박사

Structural Studies of Csd6 Protein from Helicobacter pylori and Rv2258c Protein from Mycobacterium tuberculosis

임하나 2016년
논문상세정보
' Structural Studies of Csd6 Protein from Helicobacter pylori and Rv2258c Protein from Mycobacterium tuberculosis' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Csd6
  • D-carboxypeptidase
  • HP0518
  • L
  • Rv2258c
  • S-adenosyl-L-homocysteine
  • cell motility
  • cell shape
  • flagellin
  • helicobacter pylori
  • mycobacterium tuberculosis
  • peptidoglycan
  • protein structure
  • sinefungin
  • small-molecule methyltransferase
  • structure function
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
494 0

0.0%

' Structural Studies of Csd6 Protein from Helicobacter pylori and Rv2258c Protein from Mycobacterium tuberculosis' 의 참고문헌

  • Yu, C.S., Chen, Y.C., Lu, C.H., Hwang, J.K. (2006) Prediction of protein subcellular localization. Proteins 64:643651.
  • Young, G. M., Schmiel, D. H., and Miller, V. L. (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. U.S.A. 96:6456–
  • Yoo, J., Choi, S., and Medina-Franco, J. L. (2013) Molecular modeling studies of the novel inhibitors of DNA methyltransferases SGI-1027 and CBC12: implications for the mechanism of inhibition of DNMTs. PLoS One 8:e62152.
  • Xu, G., Ryan, C., Kiefel, M. J., Wilson, J. C., and Taylor, G. L. (2009) Structural studies on the Pseudomonas aeruginosa sialidase-like enzyme PA2794 suggest substrate and mechanistic variations. J. Mol. Biol. 386:828–840.
  • Wyckoff, T. J., Taylor, J. A., and Salama, N. R. (2012) Beyond growth: novel functions for bacterial cell wall hydrolases. Trends Microbiol. 20:540–547.
  • Worku, M. L., Sidebotham, R. L., Walker, M. M., Keshavarz, T., and Karim, Q. N. (1999) The relationship between Helicobacter pylori motility, morphology and phase of growth: implications for gastric colonization and pathology. Microbiology 145: 2803–2811.
  • Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. sect. D Biol. Crystallogr. 67:235–242.
  • Weiss, M. S. (2001) Global indicators of X-ray data quality. J. Appl. Cryst. 34:130135.
  • Vollmer, W., and Bertsche, U. (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim. Biophys. Acta 1778:1714–1734.
  • Vollmer, W., Joris, B., Charlier, P., and Foster, S. (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286
  • Vollmer, W., Blanot, D., and de Pedro, M. A. (2008) Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32:149–167.
  • Vagin, A., and Teplyakov, A. (2010) Molecular replacement with MOLREP. Acta Crystallogr. sect. D Biol. Crystallogr. 66:22–25.
  • Terwilliger, T.C. (2003) Automated main-chain model-building by template-matching and iterative fragment extension. Acta Crystallogr. sect. D Biol. Crystallogr. 59:3844.
  • Terwilliger, T. C. (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. sect. D Biol. Crystallogr. 59:38–44.
  • Taboada, B., Ciria, R., Martinez-Guerrero, C.E., Merino, E. (2012) ProOpDB: Prokaryotic Operon DataBase. Nucleic Acids Res. 40:D627D631.
  • Sycuro, L. K., Wyckoff, T. J., Biboy, J., Born, P., Pincus, Z., Vollmer, W., and Salama, N. R. (2012) Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLoS Pathog. 8:e1002603.
  • Sycuro, L. K., Rule, C. S., Petersen, T. W., Wyckoff, T. J., Sessler, T., Nagarkar, D. B., Khalid, F., Pincus, Z., Biboy, J., Vollmer, W., and Salama, N. R. (2013) Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol. Microbiol. 90:869–883.
  • Sycuro, L. K., Pincus, Z., Gutierrez, K. D., Biboy, J., Stern, C. A., Vollmer, W., and Salama, N. R. (2010) Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 141:822–833.
  • Singh, S., Chang, A., Goff, R.D., Bingman, C.A., Gr schow, S., Sherman, D.H., Phillips, G.N., Jr., Thorson, J.S. (2011) Structural characterization of the mitomycin 7-O-methyltransferase. Proteins 79:21812188.
  • Silva, J. R., Roitberg, A. E., and Alves, C. N. (2014) Catalytic mechanism of L,D-transpeptidase 2 from Mycobacterium tuberculosis described by a computational approach: insights for the design of new antibiotics drugs. J. Chem. Inf. Model. 54:2402–2410.
  • Sharma, G., Upadhyay, S., Srilalitha, M., Nandicoori, V.K., Khosla, S. (2015) The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res. 43:3922‒3937.
  • Schubert, H.L., Blumenthal, R.M., Cheng, X. (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28:329335.
  • Schreiber, S., Konradt, M., Groll, C., Scheid, P., Hanauer, G., Werling, H. O., Josenhans, C., and Suerbaum, S. (2004) The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl. Acad. Sci. USA 101:5024–5029.
  • Schirm, M., Soo, E. C., Aubry, A. J., Austin, J., Thibault, P., and Logan, S. M. (2003) Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48:1579–1592.
  • Scheffers, D. J., and Pinho, M. G. (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 69:585–607.
  • Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A., and Charlier, P. (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32:234–258.
  • Roubaud Baudron, C., Franceschi, F., Salles, N., and Gasbarrini, A. (2013) Extragastric diseases and Helicobacter pylori. Helicobacter 18:44–51.
  • Roesler, B. M., Rabelo-Goncalves, E. M., and Zeitune, J. M. (2014) Virulence Factors of Helicobacter pylori: A Review. Clin. Med. Insights Gastroenterol. 7:9–17.
  • Robert, X., Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42:W320W324.
  • Pei, J., Kim, B. H., and Grishin, N. V. (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36:2295–2300.
  • Otwinowski, Z., Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276:307326.
  • Otwinowski, Z. and Minor, W. (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol., 276, 307–326.
  • Ottemann, K. M., and Lowenthal, A. C. (2002) Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70:1984–1990.
  • Oliveira, S.H., Ferraz, F.A., Honorato, R.V., Xavier-Neto, J., Sobreira, T.J., de Oliveira, P.S. (2014) KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinformatics 15:197.
  • Murshudov, G.N., Vagin, A.A., Dodson, E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. sect. D Biol. Crystallogr. 53:240‒255.
  • Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. sect. D Biol. Crystallogr. 53:240–255.
  • Motoyama, T., Nakasako, M., and Yamaguchi, I. (2002) Crystallization of scytalone dehydratase F162A mutant in the unligated state and a preliminary X-ray diffraction study at 37 K. Acta Crystallogr. sect. D Biol. Crystallogr. 58:148–150.
  • Mitchell, A., Chang, H. Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., Sangrador-Vegas, A., Scheremetjew, M., Rato, C., Yong, S. Y., Bateman, A., Punta, M., Attwood, T. K., Sigrist, C. J., Redaschi, N., Rivoire, C., Xenarios, I., Kahn, D., Guyot, D., Bork, P., Letunic, I., Gough, J., Oates, M., Haft, D., Huang, H., Natale, D. A., Wu, C. H., Orengo, C., Sillitoe, I., Mi, H., Thomas, P. D., and Finn, R. D. (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43:D213–221.
  • Meroueh, S. O., Bencze, K. Z., Hesek, D., Lee, M., Fisher, J. F., Stemmler, T. L., and Mobashery, S. (2006) Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc. Natl. Acad. Sci. USA 103:4404– 4409.
  • Medina-Franco, J. L., Mendez-Lucio, O., and Yoo, J. (2014) Rationalization of activity cliffs of a sulfonamide inhibitor of DNA methyltransferases with induced-fit docking. Int. J. Mol. Sci. 15:3253–3261.
  • McCarter, L., and Silverman, M. (1990) Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol. Microbiol. 4:1057– 1062.
  • Martin, J.L., McMillan, F.M. (2002) SAM (dependent) I AM: the Sadenosylmethionine- dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12:783‒793.
  • Malfertheiner, P., Selgrad, M., and Bornschein, J. (2012) Helicobacter pylori: clinical management. Curr. Opin. Gastroenterol. 28:608–614.
  • Mainardi, J. L., Legrand, R., Arthur, M., Schoot, B., van Heijenoort, J., and Gutmann, L. (2000) Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J. Biol. Chem. 275:16490–16496.
  • Louie, G.V., Bowman, M.E., Tu, Y., Mouradov, A., Spangenberg, G., Noel, J.P. (2010) Structure-function analyses of a caffeic acid Omethyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell 22:4114‒4127.
  • Logan, S. M. (2006) Flagellar glycosylation – a new component of the motility repertoire? Microbiology 152:1249–1262.
  • Liscombe, D.K., Louie, G.V., Noel, J.P. (2012) Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat. Prod. Rep. 29:1238‒1250.
  • Lin, P.L., Flynn, J.L. (2010) Understanding latent tuberculosis: a moving target. J. Immunol. 185:15‒22.
  • Li, Y., Karnak, D., Demeler, B., Margolis, B., and Lavie, A. (2004) Structural basis for L27 domain-mediated assembly of signaling and cell polarity complexes. EMBO J. 23:2723–2733.
  • Lew, J.M., Kapopoulou, A., Jones, L.M., Cole, S.T. (2011) TubercuList - 10 years after. Tuberculosis (Edinb) 91:1‒7.
  • Lertsethtakarn, P., Ottemann, K. M., and Hendrixson, D. R. (2011) Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65:389–410.
  • Lee, N. K., Kapanidis, A. N., Wang, Y., Michalet, X., Mukhopadhyay, J., Ebright, R. H., and Weiss, S. (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88:2939–2953.
  • Lee, M., Zhang, W., Hesek, D., Noll, B. C., Boggess, B., and Mobashery, S. (2009) Bacterial AmpD at the crossroads of peptidoglycan recycling and manifestation of antibiotic resistance. J. Am. Chem. Soc. 131:8742–8743.
  • Lavollay, M., Arthur, M., Fourgeaud, M., Dubost, L., Marie, A., Veziris, N., Blanot, D., Gutmann, L., and Mainardi, J. L. (2008) The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol. 190:4360–4366.
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948.
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947‒2948.
  • Kusters, J. G., van Vliet, A. H., and Kuipers, E. J. (2006) Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 19:449–490.
  • Kumar, A., Kumar, S., Taneja, B. (2014) The structure of Rv2372c identifies an RsmE-like methyltransferase from Mycobacterium tuberculosis. Acta Crystallogr. sect. D Biol. Crystallogr. 70:821‒832.
  • Krissinel, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372:774–797.
  • Krissinel, E., Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372:774‒797.
  • Kozbial, P.Z., Mushegian, A.R. (2005) Natural history of Sadenosylmethionine- binding proteins. BMC Struct. Biol. 5:19.
  • Kostrzynska, M., Betts, J. D., Austin, J. W., and Trust, T. J. (1991) Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J. Bacteriol. 173:937–946.
  • Korza, H. J., and Bochtler, M. (2005) Pseudomonas aeruginosa LDcarboxypeptidase, a serine peptidase with a Ser-His-Glu triad and a nucleophilic elbow. J. Biol. Chem. 280:40802–40812.
  • Kim, S., Oh, D. B., Kang, H. A., and Kwon, O. (2011) Features and applications of bacterial sialidases. Appl. Microbiol. Biotechnol. 91:1– 15.
  • Kim, S. W., Cha, S. S., Cho, H. S., Kim, J. S., Ha, N. C., Cho, M. J., Joo, S., Kim, K. K., Choi, K. Y., and Oh, B. H. (1997) High-resolution crystal structures of Δ5-3-ketosteroid isomerase with and without a reaction intermediate analogue. Biochemistry 36:14030–14036.
  • Kim, H. S., Kim, J., Im, H. N., Yoon, J. Y., An, D. R., Yoon, H. J., Kim, J. Y., Min, H. K., Kim, S. J., Lee, J. Y., Han, B. W., and Suh, S. W. (2013) Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. Acta Crystallogr. sect. D Biol. Crystallogr. 69:420–431.
  • Kim, H. S., Kim, J., Im, H. N., An, D. R., Lee, M., Hesek, D., Mobashery, S., Kim, J. Y., Cho, K., Yoon, H. J., Han, B. W., Lee, B. I., and Suh, S. W. (2014) Structural basis for the recognition of muramyltripeptide by Helicobacter pylori Csd4, a D,L-carboxypeptidase controlling the helical cell shape. Acta Crystallogr. sect. D Biol. Crystallogr. 70:2800–2812.
  • Kim, C., Kim, J. Y., Kim, S. H., Lee, B. I., and Lee, N. K. (2012) Direct characterization of protein oligomers and their quaternary structures by single-molecule FRET. Chem. Commun. (Camb) 48:1138–1140.
  • Kabsch, W., and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637.
  • Josenhans, C., Vossebein, L., Friedrich, S., and Suerbaum, S. (2002) The neuA/flmD gene cluster of Helicobacter pylori is involved in flagellar biosynthesis and flagellin glycosylation. FEMS Microbiol. Lett. 210:165–172.
  • Jeong, J.H., Cha, H.J., Ha, S.C., Rojviriya, C., Kim, Y.G. (2014) Structural insights into the histidine trimethylation activity of EgtD from Mycobacterium smegmatis. Biochem. Biophys. Res. Commun. 452:1098‒1103.
  • Jansson, A., Koskiniemi, H., M nts l , P., Niemi, J., Schneider, G. (2004) Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products. J. Biol. Chem. 279:41149‒41156.
  • Huang, C.C., Smith, C.V., Glickman, M.S., Jacobs, W.R. Jr., Sacchettini, J.C. (2002) Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis. J. Biol. Chem. 277:11559‒11569.
  • Hua, S., Sun, Z. (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721‒728.
  • Hoyland, C. N., Aldridge, C., Cleverley, R. M., Duchene, M. C., Minasov, G., Onopriyenko, O., Sidiq, K., Stogios, P. J., Anderson, W. F., Daniel, R. A., Savchenko, A., Vollmer, W., and Lewis, R. J. (2014) Structure of the LdcB LD-carboxypeptidase reveals the molecular basis of peptidoglycan recognition. Structure 22:949–960.
  • Holm, L., and Rosenstr m, P. (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res. 38:W545–549.
  • Holm, L., Rosenstr m, P. (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res. 38:W545‒W549.
  • Hohlbein, J., Craggs, T. D., and Cordes, T. (2014) Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 43:1156–1171.
  • Heinig, M., Frishman, D. (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 32:W500‒W502.
  • Hazell, S. L., Lee, A., Brady, L., and Hennessy, W. (1986) Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J. Infect. Dis. 153:658–663.
  • Harris, B. Z., Venkatasubrahmanyam, S., and Lim, W. A. (2002) Coordinated folding and association of the LIN-2, -7 (L27) domain. An obligate heterodimerization involved in assembly of signaling and cell polarity complexes. J. Biol. Chem. 277:34902–34908.
  • Guruge, J. L., Falk, P. G., Lorenz, R. G., Dans, M., Wirth, H. P., Blaser, M. J., Berg, D. E., and Gordon, J. I. (1998) Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc. Natl. Acad. Sci. U.S.A. 95:3925–3930.
  • Gupta, A., Kumar, P.H., Dineshkumar, T.K., Varshney, U., Subramanya, H.S. (2001) Crystal structure of Rv2118c: an AdoMet-dependent methyltransferase from Mycobacterium tuberculosis H37Rv. J. Mol. Biol. 312:381‒391.
  • Gra a, M., Haouz, A., Buschiazzo, A., Miras, I., Wehenkel, A., Bondet, V., Shepard, W., Schaeffer, F., Cole, S.T., Alzari, P.M. (2007) The crystal structure of M. leprae ML2640c defines a large family of putative Sadenosylmethionine- dependent methyltransferases in mycobacteria. Protein Sci. 16:1896‒1904.
  • Gouet, P., Robert, X., and Courcelle, E. (2003) ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31:3320–3323.
  • Girardin, S. E., Boneca, I. G., Carneiro, L. A., Antignac, A., Jehanno, M., Viala, J., Tedin, K., Taha, M. K., Labigne, A., Zahringer, U., Coyle, A. J., DiStefano, P. S., Bertin, J., Sansonetti, P. J., and Philpott, D. J. (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587.
  • Gaskell, A., Crennell, S., and Taylor, G. (1995) The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3:1197–1205.
  • Garc a, de la Torre, J., Huertas, M. L., Carrasco, B. (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78:719–730.
  • Galagan, J.E., Sisk, P., Stolte, C., Weiner, B., Koehrsen, M., Wymore, F., Reddy, T.B., Zucker, J.D., Engels, J.S. (2010) TB database 2010: overview and update. Tuberculosis (Edinb) 90:225‒235.
  • Gakhar, L., Malik, Z. A., Allen, C. C., Lipscomb, D. A., Larkin, M. J., and Ramaswamy, S. (2005) Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. J. Bacteriol. 187:7222– 7231.
  • Frirdich, E., Vermeulen, J., Biboy, J., Soares, F., Taveirne, M. E., Johnson, J. G., DiRita, V. J., Girardin, S. E., Vollmer, W., and Gaynor, E. C. (2014) Peptidoglycan LD-carboxypeptidase Pgp2 influences Campylobacter jejuni helical cell shape and pathogenic properties and provides the substrate for the DL-carboxypeptidase Pgp1. J. Biol. Chem. 289:8007–8018.
  • Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. sect. D Biol. Crystallogr. 66:486‒501.
  • Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. sect. D Biol. Crystallogr. 66:486– 501.
  • Doerks, T., Bork, P., Kamberov, E., Makarova, O., Muecke, S., and Margolis, B. (2000) L27, a novel heterodimerization domain in receptor targeting proteins Lin-2 and Lin-7. Trends Biochem. Sci. 25:317–318.
  • Dodson, G., and Wlodawer, A. (1998) Catalytic triads and their relatives. Trends Biochem. Sci. 23:347–352.
  • Diederichs, K., Karplus, P.A. (2013) Better models by discarding data? Acta Crystallogr. sect. D Biol. Crystallogr. 69:1215–1222.
  • Diederichs, K., Karplus, P.A. (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4:269‒275.
  • Das, D., Herve, M., Elsliger, M. A., Kadam, R. U., Grant, J. C., Chiu, H. J., Knuth, M. W., Klock, H. E., Miller, M. D., Godzik, A., Lesley, S. A., Deacon, A. M., Mengin-Lecreulx, D., and Wilson, I. A. (2013) Structure and function of a novel LD-carboxypeptidase a involved in peptidoglycan recycling. J. Bacteriol. 195:5555–5566.
  • Covaleda, G., del Rivero, M. A., Ch vez, M. A., Avil s, F. X., and Reverter, D. (2012) Crystal structure of novel metallocarboxypeptidase inhibitor from marine mollusk Nerita versicolor in complex with human carboxypeptidase A4. J. Biol. Chem. 287:9250–9258.
  • Costa, K., Bacher, G., Allmaier, G., Dominguez-Bello, M. G., Engstrand, L., Falk, P., de Pedro, M. A., and Garcia-del Portillo, F. (1999) The morphological transition of Helicobacter pylori cells from spiral to coccoid is preceded by a substantial modification of the cell wall. J. Bacteriol. 181:3710–3715.
  • Cordillot, M., Dubee, V., Triboulet, S., Dubost, L., Marie, A., Hugonnet, J. E., Arthur, M., and Mainardi, J. L. (2013) In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by L,D-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob. Agents Chemother. 57:5940–5945.
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., 3rd, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S., Barrell, B.G. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537‒544.
  • Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., Richardson, D.C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. sect. D Biol. Crystallogr. 66:12‒21.
  • Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. sect. D Biol. Crystallogr. 66:12–21.
  • Chaput, C., Labigne, A., and Boneca, I. G. (2007) Characterization of Helicobacter pylori lytic transglycosylases Slt and MltD. J. Bacteriol. 189:422–429.
  • Chaput, C., Ecobichon, C., Cayet, N., Girardin, S. E., Werts, C., Guadagnini, S., Prevost, M. C., Mengin-Lecreulx, D., Labigne, A., and Boneca, I. G. (2006) Role of AmiA in the morphological transition of Helicobacter pylori and in immune escape. PLoS Pathog. 2:e97
  • Chamaillard, M., Hashimoto, M., Horie, Y., Masumoto, J., Qiu, S., Saab, L., Ogura, Y., Kawasaki, A., Fukase, K., Kusumoto, S., Valvano, M. A., Foster, S. J., Mak, T. W., Nunez, G., and Inohara, N. (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature immunol. 4:702–707.
  • Cadby, I. T., and Lovering, A. L. (2014) Life in the “old bag” yet: structure of peptidoglycan L,D-carboxypeptidases. Structure 22:932–934.
  • Br nger, A.T. (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472‒475.
  • Botros, H.G., Legrand, P., Pagan, C., Bondet, V., Weber, P., Ben-Abdallah, M., Lemi re, N., Huguet, G., Bellalou, J., Maronde, E., Beguin, P., Haouz, A., Shepard, W., Bourgeron, T. (2013) Crystal structure and functional mapping of human ASMT, the last enzyme of the melatonin synthesis pathway. J. Pineal Res. 54:46‒57.
  • Bonis, M., Ecobichon, C., Guadagnini, S., Prevost, M. C., and Boneca, I. G. (2010) A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol. Microbiol. 78:809–819.
  • Boissier, F., Bardou, F., Guillet, V., Uttenweiler-Joseph, S., Daff , M., Qu mard, A., Mourey, L. (2006) Further insight into Sadenosylmethionine- dependent methyltransferases: structural characterization of Hma, an enzyme essential for the biosynthesis of oxygenated mycolic acids in Mycobacterium tuberculosis. J. Biol. Chem. 281:4434‒4445.
  • Bielnicki, J., Devedjiev, Y., Derewenda, U., Dauter, Z., Joachimiak, A., and Derewenda, Z. S. (2006) B. subtilis ykuD protein at 2.0 resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Proteins 62:144–151.
  • Biarrotte-Sorin, S., Hugonnet, J. E., Delfosse, V., Mainardi, J. L., Gutmann, L., Arthur, M., and Mayer, C. (2006) Crystal structure of a novel betalactam- insensitive peptidoglycan transpeptidase. J. Mol. Biol. 359:533– 538.
  • Berg, H. C., and Turner, L. (1979) Movement of microorganisms in viscous environments. Nature 278:349–351.
  • Asakura, H., Churin, Y., Bauer, B., Boettcher, J. P., Bartfeld, S., Hashii, N., Kawasaki, N., Mollenkopf, H. J., Jungblut, P. R., Brinkmann, V., and Meyer, T. F. (2010) Helicobacter pylori HP0518 affects flagellin glycosylation to alter bacterial motility. Mol. Microbiol. 78:1130–1144.
  • An, D. R., Kim, H. S., Kim, J., Im, H. N., Yoon, H. J., Yoon, J. Y., Jang, J. Y., Hesek, D., Lee, M., Mobashery, S., Kim, S. J., Lee, B. I., and Suh, S. W. (2015) Structure of Csd3 from Helicobacter pylori, a cell shapedetermining metallopeptidase. Acta Crystallogr. sect. D Biol. Crystallogr. 71:675–686.
  • Adams, P.D., Afonine, P.V., Bunk czi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, R., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C., Zwart, P.H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. sect. D Biol. Crystallogr. 66:213‒221.
  • Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. sect. D Biol. Crystallogr. 66:213–221.