem., 2010. 21(3): p. 505-512.
  • Adams, G.B.; Chabner, K.T.; Alley, I.R.; Olson, D.P.; Szczepiorkowski, Z.M.; Poznansky, M.C.; Kos, C.H.; Pollak, M.R.; Brown, E.M., and Scadden, D.T., Stem cell engraftment at the endosteal niche is specified by the calcium90 sensing receptor. Nature, 2006. 439(7076): p. 599-603.
  • Abrams, R., Electroconvulsive therapy. 2002: Oxford University Press, USA.