박사

Graphene-based Nanocomposite for Potential Applications to Tissue Engineering = 그래핀을 기반으로 하는 나노복합체의 조직공학적 응용

이종호 2016년
논문상세정보
' Graphene-based Nanocomposite for Potential Applications to Tissue Engineering = 그래핀을 기반으로 하는 나노복합체의 조직공학적 응용' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 인체 생리학
  • Graphene-based nanoconposite
  • Osseointegration
  • cytotoxicity of carbon nanoparticles
  • dental implant
  • myogenesis
  • osteogenesis
  • tissue engineering
  • 그래핀기반 나노복합체
  • 조직공학
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
288 0

0.0%

' Graphene-based Nanocomposite for Potential Applications to Tissue Engineering = 그래핀을 기반으로 하는 나노복합체의 조직공학적 응용' 의 참고문헌

  • von Wilmowsky, C., Bauer, S., Lutz, R., Meisel, M., Neukam, F. W., Toyoshima, T., Schmuki, P., Nkenke, E., Schlegel, K. A. In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. Journal of Biomedical Materials Research Part B, 89:165–171, 2009.
  • Zhu, Y., Li, W., Li, Q., Li, Y., Li, Y., Zhang, X., Huang, Q. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon, 47:1351-1358,2009.
  • Zhi, M., Xiang, C., Li, J., Li, M. & Wu, N. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013).
  • Zhao, X., Ng, S., Heng, B.C., Guo, J., Ma, L., Tan, T.T.Y., Ng, K.W., Loo, S.C.J. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Archives of Toxicology, 87:1037-1052, 2013.
  • Zhao, X., Liu, R. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environment International, 40:244-255, 2012.
  • Zhang, Y., Xu, Y., Li, Z., Chen, T., Lantz, S.M., Howard, P.C., Paule, M.G., Slikker, W., Watanabe, F., Mustafa, T., Biris, A.S., Ali, S.F. Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano, 5:7020– 7033, 2011.
  • Zhang, Y., Wang, B., Meng, X., Sun, G., Gao, C. Influences of acid-treated multiwalled carbon nanotubes on fibroblasts: proliferation, adhesion, migration, and wound healing. Annals of Biomedical Engineering, 39:414-426, 2011.
  • Zhang, Y., Nayak, T.R., Hong, H., Cai, W. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale, 4:3833–3842, 2012.
  • Zhang, Y., Ali, S.F., Dervishi, E., Xu, Yang, Li, Z., Casciano, D., Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 4:3181–3186, 2010.
  • Zhang, Y., Ali, S.F., Dervishi, E., Xu, Y., Li, Z., Casciano, D., Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 4:3181-3186, 2010.
  • Zhang, L., Liu, W., Yue, C., Zhang, T., Li, P., Xing, Z., Chen, Y. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon, 61:105- 115, 2013.
  • Zara, J.N., Siu, R.K., Zhang, X., Shen, J., Ngo, R., Lee, M., Li, W., Chiang, M., Chung, J., Kwak, J., Wu, B.M., Ting, K., Soo, C. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Engineering Part A, 17:1389- 1399, 2011.
  • Zanin, H., Saito, E., Marciano, F.R., Ceragioli, H.J., Granato, A.E.C., Porcionattod, M., Lobo, A.O. Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications. Journal of Materials Chemistry B, 1:4947-4955, 2013.
  • Yoon, O.J., Sohn, I.Y., Kim, D.J., Lee, N-E. Enhancement of thermomechanical properties of poly (D, L-lactic-co-glycolic acid) and graphene oxide composite films for scaffolds. Macromolecular Research, 20:789-794, 2012.
  • Yaron, P.N., Holt, B.D., Short, P.A., L sche, M., Islam, M.F., Dahl, K.N. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. Journal of Nanobiotechnology, 9, 2011.
  • Yang, W.J., Lee, J.H., Hong, S.C., Lee, J., Lee, J., Han, D-W. Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials, 6:4689–4706, 2013.
  • Yang, S.T., Wang, X., Jia, G., Gu, Y., Wang, T., Nie, H., Ge, C., Wang, H., Liu, Y. Longterm accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Letters, 181:182-189, 2008.
  • Xu, J., Xu, P., Li, Z., Huang, J., Yang, Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. Journal of Biomedical Materials Research Part A, 100:738-745, 2012.
  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf , J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R., Nel, A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6:1794–1807, 2006.
  • Williams, C.G., Malik, A.N., Kim, T.K., Manson, P.N., Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 26:1211-1218, 2005.
  • Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A., Webb, T.R. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicological Sciences, 77:117-125, 2004.
  • Wang, L.S., Boulaire, J, Chan, P.P.Y., Chung, J.E., Kurikawa, M. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials, 31:8608-8616, 2010.
  • Wang, L., Zhou, G., Liu, H., Niu, X., Han, J., Zheng, L., Fan, Y. Nano-hydroxyapatite particles induce apoptosis on MC3T3-E1 cells and tissue cells in SD rats. Nanoscale, 4:2894- 2899, 2012.
  • Wang, L., Fan, H., Zhang, Z-Y., Lou, A-J., Pei, G-X., Jiang, S., Mu, T-W., Qin, J-J., Chen, S-Y., Jin, D. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials, 31:9452-9461, 2010.
  • Wang, J., Sun, P., Bao, Y., Liu, J., An, L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicology in Vitro, 25:242-250, 2011.
  • Wang, J., Sun, P., Bao, Y., Dou, B., Song, D., Li, Y. Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicology in Vitro, 26:32–41, 2012.
  • Wang, J., Ouyang, Z., Ren, Z., Li, J., Zhang, P., Wei, G., Su, Z., Self-assembled peptide nanofibers on graphene oxide as a novel nanohybrid for biomimetic mineralization of hydroxyapatite. Carbon, 89:20-30, 2015.
  • Wang, E.A., Rosen, V., D'Alessandro, J.S., Bauduy, M., Cordes, P., Harada, T., Israel, D.I., Hewick, R.M., Kerns, K.M., Lapan, P., Luxenberg, D.P., Mcquaid, D., Moutsatsos, I.K., Nove, J., Wozney, J.M. Recombinant human bone morphogenetic protein induces bone formation. National Academy of Sciences of the United States of America, 87:2220-2224, 1990.
  • Vallabani, N.V., Mittal, S., Shukla, R.K., Pandey, A.K., Dhakate, S.R., Pasricha, R., Dhawan, A. Toxicity of graphene in normal human lung cells (BEAS-2B). Journal of Biomedical Nanotechnology, 7:106-107, 2011.
  • Turhani, D., Weissenbock, M., Watzinger, E., Yerit, K., Cvikl, B., Ewers, R., Thurnher, D. In vitro study of adherent mandibular osteoblast-like cells on carrier materials. International Journal of Oral and Maxillofacial Surgery, 34:543-550, 2005.
  • Tatavarty, R., Ding, H., Lu, G., Taylor, R.J., Bi, X. Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide-calcium phosphate nanocomposites, Chemical Communications, 50:8484-8487, 2015.
  • Talari, A.C.S., Movasaghi, Z., Rehman, S., ur Rehman, I. Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews, 50:46–111, 2015.
  • Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H. Nanographene oxide for cellular imaging and drug delivery. Nano Research, 1:203-212, 2008.
  • Sul, Y.T., Johansson, C., Wennerberg, A., Cho, L.R., Chang, B.S., Albrektsson, T. Optimum surface properties of oxidized implants for reinforcement of osseointegration: Surface chemistry, oxide thickness, porosity, roughness, and crystal structure. The International Journal of Oral & Maxillofacial Implants, 20:349–359, 2005.
  • Stein, G.S., Lian, J.B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrine Reviews, 14:424-442, 1993.
  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A, Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45:1558-1565, 2007.
  • Sohaebuddin, S.K., Thevenot, P.T., Baker, D., Eaton, J.W., Tang, L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology, 7, 2010.
  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S. Graphene based materials: past, present and future. Progress in Materials Science, 56:1178-1271, 2011.
  • Sim, Y., Park, J., Kim, Y.J., Seong, M-J., Hong, S. Synthesis of graphene layers using graphite dispersion in aqueous surfactant solutions. Journal of the Korean Physical Society, 58:938-942, 2011.
  • Silva, G.A. Nanomedicine: shorting neurons with nanotubes. Nature Nanotechnology, 4:82–83, 2009.
  • Shvedova, A., Castranova, V., Kisin, E., Schwegler-Berry, D., Murray, A., Gandelsman, V., Maynard, A., Baron, P. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxicology and Environmental Health Part A, 66:1909-1926, 2003.
  • Shin, Y.C., Lee, J.H., Kim, M.J., Hong, S.W., Kim, B., Hyun, J.K., Choi, Y.S., Park, J-C., Han, D-W. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. Journal of Biological Engineering, 9:22, 2015.
  • Shin, Y.C., Lee, J.H., Jin, O.S., Kang, S.H., Hong, S.W., Kim, B., Park, J-C., Han, D-W. Synergistic effects of reduced graphene oxide and hydroxyapatite on osteogenic differentiation of MC3T3-E1 preosteoblasts. Carbon, 95:1051-1060, 2015.
  • Shin, Y. C., Lee, J. H., Jin, L., Kim, M. J., Kim, Y-J., Hyun, J. K., Jung, T-G., Hong, S. W., Han, D-W. Stimulated myoblast differentiation on graphene oxide-impregnated PLGAcollagen hybrid fibre matrices. Journal of Nanobiotechnology, 13:21, 2015.
  • Sanguansak, Y., Srimuk, P., Krittayavathananon, A., Luanwuthi, S., Chinvipas, N., Chiochan, P., Khuntilo, J., Klunbud, P., Mungcharoen, T., Sawangphruk, M. Permselective properties of graphene oxide and reduced graphene oxide electrodes. Carbon, 68:662-669, 2014.
  • Sanchez, V.C., Jachak, A., Hurt, R.H., Kane, A.B. Biological interactions of graphenefamily nanomaterials: an interdisciplinary review. Chemical Research in Toxicology, 25:15-34, 2011.
  • Sahu, A., Choi, W.I., Tae, G.A stimuli-sensitive injectable graphene oxide composite hydrogel. Chemical Communications, 48:5801-5940, 2012.
  • Ryoo, S-R., Kim, Y-K., Kim, M-H. Min, D-H. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano, 4:6587–6598, 2010.
  • Rothan, H.A., Djordjevic, I., Bahrani. H., Paydar, M., Ibrahim, F., Rahmanh, N.A., Yusof, R. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. International Journal of Medical Sciences, 11:1029-1038, 2014.
  • Rocchietta, I., Fontana, F., Simion, M. Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review, Journal of Clinical Periodontology, 35:203-215, 2008.
  • Ripamonti, U., Reddi, A.H., Periodontal regeneration: potential role of bone morphogenetic proteins. Journal of Periodontal Research, 29:225-235, 1994.
  • Reddy, A.R.N., Reddy, Y.N., Krishna, D.R., Himabindu, V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology, 272:11–16, 2010.
  • Rashmi, W., Ismail, A.F., Sopyan, I., Jameel, A.T., Yusof, F., Khalid, M., Mubarak, N.M. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. Journal of Experimental Nanoscience, 6:567-579, 2011.
  • Rammelt, S., Heck, C., Bernhardt, R., Bierbaum, S., Scharnweber, D., Goebbels, J., Ziegler, J., Biewener, A. Zwipp, H. In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia. Journal of Orthopaedic Research, 25:1052–1061, 2007.
  • Raghoebar, G.M., Meijndert, L., Kalk, W.W.I., Vissink, A. Morbidity of mandibular bone harvesting: a comparative study. The International Journal of Oral and Maxillofacial Implants, 22:359-365, 2001.
  • Puleo, D.A., Nanci, A. Understanding and controlling the bone-implant interface. Biomaterials, 20:2311–2321, 1999.
  • Ponader, S., von Wilmowsky, C., Widenmayer, M., Lutz, R., Heinl, P., K rner, C., Singer, R.F., Nkenke, E., Neukam, F.W., Schlegel, K.A. In vivo performance of selective electron beam-melted Ti-6Al-4V structures. Journal of Biomedical Materials Research. Part A, 92:56–62, 2010.
  • Pohler, O.E. Unalloyed Ti for implants in bone surgery. Injury, 31:7–13, 2000.
  • Paul, W., Sharma, C.P. Blood compatibility and biomedical applications of graphene. Trends in Biomaterials and Artificial Organs, 25:91-94, 2011.
  • Patlolla, A., Patlolla, B., Tchounwou, P. Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Molecular and Cellular Biochemistry, 338:225-232, 2010.
  • Park, S.Y., Park,J., Sim, S.H., Sung, M.G., Kim, K.S., Hong, B.H., Hong, S. Enhanced differentiation of human neural stem cells into neurons on graphene. Advanced Materials, 23:263–267, 2011.
  • Park, S.Y., Park, J., Sim, S.H., Sung, M.G., Kim, K.S., Hong, B.H., Hong, S. Enhanced differentiation of human neural stem cells into neurons on graphene. Advanced Materials, 23:H263-H267, 2011.
  • Park, S., Ruoff, R.S. Chemical methods for the production of graphenes. Nature Nanotechnology, 4:217-224, 2009.
  • Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., Ruoff, R.S., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Letters, 9:1593-1597, 2009.
  • Park, K.O., Lee, J.H., Park, J.H., Shin, Y.C., Huh, J-B., Bae, J-H., Kang, S.H., Hong, S.W., Kim, B., Yang, D.J., Han, D-W. Yeum, J.H. Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis: Spectroscopic analysis and animal study. Applied Spectroscopy Reviews, 51:7-9, 540-551, 2016.
  • Park, K.M., Jun, I., Joung, Y.K., Shin, H., Park, K.D. In situ hydrogelation and RGD conjugation of tyramine-conjugated 4-arm PPO–PEO block copolymer for injectable biomimetic scaffolds. Soft Matter, 7: 986-992, 2011.
  • Park, J-C., Park, B.J., Suh, H., Park, B.Y., Rah, D.K. Comparative study on motility of the cultured fetal and neonatal dermal fibroblasts in extracellular matrix. Yonsei Medical Journal, 42:587-594, 2001.
  • Oberd rster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W., Cox, C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health Part A, 65:1531- 1543, 2002.
  • Nkenke, E., Weisbach, V., Winckler, E., Kessler, P., Schultze-Mosgau, S., Wiltfang, J., Neukam, F.W. Morbidity of harvesting of bone grafts from the iliaccrest for preprosthetic augmentation procedures: a prospective study. International Journal of Oral and Maxillofacial Surgery, 33:157-163, 2004.
  • Nayak, T.R., Andersen, H., Makam, V.S., Khaw, C., Bae, S., Xu, X., Ee, P.L.R., Ahn, J.H., Hong, B.H., Pastorin, G., Ӧzyilmaz, B. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano, 5:4670-4678, 2011.
  • Nayab, S.N., Jones, F.H., Olsen, I. Effects of calcium ion-implantation of Ti on bone cell function in vitro. Journal of Biomedical Materials Research Part A, 83:296-302, 2007.
  • Nair, M., Nancy, D., Krishnan, A.G., Anjusree, G.S., Vadukumpully, S., Nair, S.V. Graphene oxide nanoflakes incorporated gelatinehydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology, 26:161001, 2015.
  • Naebe, M., Wang, J., Amini, A., Khayyam, H., Hameed, N., Li, L.H., Chen, Y., Fox, B. Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Scientific Reports, 4: 4375, 2014.
  • Nadine, R.L., Kai, S., Sebastian, H., Astrid, M., Julian, S, Julia, S., Katerina, E.A., Ben, F. Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Acta Biomaterialia, 13:61-67, 2015.
  • Nabanita, S., Aamarjargal, S., Niladri, R., Takeshi, K., Petr, S. Polymeric biomaterial based hydrogels for biomedical applications. Journal of Biomaterials and Nanobiotechnology, 2:85-90, 2011.
  • N ez, J.D., Benito, A.M., Gonzalez, R., Aragon, J., Arenal, R., Maser, W.K. Integration and bioactivity of hydroxyapatite grown on carbon nanotubes and graphene oxide. Carbon, 79:590-604, 2014.
  • Murray, A.R., Kisin, E., Leonard, S.S., Young, S.H., Kommineni, C., Kagan, V.E., Castranova, V., Shvedova, A.A. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology, 257:161-171, 2009.
  • Movasaghi, Z., Rehman, S., ur Rehman, I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43:134–179, 2008.
  • Mohammadi, H., Hafezi, M., Nezafati, N., Heasarki, S., Nadernezhad, A., Ghazanfari, S.M.H., Sepantafar, M. Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: Bioactivity and biological properties. Journal of Ceramic Science and Technology, 5:1- 12, 2014.
  • Meng, J., Yang, M., Song, L., Kong, H., Wang, C.Y., Wang, R., Wang, C., Xie, S.S., Xu, H.Y. Concentration control of carbon nanotubes in aqueous solution and its influence on the growth behavior of fibroblasts. Colloids and Surfaces B: Biointerfaces, 71:148–153, 2009.
  • Mehrali, M., Mehrali, M., Moghaddam, E., Shirazi, S.F., Baradaran, S., Mehrali, M., Latibari, S.T., Metselaar, H.S., Kadri, N.A., Zandi, K., Osman, N.A. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Applied Materials & Interfaces 6:3947-3962, 2014.
  • Maxwell, D.P., Wang, Y., McIntosh, L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 96:8271–8276, 1999.
  • Lutz, R., Park, J., Felszeghy, E., Wiltfang, J., Nkenke, E., Schlegel, K.A. Bone regeneration after topical BMP-2-gene delivery in circumferential periimplant bone defects. Clinical Oral Implants Research, 19:590-599, 2008.
  • Liu, Z., Robinson, J.T., Sun, X., Dai, H. J. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. Journal of the American Chemical Society, 130:10876-10877, 2008.
  • Liu, Y., Huang, J., Li, H. Synthesis of hydroxyapatiteereduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. Journal of Materials Chemistry B, 1:1826-1834, 2013.
  • Liu, Y., Dang, Z., Wang, Y., Huang, J., Li, H. Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: inherited nanostructures and enhanced properties. Carbon, 67:250-259, 2014.
  • Liu, H., Cheng, J., Chen, F., Bai, D., Shao, C., Wang, J., Xi, P., Zeng, Z. Gelatin functionalized graphene oxide for mineralization of hydroxyapatite: biomimetic and in vitro evaluation. Nanoscale, 6:5315-5322, 2014.
  • Lim, B-K., Sun, F., Ryu, S-C., Koh, K., Han, D-W., Lee, J. Hydroxyapatite coating on damaged tooth surfaces by immersion. Biomedical Materials, 4:025017, 2009.
  • Liao, K-H., Lin, Y-S., Macosko, C.W., Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Applied Materials & Interfaces, 3:2607-2615, 2011.
  • Liao, K-H., Lin, Y-S., MacOsko, C.W., Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Applied Materials and Interfaces, 3:2607–2615, 2011.
  • Li, N., Zhang, X., Song, Q., Su, R., Zhang, Q., Kong, T., Liu, L., Jin, G., Tang, M., Cheng, G. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials, 32:9374–9382, 2011.
  • Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M., Cheng, G. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Scientific Reports, 3:1604, 2013.
  • Li, M., Wang, Y., Liu, Q., Li, Q., Cheng, Y., Zheng, Y., Xi, T., Wei, S. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. Journal of Materials Chemistry B, 1:475-484, 2013.
  • Li, M., Liu, Q., Jia, Z., Xu, X., Cheng, Y., Zheng, Y., Xi, T., Wei, S. Graphene oxide/ hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon, 67:185-197, 2014.
  • Lee, Y., Bae, J.W., Lee, J.W., Suh, W., Park, K.D. Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy. Journal of Materials Chemistry B, 2:7712-7718, 2014.
  • Lee, W.C., Lim, C.H.Y.X., Shi, H., Tang, L.A., Wang, Y., Lim, C.T., Loh, K.P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano, 5:7334-7341, 2011.
  • Lee, W.C., Lim, C.H., Kenry, Su, C., Loh, K.P., Lim, C.T. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small, 11:963-969, 2015.
  • Lee, T.J., Park, S., Bhang, S.H., Yoon, J-K., Jo, I., Jeong, G-J., Hong, B.H., Kim, B.S. Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications, 452:174-180, 2014.
  • Lee, S.K., Kim, H., Shim, B.S. Graphene: an emerging material for biological tissue engineering. Carbon Letters, 14:63-75, 2013.
  • Lee, J.H., Shin, Y.C., Lee, S-M., Jin, O.S., Kang, S.H., Hong, S.W., Jeong, C-M., Huh, J.B., Han, D-W. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Scientific Reports, 5, 2015.
  • Lee, J.H., Shin, Y.C., Jin, O.S., Lee, E.J., Han, D-W., Kang, S.H., Hong, S.W., Ahn, J.Y., Kim, S.H. Cytotoxicity evaluations of pristine graphene and carbon nanotubes in fibroblastic cells. Journal of the Korean Physical Society, 61:873–877, 2012.
  • Lee, J.H., Shin, Y.C., Jin, O.S., Kang, S.H., Hwang, Y-S., Park, J-C., Hong, S.W., Han, D-W. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale, 7:11642-11651, 2015.
  • Lee, J.H., Shin, Y.C., Jin, O.S. Han, D-W., Kang, S.H., Hong, S.W., Kim, J.M. Enhanced neurite outgrowth of PC-12 cells on graphene-monolayer-coated substrates as biomimetic cues. Journal of the Korean Physical Society, 61:1696–1699, 2012.
  • Lee, J., Kim, H.Y., Zhou, H., Hwang, S., Koh, K., Han, D-W., Lee, J. Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. Journal of Materials Chemistry, 21:13316-13326, 2011.
  • Lee, H.J., Park, J., Yoon, O.J., Kim, H.W., Lee, D.Y., Kim, D.H., Lee, W.B., Lee, N-E., Bonventre, J.V., Kim, S.S. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nature Nanotechnology, 6:121–125, 2011.
  • Lee Y,Y., Bae, J.W., Oh, D H., Park, K.M., Chun, Y.W., Sung, H-J., Park, K.D. In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. Journal of Materials Chemistry B, 1:2407-2414, 2013.
  • Lacerda, L., Bianco, A., Prato, M., Kostarelos, K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Advanced Drug Delivery Reviews, 58:1460-1470, 2006.
  • Kyll nen, L., Haimi, S., Mannerstr m, B., Huhtala, H., Rajala, K.M., Skottman, H., Sandor, G.K., Miettinen, S. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro. Stem Cell Research & Therapy, 4:1, 2013.
  • Kumar, S., Chatterjee, K. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold. Nanoscale, 7:2023-2033, 2015.
  • Ku, S.H., Park, C.B. Myoblast differentiation on graphene oxide. Biomaterials, 34:2017- 2023, 2013.
  • Ku, S.H., Lee, M., Park, C.B. Carbon-based nanomaterials for tissue engineering. Advanced Healthcare Materials, 2:244–260, 2013.
  • Kim, W.D., Park, J.M., Ahn, J.Y., Kim, S.H. Gas-phase growth of heterostructures of carbon nanotubes and bimetallic nanowires. Journal of Nanomaterials, 2011, 2011.
  • Kim, W.D., Ahn, J.Y., Lee, D.G., Lee, H.W., Hong, S.W., Park, H.S., Kim, S.H. Tailoring the carbon nanostructures grown on the surface of Ni–Al bimetallic nanoparticles in the gas phase. Journal of Colloid and Interface Science, 362:261-266, 2011.
  • Kim, S.H., Kim, W.D., Park, J.M., Ahn, J.Y. Gas-phase growth of heterostructures of carbon nanotubes and bimetallic nanowires. Journal of Nanomaterials, 2011:1-7, 2011.
  • Kim, R-H., Bae, M-H., Kim, D.G., Cheng, H., Kim, B.H., Kim, D-H., Li, M., Wu, J., Du, F., Kim, H-S., Kim, S., Estrada, D., Hong, S.W., Huang, Y., Pop, E., Rogers, J.A. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Letters, 11:3881-3886, 2011.
  • Kim, M.S., Son, J.G, Lee, H.J, Hwang, H., Choi, C.H. Kim, G.H. Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process. Current Applied Physics, 14:1-7, 2014.
  • Kim, J., Kim, Y-R., Kim, Y., Lim, K.T., Seonwoo, H., Park, S., Cho, S-P., Hong, B.H., Choung, P.H., Chung, T.D., Choung, Y.H., Chung, J.H. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 1:933-938, 2013.
  • Khan, U., Porwal, H., O’Neill, A., Nawaz, K., May, P., Coleman, J.N. Solvent-exfoliated graphene at extremely high concentration. Langmuir, 27:9077-9082, 2011.
  • Kamata, H., Li, X., Chung, U.I., Sakai, T. Design of hydrogels for biomedical applications. Advanced Healthcare Materials, 4:2360–2374, 2013.
  • Junker, R., Dimakis, A., Thoneick, M., Jansen, J.A. Effects of implant surface coatings and composition on bone integration: a systematic review. Clinical Oral Implants Research, 20:185–206, 2009.
  • Jung, R.E., Windisch, S.I., Eggenschwiler, A.M., Thoma, D.S., Weber, F.E., H mmerle, C.H.F. A randomized-controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dental implants placed in bone regenerated by means of GBR techniques with or without the addition of BMP-2. Clinical Oral Implants Research, 20:660-666, 2009.
  • Jung, H.S., Lee, T., Kwon, I.K., Kim, H.S., Hahn, S.K., Lee, C.S. Surface modification of multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications. ACS Applied Materials and Interfaces, 7:9598-9607, 2015.
  • Johnson, E.M., Deen, W.M. Hydraulic permeability of agarose gels. AIChE Journal, 42:1220-1224, 1996.
  • Jiang, W., Kim, B.Y.S., Rutka, J.T., Chan, W.C. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 3:145-150, 2008.
  • Jang, J-Y., Lee, S.W., Park, S.H., Shin, J.W., Mun, C.W., Kim, S-H., Kim, D.H., Shin, JW. Combined effects of surface morphology and mechanical straining magnitudes on the differentiation ofmesenchymal stemcellswithout using biochemical reagents. Journal of Biomedicine and Biotechnology, 2011:1-9, 2011.
  • Jan, E., Kotov, N.A. Successful differentiation of mouse neural stem cells on layer-bylayer assembled single-walled carbon nanotube composite. Nano Letters, 7:1123–1128, 2007.
  • Hwang, C.M., Sant, S., Masaeli, M., Kachouie, N.N., Zamanian, B., Lee, S-H., Khademhosseini, K. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication, 2:035003, 2010.
  • Hummers, W.S. Offeman, R.E. Preparation of graphitic oxide. Journal of the American Chemical Society, 80:1339, 1958.
  • Huh, J-B., Lee, J-Y., Jeon, Y-C., Shin, S-W., Ahn, J-S. Ryu, J-J. Physical stability of arginine–glycine–asparticacid–peptidecoated anodized implants after installation. Journal of Advanced Prosthodontics, 5:84–91, 2013.
  • Huang, X., Zeng, Z., Fan, Z., Liu, J., Zhang, H. Graphene-based electrodes. Advanced Materials, 24:5979-6004, 2012.
  • Hu, W., Peng, C., Lv, M., Li, X., Zhang, Y., Chen, N., Fan, C., Huang, Q. Protein coronamediated mitigation of cytotoxicity of graphene oxide. ACS Nano, 5:3693-3700, 2011.
  • Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., Fan, C. Graphene-based antibacterial paper. ACS Nano, 4:4317–4323, 2010.
  • Hong, S.W., Du, F., Lan, W., Kim, S., Kim, H-S., Rogers, J.A. Monolithic integration of arrays of single-walled carbon nanotubes and sheets of graphene. Advanced Materials, 23:3821-3826, 2011.
  • Hong, S.C., Lee, J.H., Lee, J., Kim, H.Y., Park, J.Y., Cho, J., Lee, J., Han, D-W. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. International Journal of Nanomedicine, 6:3219-3231, 2011.
  • Hoffman, A.S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64:18-23, 2012.
  • Heo, Y.Y., Um, S., Kim, S.K., Park, J.M., Seo, B.M. Responses of periodontal ligament stem cells on various Ti surfaces. Oral Diseases, 17:320-327, 2011.
  • He, H., Pham-Huy, L.A., Dramou, P., Xiao, D., Zuo, P., Pham-Huy, C. Carbon nanotubes: applications in pharmacy and medicine. Biomedical Research International, 2013:1-12, 2013.
  • Hall, J., Sorensen, R.G., Wozney, J.M. Wikesj , U.M. Bone formation at rhBMP-2- coated titanium implants in a rat ectopic model. Journal of Clinical Periodontology, 34:444– 451, 2007.
  • Gudina, E.J., Teixeira, J.A., Rodrigues, L.R. Biosurfactant-producing lactobacilli: Screening, production profiles, and effect of medium composition. Applied and Environmental Soil Science, 2011:201254, 2011.
  • Galea, L.G., Bohner, M., Lema tre, J., Kohler, T., M ller, R. Bone substitute: transforming beta-tricalcium phosphate porous scaffolds into monetite. Biomaterials, 29:3400-3407, 2008.
  • Fisher, C., Rider, A. E., Han, Z. J., Kumar, S., Levchenko, I., Ostrikov, K. Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. Journal of Nanomaterials, 2012, 2012.
  • Filho, P.F.F., Freire, P.T.C., Lima, K C.V., Mendes Filho, J., Melo, F.E.A. High temperature Raman spectra of L-leucine crystals. Brazilian Journal of Physics, 38:131-137, 2008.
  • Ferrari, A.C., Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Rreview B, 61:14095, 2000.
  • Feng, L., Wu, L., Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Advanced Materials, 25:168-186, 2013.
  • Fan, Z., Wang, J., Wang, Z., Ran, H., Li, Y., Niu, L., Gong, P., Liu, B., Yang, S. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon, 66:407-416, 2014.
  • Esposito, M., Grusovin, M.G., Kwan, S., Worthington, H.V., Coulthard, P. Interventions for replacing missing teeth: Bone augmentation techniques for dental implant treatment. Australian Dental Journal, 54:70-71, 2009.
  • Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell 126, 677-689 (2006).
  • Elisseeff, J., Anseth, K.S., Sims, D., McIntosh, W., Randolph, M., Yaremchuk, M. Transdermal photopolymerization of poly (ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plastic and Reconstructive Surgery, 104:1014-1022, 1999.
  • Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D. Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature, 448:457-460, 2007.
  • Das, T.K., Prusty, S. Graphene-based polymer composites and their applications. Polymer- Plastics Technology and Engineering, 52:319-331, 2013.
  • Das, S., Singh, S., Singh, V., Joung, D., Dowding, J.M., Reid, D., Anderson, J., Zhai, L., Khondaker, S.I., Self, W.T., Seal, S. Oxygenated functional group density on graphene oxide: Its effect on cell toxicity. Particle and Particle Systems Characterization, 30:148-157, 2013.
  • Dalby, M.J., McCloy, D., Robertson, M., Agheli, H., Sutherland, D., Affrossman, S., Oreffo, R.O.C. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials, 27:2980-2987, 2006.
  • Dalby, M.J., Gadegaard, N., Tare, R., Andar, A., Riehle, M.O., Herzyk, P., Wilkinson, C.D.W., Oreffo, R.O.C. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6:997-1003, 2007.
  • Cushing, M.C., Anseth, K.S. Material science: hydrogel cell cultures. Science, 316:1133- 1134, 2007.
  • Cui, W., Li, M., Liu, J., Wang, B., Zhang, C., Jiang, L., Cheng, Q. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano, 8:9511-9517, 2014.
  • Cox, S.C., Thornby, J.A., Gibbons, G.J., Williams, M.A., Mallick, K.K. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Materials Science and Engineering: C, 47: 237-247, 2015.
  • Cordaro, L., Bosshardt, D.D., Palattella, P., Rao, W., Serino, G., Chiapasco, M. Maxillary sinus grafting with Bio-Oss or Straumann bone ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clinical Oral Implants Research, 19:796-803, 2008.
  • Compton, O.C., Jain, B., Dikin, D.A., Abouimrane, A., Amine, K., Nguyen, S.T. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano, 5:4380-4391, 2011.
  • Ciara, M.M., Matthew, G.H., Fergal, J.O.B. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31:461-466, 2010.
  • Cheng, L., Yang, K., Shao, M., Lu, X., Liu, Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine, 6:1327-1340, 2011.
  • Cheng, J., Liu, H., Zhao, B., Shen, R., Liu, D., Hong, J., Wei, H., Xi, P., Chen, F., Bai, D. MC3T3-E1 preosteoblast cell-mediated mineralization of hydroxyapatite by polydopamine functionalized graphene oxide. Journal of Bioactive and Compatible Polymers, 30:289-301, 2015.
  • Chatterjee, K., Lin-Gibson, S., Wallace, W.E., Parekh, S.H., Lee, Y. J., Cicerone, M. T., Young, M. F., Simon Jr., C. G. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials, 31:5051- 5062, 2010.
  • Chang, Y., Yang, S-T., Liu, J-H., Dong, E., Wang, Y., Cao, A., Liu, Y., Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology Letters, 200:201-210, 2011.
  • Cellot, G., Cilia,., Cipollone S., Rancic, V., Sucapane A., Giordani, S., Gambazzi, L., Markram, H., Grandolfo, M., Scaini, D., Gelain, F., Casalis, L., Prato, M., Giugliano, M., Ballerini, L. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nature Nanotechnology, 4:126–133, 2009.
  • Bussy, C., Ali-Boucetta, H., Kostarelos, K. Safety considerations for graphene: lessons learnt from carbon nanotubes. Accounts of Chemical Research, 46:692–701, 2013.
  • Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J., Cochran, D.L., Hoffmann, B., Lussi, A., Steinemann, S.G. Enhanced bone apposition to a chemically modified SLA Ti surface. Journal of Dental Research, 83, 529–533, 2004.
  • Bryant, S.J. Anseth, K.S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly (ethylene glycol) hydrogels. Journal of Biomedical Materials Research, 59:63-72, 2002.
  • Boyne, P.J., Lilly, L.C., Marx, R.E., Moy, P.K., Nevins, M., Spagnoli, D.B., Triplett, R.G., De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP- 2) in maxillary sinus floor augmentation. International Journal of Oral and Maxillofacial Surgery, 63:1693-1707, 2005.
  • Bogdan, C., Paul, O.S., Mircea, T. The states of water in hydrogels synthesized from diepoxy-terminated poly (ethylene glycol)s and aliphatic polyamines. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 72:99-114, 2010.
  • Blokhuis, T.J., Arts, C.J.J. Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths. Injury, 42:S26-S29, 2011.
  • Birmingham, E., Niebur, G.L., McHugh, P.E., Shaw, G., Barry, F.P., McNamara, L.M. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European Cells & Materials, 23:13-27, 2012.
  • Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 43:744-764, 2014.
  • Bharath, G., Madhu, R., Chen, S.M., Veeramani, V., Balamurugan, A., Mangalaraj, D., Viswanathan, C., Ponpandian, N. Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide. Journal of Materials Chemistry B, 3:1360-1370, 2015.
  • Belyanskaya, L., Weigel, S., Hirsch, C., Tobler, U., Krug, H.F., Wick, P. Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology, 30:702–711, 2009.
  • Belyanskaya, L., Manser, P., Spohn, P., Bruinink, A., Wick, P. The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction. Carbon, 45:2643–2648, 2007.
  • Bashoor-Zadeh, M., Baroud, G., Bohner, M. Simulation of the in vivo resorption rate of β- tricalcium phosphate bone graft substitutes implanted in a sheep model. Biomaterials, 32:6362-6373, 2011.
  • Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Nakhaei Moghaddam, M.R., Alias, Y., Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon, 69:32-45, 2014.
  • Atabaev, T.S., Jin, O.S., Lee, J.H., Han, D-W., Vu, H.H.T., Hwang, Y-H., Kim, H-K. Facile synthesis of bifunctional silica-coated core-shell Y2O3:Eu3+, Co2+ composite particles for biomedical applications. RSC Advances, 2:9495–9501, 2012.
  • Amerio, P., Vianale, G., Reale, M., Muraro, R., Tulli, A., Piattelli, A. The effect of deproteinized bovine bone on osteoblast growth factors and proinflammatory cytokine production. Clinical Oral Implants Research, 21:650-655, 2010.
  • Amack, J.D., Mahadevan, M.S. The myotonic dystrophy expanded CUG repeat tract is necessary but not sufficient to disrupt C2C12 myoblast differentiation. Human Molecular Genetics, 10:1879-1887, 2001.
  • Akhavan, O., Ghaderi, E., Shahsavar, M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon, 59:200-211, 2013.
  • Aillon, K.L., Xie, Y.M., El-Gendy, N., Berkland, C.J., Forrest, M.L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews, 61:457-466, 2009.
  • Agarwal, S., Zhou, X., Ye, F., He, Q., Chen, G.C.K., Soo, J., Boey, F., Zhang, H., Chen, P. Interfacing live cells with nanocarbon substrates. Langmuir, 26:2244–2247, 2010.