박사

Secondary neutron shielding during proton therapy in scanning mode with range shifter : Range shifter를 이용한 양성자 스캐닝 모드 치료에서 발생하는 이차 중성자 차폐 개발

논문상세정보
' Secondary neutron shielding during proton therapy in scanning mode with range shifter : Range shifter를 이용한 양성자 스캐닝 모드 치료에서 발생하는 이차 중성자 차폐 개발' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 질병
  • proton therapy
  • scanning mode
  • secondary neutron
  • shielding
  • 양성자 치료
  • 이차중성자
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
240 0

0.0%

' Secondary neutron shielding during proton therapy in scanning mode with range shifter : Range shifter를 이용한 양성자 스캐닝 모드 치료에서 발생하는 이차 중성자 차폐 개발' 의 참고문헌

  • Zheng Y, Newhauser W, Fontenot J, Taddei P and Mohan R 2007a. Monte Carlo study of neutron dose equivalent during passive scattering proton therapy. Physics in Medicine and Biology, 52, 4481-4496.
  • Zacharatou JC, Paganetti H, Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics: organ and patient age. Int. J. Radiat. Oncol. Biol. Phys. 82 228-35 (2008)
  • Yonai S et al., Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies. Med Phys, 35(2008) pp 4782-4792
  • X. Yan, U. Titt, A. Koehler, W. Newhauser, Measurement of neutron dose equivalent to proton 230 therapy patients outside of the proton radiation field, Nucl. Instruments Methods Phys. Res. 476 231 (2002) 429–434. doi:10.1016/S0168-9002(01)01483-8.
  • Wilson R 1946 Radiological use of fast protons Radiology 47 487–91
  • W.D. Newhauser, R. Zhang, The physics of proton therapy., Phys. Med. Biol. 60 (2015) R155. 214 doi:10.1088/0031-9155/60/8/R155. 215
  • W.D. Newhauser, J.D. Fontenot, A. Mahajan, D. Kornguth, M. Stovall, Y. Zheng, P.J. Taddei, D.Mirkovic, R. Mohan, J.D. Cox, S. Woo, The risk of developing a second cancer after receiving craniospinal proton irradiation, Phys. Med. Biol. 54 (2009) 2277–2291. doi:10.1088/0031-9155/54/8/002.
  • W.D. Newhauser, J.D. Fontenot, A. Mahajan, D. Kornguth, M. Stovall, Y. Zheng, P.J. Taddei, D. 222 Mirkovic, R. Mohan, J.D. Cox, S. Woo, The risk of developing a second cancer after receiving 223 craniospinal proton irradiation, Phys. Med. Biol. 54 (2009) 2277–2291. doi:10.1088/0031- 224 9155/54/8/002.
  • V. Mares, M. Romero-Exp sito, J. Farah, S. Trinkl, C. Domingo, M. Dommert, L.Stolarczyk, L. 281 Van Ryckeghem, M. Wielunski, P. Olko, R.M. Harrison, A comprehensive spectrometry study of 282 a stray neutron radiation field in scanning proton therapy., Phys. Med. Biol. 61 (2016) 4127–40. 283 doi:10.1088/0031-9155/61/11/4127.
  • U. Schneider, A. Lomax, and N. Lombriser, “Comparative risk assessment of secondary cancer incidence after treatment of Hodgkin's disease with photon and proton radiation,” Radiat Res, vol. 154, no. 4, pp. 382-8, Oct 1, 2000.
  • T. E. Merchant, E. N. Kiehna, C. Li et al., “Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma,” Int J RadiatOncolBiol Phys, vol. 65, no. 1, pp. 210-21, May 1, 2006.
  • T. Akagi, A. Higashi, H. Tsugami et al., “Ridge filter design for proton therapy at Hyogo Ion Beam Medical Center,” Physics in medicine and biology, Jan 1, 2003.
  • Suit, H. D. (2003). Protons to replace photons in external beam radiation therapy. Clin. Oncol.15:S29-S31.
  • Shin JS et al., Radiation Oncology Journal 29, 206 (2011).
  • Schneider, U., Lomax, A.J., Lombriser, N. Comparative risk assessment of secondary cancer incidence after treatment of Hodgkin’s disease with photon and proton radiation. Radiat Res. 2000;154:382–388.
  • Schneider U, Lomax A, LombriserN..Radiat Res 2000;154(4):382–388
  • S. Both, J. Shen, M. Kirk, L. Lin, S. Tang, M. Alonso-Basanta, R. Lustig, H.Lin, C. Deville, C. Hill-Kayser, Z. Tochner, and J. McDonough, “Development and clinical implementation of a universal bolus to maintain spot size during delivery of base of skull pencil beam scanning proton therapy,” Int.J. Radiat. Oncol., Biol., Phys. 90, 79–84 (2014).
  • S. Agosteo, C. Birattari, M. Caravaggio, M. Silari, G. Tosi, Secondary neutron and photon dose in proton therapy, Radiother. Oncol. 48 (1998) 293–305. doi:10.1016/S0167-8140(98)00049-8.
  • R.M. Howell, E.A. Burgett, Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system Med Phys, 41 (2014), p. 092104
  • R.M. Howell, E.A. Burgett, D. Isaacs, S.G. Price Hedrick, M.P. Reilly, L.J. Rankine, K.K. 277 Grantham, S. Perkins, E.E. Klein, Measured Neutron Spectra and Dose Equivalents from a 278 Mevion Single-Room, Passively Scattered Proton System Used for Craniospinal Irradiation, Int. 279 J. Radiat. Oncol. Biol. Phys. 95 (2016) 249–257. doi:10.1016/j.ijrobp.2015.12.356. 280
  • Perez-Andujar A, Newhauser W D and Deluca P M 2009. Neutron Production from beam modifying devices in a modern double scattering proton therapy beam delivery system. Phys. Med. Biol., 54, 993-1008.
  • Particle Therapy Co-Operative Group. Particle therapy facilities under construction [Internet]. [place unknown]: Particle Therapy Co-Operative Group; Available from: http://www.ptcog.ch/index.php/facilities-under-construction.
  • Paganetti, H. Nuclear interactions in proton therapy: Dose and relative biological effect distributions originating from primary and secondary particles. Phys. Med. Biol. 2002, 47, 747-764.
  • P. Binns, J. Hough, Secondary dose exposures during 200 MeV proton therapy, Radiat. Prot. 226 Dosimetry. 70 (1997) 441–444. doi:ISSN 0144-8420.
  • Olsen DR et al., Radiotherapy and Oncology 83, 123 (2007).
  • Ning MS, Perkins SM, Dewees T, et al. Evidence of high mortality in long term survivors of childhood medulloblastoma. J Neurooncol 2015;122:321-327.
  • Newhauser WD, Zhang R. “The physics of proton therapy”. Phys Med Biol (2015) 60:R155–209.10.1088/0031-9155/60/8/R155
  • Newhauser WD, Zhang R, The physics of proton therapy. Phys Med Biol (2015)
  • NCRP, Radiation protection for practicle accelerator facilities, NCRP report, 144, chap.3 (2003) 13.
  • NCRP 2012 National Council on Radiation Protection and Measurements Report No.171 uncertainties in the estimation of radiation risks and probability of disease causation (Bethesda, MD: NCRP)
  • Moyers M F, Benton E R, Ghebremedhin A and Coutrakon G 2008. Leakage and scatter radiation from a double scattering based proton beamline. Medical Physics, 35, 128.
  • Miller, D. W. (1995). A review of proton beam radiation therapy. Med. Phys., 22:1943-1954.
  • Miller DW, Medical physics 22, 1943 (1995).
  • M. T. Gillin, N. Sahoo, M. Bues, G. Ciangaru, G. Sawakuchi, F. Poenisch, B. Arjomandy, C.Martin, U. Titt, K. Suzuki, A. R. Smith, and X. R. Zhu, “Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas MD Anderson Cancer Center, Proton Therapy Center, Houston,” Med. Phys. 37, 154–163 (2010).
  • M. Pelliccioni, "Overview of Fluence-to-Effective Dose and Fluence-to-Ambient Dose Equivalent Conversion Coefficients for High Energy Radiation Calculated Using the FLUKA Code", Radiat. Prot. Dosim., vol. 88, no. 4, pp. 279-297, 2000.
  • M. J. Berger, J. S. Coursey and D. S. Zucker, ESTAR PSTAR and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons Protons and Helium Ions (Version 1.2.2), 2000, National Institute of Standards and Technology.
  • M. C. Harvey, J. C. Polf, A. R. Smith et al., “Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel,” Medical Physics, Jan 1, 2008.
  • Lomax, A. J., Bortfeld, T., Goitein, G., Debus, J., Dykstra, C., A.Tercier, P., Coucke, P.A., and Mirimanoff, R. O. (1999). A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy. Radiother.Oncol. 51:257-271.
  • Kim JS et al., Feasibility Study of Neutron Dose For Real Time Image Guided Proton Therapy: A Monte Carlo Study..JKPS. 2015; Volume 67, issue 1, pp 142-146
  • Jones D T L and Schreuder A N 2001. Magnetically scanned proton therapy beams: rationales and principles. Radiat Phys Chem, 61, 615-8.
  • Jiang H, Wang B, Xu X G, Suit H D and Paganetti H 2005. Simulation of organspecific patient effective dose due to secondary neutrons in proton radiation treatment. Phys. Med. Biol., 50, 4337-4353.
  • J.D. Fontenot, A.K. Lee, W.D. Newhauser, Risk of Secondary Malignant Neoplasms From Proton Therapy and Intensity-Modulated X-Ray Therapy for Early-Stage Prostate Cancer, Int. J.Radiat. Oncol. Biol. Phys. 74 (2009) 616–622. doi:10.1016/j.ijrobp.2009.01.001.
  • J.D. Fontenot, A.K. Lee, W.D. Newhauser, Risk of Secondary Malignant Neoplasms From 219 Proton Therapy and Intensity-Modulated X-Ray Therapy for Early-Stage Prostate Cancer, Int. J. 220 Radiat. Oncol. Biol. Phys. 74 (2009) 616–622. doi:10.1016/j.ijrobp.2009.01.001. 221
  • J. Farah, V. Mares, M. Romero-Exposito, S. Trinkl, C. Domingo, V. Dufek, M. Klodowska, J. 272 Kubancak, Z. Knezevic, M. Liszka, M. Majer, S. Miljanic, O. Ploc, K. Schinner, L. Stolarczyk, F. 273 Trompier, M. Wielunski, P. Olko, R.M. Harrison, Measurement of stray radiation within a 274 scanning proton therapy facility: EURADOS WG9 inter comparison exercise of active dosimetry 275 systems, Med. Phys. 42 (2015) 2572–2584. doi:10.1118/1.4916667. 276
  • J. B. Farr, F. Dessy, O. De Wilde, O. Bietzer, and D. Schonenberg, “Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems,” Med. Phys. 40, 072101 (8pp.) (2013).
  • International Commission on Radiological Protection, “ICRP Publication 103: 2007 recommendations of the International Commission on Radiological Protection ICRP Publication,” Ann. ICRP 37(2–4) (2007).
  • International Commission on Radiation Units and Measurements, “Nuclear data for neutron and proton radiotherapy and for radiation protection,” ICRU Report No. 63 (International Commission on Radiation Units and Measurements, Bethesda, MD, 2000).
  • Inskip PD, Curtis RE. New malignancies following childhood cancer in the United States, 1973-2002.Int J Cancer 2007;121:2233-2240.
  • ICRU Report 78 (2007). Prescribing, recording, and reporting proton beam therapy. Technical Report 78, International Commission on Radiation Units and Measurements, Bethesda, MD.
  • ICRU Report 59 (1998). Proton dosimetry part 1: beam production, beam delivery and measurement of absorbed dose. Technical Report 59, International Commission on Radiation Units and Measurements, Bethesda, MD.
  • H.Breuer, B.Smit, Proton therapy and Radio-surgery, Berlin: Springer,pp.7-53, 2000
  • H. Paganetti, Nuclear interactions in proton therapy: dose and relative biological effect 216 distributions originating from primary and secondary particles., Phys. Med. Biol. 47 (2002) 747– 217 764. doi:10.1088/0031-9155/47/5/305. 218
  • H. Jiang, B. Wang, X. G. Xu et al., “Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment,” Physics in medicine and biology, vol. 50, no. 18, pp. 4337-53, Sep 21, 2005.
  • Glimelius, B., Isacsson, U., Blomquist, E., Jung, B., and Montelius, A. (1999). Potential gains using high-energy protons for therapy of malignant tumors. Acta.Oncol. 38(2):137-145.
  • Ferrari A, Sala PR. Tallahassee, FL: World Scientific; 1994. p. 277–288.
  • Farah J. et al., Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 inter comparison exercise of active dosimetry systems. Med Phys. 42(5), 2572-2584 (2015)
  • E.J. Hall., Intensity modulated radiation therapy, protons, and the risk of second cancers Int J Radiat Oncol Biol Phys, 65 (2006), pp. 1–7
  • E. Pedroni, S. Scheib, T. Bohringer, A. Coray, M. Grossmann, S. Lin, and A.Lomax, “Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams,” Phys. Med. Biol. 50, 541–561 (2005).
  • D. Shin, M. Yoon, J. Kwak, J. Shin, S.B. Lee, S.Y. Park, S. Park, D.Y. Kim, K.H. Cho, 243 Secondary Neutron Doses for Several Beam Configurations for Proton Therapy, Int. J. Radiat. 244 Oncol. Biol. Phys. 74 (2009) 260–265. doi:10.1016/j.ijrobp.2008.10.090.
  • Chung KZ et al., The first private-hospital based proton therapy center in Korea; Status of the Proton Therapy Center at Samsung Medical Center.RadiatOncoL J. 2015; 33(4):1-7 doi:10.3857/roj.2015.33.4.337
  • Baskar R, Lee K A, Yeo R, Yeoh, K.W.U. (2012). Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9, 193–199.
  • Albertini F. 2011. Planning and Optimizing Treatment Plans for Actively Scanned Proton Therapy: evaluating and estimating the effect of uncertainties. PhD, University degli Studi di Milano.
  • A. Wroe, A. Rosenfeld, R. Schulte, Out-of-field dose equivalents delivered by proton therapy of 237 prostate cancer., Med. Phys. 34 (2007) 3449–3456. doi:10.1118/1.2759839
  • A. M. Koehler, R. J. Schneider, and J. M. Sisterson, “Range modulators for protons and heavy ions,” Nucl. Instrum. Methods, Jan 1, 1975.
  • A. Ferrari and P. R. Sala.World Scientific. P. Dragovitsch, S. L. Linn, M. Burbank (eds.), A new model for hadronic interactions at intermediate energies for the FLUKA code, Proc. of the MC93 International Conference on Monte Carlo Simulation in High Energy and Nuclear Physics, Tallahassee, Florida, 22-26 February 1993 Singapore 1994, p 277-288.
  • 11. Chung KZ, et al: The first private-hospital based proton therapy center in Korea; Status of the Proton Therapy Center at Samsung Medical Center. RadiatOncol J 33(4):1-7 (2015) doi:10.3857/roj.2015.33.4.337