박사

수술 로봇의 위치 및 이동경로 최적화에 관한 연구 : Study on Optimization of Layout and End-effector Path for a Surgical Robot

논문상세정보
' 수술 로봇의 위치 및 이동경로 최적화에 관한 연구 : Study on Optimization of Layout and End-effector Path for a Surgical Robot' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Genetic algorithm
  • Operating room layout
  • Path planning
  • medicalrobot
  • optimization
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,260 0

0.0%

' 수술 로봇의 위치 및 이동경로 최적화에 관한 연구 : Study on Optimization of Layout and End-effector Path for a Surgical Robot' 의 참고문헌

  • Zhang, J., Roland, J., Manolidis, S., and Simaan, N. (2008), “Optimal Path Planning for Robotic Insertion of Steerable Electrode Arrays in Cochlear Implant Surgery,” Journal of Medical Devices, vol. 3, pp. 1-10.
  • Zeng, L., and Bone, G.M. (2013), “Mobile Robot Collision Avoidance in Human Environments”, International Journal of Advanced Robotic Systems, vol. 10, no. 41, pp. 1-14.
  • Zeghloul, S., and Pamames, J.A. (1993), “Multi-criteria optimal placement of robots in constrained environment,” Robitica 11, vol. 11, no. 02, pp. 105-110.
  • Zaffagnini, S., Klos, T. V., and Bignozzi, S. (2010), “Computer-assisted anterior cruciate ligament reconstruction: an evidence-based approach of the first 15 years”, Arthroscopy, vol. 26, no. 4, pp. 546-554.
  • Yu, J., Zhang, Q., Kroumov, V., Cheng. S, and Zhang, Z. (2008), “Path Planning Algorithm for Robot in 3D Environment Based on Neural Network,” ICIRA 2008, Part I, pp. 1081–1088.
  • Yoshikawa, T. (1985), “Manipulability of robotic mechanisms,” The International Journal of Robotics and Research, vol. 4, pp. 3–9.
  • Yildiz, E., Akkaya, K., Sisikogle, E., and Sir, M. Y. (2014), “Optimal Camera Placement for Providing Angular Coverage in Wireless Video Sensor Networks, ” IEEE Transactions on Computers, vol. 63, vo. 7, pp. 1812–1825.
  • Yen, P. L. and Davies, B. L. (2010), “Active Constraint Control for Image- Guided Robotic Surgery”, Proceedings of the Institution of Mechanical Engineering H, vol. 224, no. 5, pp. 623-631.
  • Ye, R., and Chen, Y. (2009), “Path Planning for Robot Assisted Femur Shaft Fracture Reduction: A Preliminary Investigation,” Int’l Conference on Virtual Environments, Human-Computer Interfaces and Measurements System, Hong Kong, China, pp. 113-117.
  • Yang, J., Yu, W., Kim, J., and Malek, K. (2009), “On the placement of openloop robotic manipulators for reachability,” Mechanism and Machine Theory, pp. 671-684, vol. 44.
  • Yamamoto, Y., Ishibashi, Y., Tsuda, E., Tsukada, H., and Toh, S. (2008), “Single- Versus Double-Bundle Anterior Cruciate Ligament Reconstruction Results Using Navigation: The Japanese Experience,” Operative Techniques in Orthopaedics, Vol. 18, No. 3, pp. 173-180.
  • Yabuta, K., and Kitazawa, Hi. (2008), “Optimum Camera Placement Considering Camera Specification for Security Monitoring,” Proceedings of the IEEE Int’l Conference on Circuits and System, pp. 2114-2117.
  • Wirth, M. A., Choi, C., and Jennings, A. (1997), “Point to Point Registration of Non-Rigid Medical Images Using Local Elastic Transformation Methods”, Proceeding of IPA97, pp. 790-784.
  • Wang, Y., Xiong, Y., Xu, K., and Liu, D. (2012), “vKASS: a surgical procedure simulation system for arthroscopic anterior cruciate”, Computer Animation and Virtual Worlds, vol. 24, no. 1, pp. 25-41.
  • Wang, C. (1992), “Extrinsic Calibration of a Vision Sensor Mounted on a Robot”, IEEE Transaction of Robotic and Automation, vol. 8, no. 2, pp. 161- 175.
  • Vosniakos, G-C., and Matsas, E. (2010), “Improving feasibility of robotic milling through robot placement optimisation,” The Journal Robotics and Computer-Integrated Manufacturing, vol. 26, no.5, pp. 517-525.
  • Tsai, R. Y., and Lenz, R. K. (1989), “A new Technique for fully Autonomous and Efficient 3D Robotic Hand/eye Calibration”, IEEE Transaction of Robotic and Automation, vol. 5, no. 3, pp. 345-358.
  • Trabia, M.B., and Kathari, M. (1999), “Placement of a manipulator for minimum cycle time,” Journal of Robotic Systems, vol. 16, pp. 419–431.
  • Taylor, R. H., and Stoianovici, D. (2003), “Medical Robotics in Computer- Integrate Surgery”, IEEE Transaction on Robotics and Automation, vol. 19, no. 5, pp. 765-781.
  • Stewart, J.S. (2008), “Calculus: Early Transcendentals”, Thomsom Publishing Company, CA 94002, USA.
  • Sivanandam, S.N (1999). “Introduction to Genetic Algorithm”, Springer, New York, pp. 29~31.
  • Shiu, Y., and Ahmad, S. (1989), “Calibration of wrist-mounted Robotic Sensor by solving Homogeneous Transform Equations of the form AX=XB”, IEEE Transaction of Robotic and Automation, vol. 5, no. 1, pp. 16-27.
  • Seon, J. K., Gadikota, H. R., Wu, J. L., Sutton, K., Gill, T. J., and Li, G. (2010), “Comparison of Single- and Double-Bundle Anterior Cruciate Ligament Reconstructions in Restoration of Knee Kinematics and Anterior Cruciate Ligament Forces,” The American Journal of Sports Medicine, Vol. 38, No. 7, pp. 1359-1367.
  • Santos, R.d., Steffen, V., and Saramago, S. (2010), “Optimal task placement of a serial robot manipulator for manipulability and mechanical power optimization,” Intelligent Information Management, vol. 2, pp. 512-525.
  • Rm rez, E., Navarro, H., Carmona, R., and Ramos, J. (2009), “Optimizing Collision Detection based on OBB Trees Generated with Genetic Algorithm,” IV Iberoamerican Symposium in Computer Graphics-SIACG, pp.1-7.
  • Plaweski, S., Tchouda, D., Dumas, J., Rossi, J., Moreau Gaudry, A., et al. (2012), “Evaluation of a computer-assisted navigation system for anterior cruciate ligament reconstruction: Prospective non-randomized cohort study versus conventional surgery,” The Journal of Orthopaedics & Traumatology: Surgery& Research, Vol. 98, Issue. 6, pp. S91-S97.
  • Plaweski, S., Cazal, J., Rosell, P., and Merloz, P. (2006), “Anterior cruciate ligament reconstruction using navigation: a comparative study on 60 patients”, Am J Sports Med, vol. 34, no. 4, pp. 542-552.
  • Picard, F., DiGioia, A. M., Moody, J., Martinek, V., Fu, F. H., Rytel, M., Nikou, C., LaBarca, R. S., and Jaramaz, B. (2001), “Accuracy in tunnel placement for ACL reconstruction. Comparison of traditional arthroscopic and computer-assisted navigation techniques”, Comput Aided Surg, vol. 6, no. 5, pp. 279-289.
  • Petermann, J., Kober, R., Heize, R., FroLich, J., Heeckt, F., and Gotzen, L. (2000), “Computer-Assisted Planning and Robot-Assisted Surgery in Anterior Cruciate Ligament Reconstruction,” Operative Techniques in Orthopaedics, Vol. 10, No.1, pp. 50-55.
  • Northern Digital Inc, http://www.ndigital.com/
  • Nguyen, Q. C., Kim, Y., and Kwon, H.D. (2016), “Optimization of layout and path planning of surgical robotic system”, International Journal of Control, Automation and System, in press.
  • Musahl, A., Burkart, M. D., Debski, R. E., Scyoc, A., Fu, F. H., and Woo, S. L.-Y. (2002), “Accuracy of Anterior Cruciate Ligament Tunnel Placement with an Active Robotic System,” The Journal of Arthroscopy and Related Surgery, Vol. 8, No. 9, pp. 968-973.
  • Morvan, T., Martinsen, M., Reimers, M., Samse, E., and Elle, O.J. (2009), “Collision Detection and Untangling for Surgical Robotic Manipulators,” Int’l Journal of Medical Robotics and Computer Assisted Surgery, Vol. 5, No.3, pp. 233-242.
  • Mitsi, S., Bouzakis, K.D., Sagris, D., and Mansour, G. (2008), “Determination of optimum robot base location considering discrete endeffector positions by means of hybrid genetic algorithm,” Robotics and Computer- Integrated Manufacturing, Vol. 24, pp. 50-9.
  • Meshlab, http://meshlab.sourceforge.net/
  • Maurer, C. R., Fitzpatrick, J. M., Wang, M. Y., Galloway, R. L., Maciunas, R. J., and Allen, G. S. (1997), “Registration of head volume images using implantable fiducial markers”, IEEE Transactions on Medical Imaging, vol. 16, no. 4, pp. 447-462.
  • Mauch, F., Apic, G., Becker, U., and Bauer, G. (2007), “Differences in the Placement of the Tibial Tunnel During Reconstruction of the Anterior Cruciate Ligament With and Without Computer-Assisted Navigation,” The American Journal of Sport Medicine, Vol. 35, No. 11, pp. 1824-1832.
  • Marmualla, R., and Niederdellmann, H. (1998), “Computer-Assisted Bone Segment Navigation”, Journal of Cranio-Maxillo-Facial Surgery, vol. 26, no. 6, pp. 347-359.
  • Maniere, E.V., Adhami, L., Mourgues, F., and Carpentier, A. (2003), “Planning, Simulation, and Augmented Reality for Robotic Cardiac Procedures: the STARS System of the ChiR Team,” Seminar in Thoracic and Cardiovascular Surgery, vol. 15, pp. 141-156.
  • Malek, K.A., and Yu, W. (2000), “On the placement of serial manipulator,” Proceedings of DET C00 2000 ASME Design Engineering Technical Conference, Maryland, pp. 1-8.
  • M. Mitchell, (2008). “Introduction to Genetic Algorithm”, The MIT Press, Massachusetts, pp. 7~9.
  • Luca, A.D., and Mattone, R. (2005), “Sensorless Robot Collision Detection and Hybrid Force/Motion Control”, Proceedings of the 2005 IEEE Int’l Conference on Robotics and Automation, pp. 999-1004.
  • Lubowitz, J.H, Mynam, M.D, Ayala, S.T., and Appleby, M.P.H. (2008) “Return to Activity after Knee Arthroscopy”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 24, no. 1, pp. 58-61.
  • Lim, S., Choi, J., Kim, Y., Lee, D., Park, S., and Wang, J. (2014), “Robotic guide system for reducing human alignment error in computer-assisted anterior cruciate ligament reconstruction,” Int’l Journal of Computer Assisted radiology and Surgery 2014, vol. 9, no. 1, pp. 152-153.
  • Liao, H., Yoshimura, K., Utsugida, T., Matsumiya, K., Masamune, K., and Dohi, T. (2007), “Surgical Manipulator with Linkage Mechanism for Anterior Cruciate Ligament Reconstruction,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1266-1271.
  • L. Tian, C. Collins, “Optimal placement of a two-link planar manipulator using a genetic algorithm,” Robotica, vol. 23, pp. 169–176.
  • Kyoto Kagaku Co., Ltd, http://www.kyotokagaku.com/
  • Kuga, M., Yasuda, K., Hata, N., and Dohi, T. (2004), “Navigation system for ACL reconstruction using registration between multi-viewpoint X-ray images and CT images”, Proceedings of Cars 2004: Computer Assisted Radiology and Surgery, pp. 498-502.
  • Kuffner, J., Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M. and Inoue, H. (2002), “Self-Collision Detection and Prevention for Humanoid Robots”, Proceedings of the 2002 IEEE Int’l Conference on Robotics and Automation, Washington, DC, pp. 2265-2270.
  • Kondo, E., Yasuda, K., Azuma, H., Tanabe, Y., and Yagi, T. (2008), “Prospective Clinical Comparisons of Anatomic Double-Bundle Versus Single-Bundle Anterior Cruciate Ligament Reconstruction Procedures in 328 Consecutive Patients,” The American Journal of Sports Medicine, Vol. 36, No. 9, pp. 1675-1687.
  • Klos, T. V. S. (2014), “Computer-assisted anterior cruciate ligament reconstruction. Four generations of development and usage”, Sports Medicine and Arthroscopy Review, vol. 22, no. 4, pp. 229-236.
  • Kitware Inc, http://www.vtk.org/
  • Kim, S., Kim, Y., Park, S., and Lee, D. (2014), “Automatic segmentation of leg bones by using active contours”, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Embc), pp. 4695-4698.
  • Khatib, O., and Kroeger, T. (2008), “Introduction to Robotics”, Lecture Notes, Standford University.
  • Kamrani, B., Berbbyuk, V., Wapling, D., Uwe, S., and Feng, X. (2009), “Optimal robot placement using response surface method,” Int’l Journal Advanced Manufacturing Technology, vol. 44, no. 1, pp. 201-210.
  • Julliard, R., Plaweski, S., and Lavall e, S. (2004), “ACL Surgetics: An efficient computer-assisted technique for ACL reconstruction”, Navigation and Robotics in Total Joint and Spine Surgery, pp. 405-411, Springer Berlin Heidelberg.
  • Jackson, R.C., and Cavusoglu, M. C. (2013), “Needle Path Planning for Autonomous Robotic Surgical Suturing,” Proceedings of the IEEE Int’l Conference on Robotics and Automation, pp. 1669-1675.
  • Iyyampillai, G., Raman, E. T., Rajan, D. V., Krishnamoorthy, A., and Sahanand, S. (2013), “Determinants of femoral tunnel length in anterior cruciate ligament reconstruction: CT analysis of the influence of tunnel orientation on the length”, Knee Surg Relat Res, vol. 25, no. 4, pp. 207-214.
  • I-Sport, http://isports.my/acl
  • Huynh, L.M and Kim, Y.H. (2013), “A Computer-Aided and Robot-Assisted Surgical System for Reconstruction of Anterior Cruciate Ligament,” Itn’l Journal of Precision Engineering and Manufacturing, Vol. 14, No. 1, pp. 49- 54.
  • Howe, R. D., and Matsuoka, Y. (1999), “Robotics for surgery”, Annual Review of Biomedical Engineering, vol. 1, pp. 211-240.
  • Holland, J.H. (1975), “Adaption in Natural and Artificial System”, University of Michigan Press, 1975.
  • He, G., Gao, H., Zhang, G., and Wu, L. (2006), “Using adaptive genetic algorithm to the placement of serial robot manipulator,” Proceedings of the IEEE Int’l Conference on Engineering of Intelligent System, pp.1-6, 2006.
  • Gottschalk, S., Lin, M., and Manocha, D. (1996), “OBBTree: A Hierachical Structure for Rapid Interference,” Proceedings of ACM Siggraph, pp. 171- 180.
  • Gottchalk, S. (2000), “Collision Queries using Oriented Bounding Boxes,” Department of Computer Science, University of North Carolina.
  • Goldberg, D.E. (1989), “Genetic Algorithms in Search, Optimization and Machine Learning”, Addision-Wesley Publishing Company, New York.
  • Gerdts, M., Henrion, R., Homberg, D., and Landry, C. (2012), “Path Planning and Collision Avoidance for Robots”, Numerical Algebra, Control and Optimization, vol. 2, no. 3, pp. 437-463.
  • Fitzpatrick, J. M., West, J. B., and Maurer, C. R. (1998), “Predicting error in rigid-body point-based registration”, IEEE Transactions on Medical Imaging, vol. 75, no. 5, pp. 694-702.
  • Ferrari, J.D., Joseph, C.A, and Bernard, R.B. (1998), “Arthroscopy-assisted Anterior Cruciate Ligament Reconstruction Using Patellar Tendon Substitution- Two Incision Technique”, Techniques in Orthopaedics, vol. 13, no. 3, pp. 242-252.
  • Ezra, E., Sharir, M., and Efrat, A. (2008), “On the performance of the ICP algorithm”, Computational Geometry, vol. 41, pp. 77-93.
  • Eberly, D. (1999), “Dynamic Collision Detection Using Oriented Bounding Boxes,”http://geometrictools.com/Documentation/DynamicCollisionDetecti on.pdf
  • Dessenne, V., Lavallee, S., Julliard, R., Orti, R., Martelli, S. and Cinquin, P. (1995), “Computer-assisted knee anterior cruciate ligament reconstruction: first clinical tests”, Journal of Image Guide Surgery, vol. 1, no. 1, pp. 59-64.
  • Denso Wave Inc, http://www.denso-wave.com/
  • Degenhart, M. (2004), “Computer-navigated ACL reconstruction with the OrthoPilot”, Surg Technol Int, vol. 12, pp. 245-251.
  • Deacon, G., Harwood, A., Holdback, J., et al. (2010), “The Pathfinder Image- Guided Surgical Robot”, Proceedings of the Institution of Mechanical Engineering H, vol. 224, no. 5, pp. 691-713.
  • D. Kalyanmoy, (1999). “Introduction to Genetic Algorithm”, Sadhana, India, Vol. 24, Part 4&5, pp. 293-315.
  • Craig, J.J. (2005), “Introduction to Robotics”, Mechanics and Control, Prentice Hall Publishing Company, New York, USA.
  • Correa, E.F., and Dutra, M.S. (2014), “Manipulator Base Placement solved with Heuristic Search,” ABCM Symposium Series in Mechatronics, vol.6, pp 896-905.
  • Choi, J., Lim, S., Kim, Y., Lee, D., Park, S. (2013), “3D Preoperative Surgical Planning Software for Anterior Cruciate Ligament Reconstruction,” 13th Int’l Conference on Control, Automation and Systems, Gwangju, Korea, pp. 344- 346.
  • Burkart, A., Debski, R. E., McMahon, P. J., Rudy, T., Fu, F. H., Musahl, V., Scyoc, A. V., and Woo, S. L.-Y. (2001), “Precision of ACL Tunnel Placement Using Traditional And Robotic Techniques,” Computer Aided Surgery, Vol. 6, No. 5, pp. 270-278.
  • Brand, M., Wehne, N., and Yu, X. H. (2010), “Ant Colony Optimization for Robot Path Planning,” Proceedings of the IEEE Int’l Conference on Computer Design and Applications, pp. 436-410.
  • Bosscher, P., and Hedman, D. (2011), “Real-time collision avoidance algorithm for robotic manipulators”, Industrial Robot: An International Journal, vol. 38, no. 2, pp. 186-197.
  • Bishop, C. (2006), “Pattern Recognition and Machine Learning”, Springer, New York, NY, USA.
  • Besl, P. J., and McKay, N. D. (1992), “A Method of Registration of 3D Shape”, IEEE Transaction Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256.
  • Bernard, R.B, Greg, T.J, Fred, A.S and Cheryl, A.H. (1994) “Arthroscopyassisted Anterior Cruciate Ligament Reconstruction Using Patellar Tendon Substitution”, The American Journal of Sports Medicine, vol. 22, no. 6, pp. 758-767.
  • Bernard, M., Hertel, P., Hornung, H., and Cierpinski, T. (1997), “Femoral insertion of the ACL. Radiographic quadrant method”, Am J Knee Surg, vol. 10, no. 1, pp. 14-21.
  • Berkelman, P., Trocaz, J., and Cinquin, P. (2004), “Body-Supported Medical Robot: a Survey”, Journal of Robotics and Mechantronics, vol. 16, pp. 513- 519.
  • Berg, J. V., Abbeel, P., and Goldberg, K. (2011), “LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information,” The International Journal of Robotics Research, Vol. 30, No. 7, pp. 895-913.
  • Belkhouche, T. (2009), “Reactive Path Planning in a Dynamic Environment,” IEEE Transactions on Robotic, Vol. 25, No. 4, pp. 902-911.
  • Barbosa, J.G., Rami1rez, T.G., Salas, J., Ramos, J.B.H., and Jimenez, J.R. (2009), “Optimal Camera Placement for Total Coverage,” Proceedings of the IEEE Int’l Conference on Robotics and Automation, pp. 844-848.
  • Austad, A., Elle, O.J., Samset, E., et al. (2002), “Collision Avoidance in Robot Assisted Surgery,” In CARS 2002: Computer Assisted Radiology and Surgery. Proceedings of the 16th Int’l Congress and Exhibition, Berlin, German, pp. 80-85.
  • Almhdie, A., Le1ger, C., Deriche, M., and Ledee, R. (2007), “3D registration using a new implementation of the ICP Algorithm based on o comprehensive lookup matrix: Application to medical imaging”, Pattern Recognition Letters, vol. 28, pp. 1523-1533.
  • Adhami, L., and Maniere, E.V. (2003), “Optimal planning for minimally invasive surgical robots,” IEEE Transactions on Robotics and Automation, vol. 19, pp. 854–863.
  • Adhami, L., and Maniere, E.V. (2002), “Positioning Tele-operated Surgical Robots for collision-Free optimal operation,” Proceedings of the 2002 IEEE Int’l Conference on Robotics and Automation, Washington, DC, pp. 2962- 2967.