박사

Co-Gasification of Solid Refuse Fuel and Coal with Efficient Tar Removal : 고형연료와 석탄혼합가스화에서 효과적인 타르제거

Lee, JangSoo 2016년
논문상세정보
' Co-Gasification of Solid Refuse Fuel and Coal with Efficient Tar Removal : 고형연료와 석탄혼합가스화에서 효과적인 타르제거' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 위생과 도시 공학
  • Co-Gasification
  • Coal
  • Lime
  • SRF(Solid Refuse Fuel)
  • Tar
  • activated carbon
  • gasification
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,098 0

0.0%

' Co-Gasification of Solid Refuse Fuel and Coal with Efficient Tar Removal : 고형연료와 석탄혼합가스화에서 효과적인 타르제거' 의 참고문헌

  • [6-9] Marsh, H., & Reinoso, F. R. (2006). Activated carbon. Elsevier.
  • [6-8] Garcı́a, X. A., Alarcon, N. A., & Gordon, A. L. (1999). Steam gasification of tars using a CaO catalyst. Fuel processing technology, 58(2), 83-102.
  • [6-7] Ald n, H., Espen s, B. G., & Rensfelt, E. (1988). Conversion of tar in pyrolysis gas from wood using a fixed dolomite bed. In Research in thermochemical biomass conversion (pp. 987-1001). Springer Netherlands.
  • [6-6] Corella, J., Toledo, J. M., & Padilla, R. (2004). Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: which is better?. Energy & Fuels, 18(3), 713-720.
  • [6-5] Abu El-Rub, Z., Bramer, E. A., & Brem, G. (2004). Review of catalysts for tar elimination in biomass gasification processes. Industrial & engineering chemistry research, 43(22), 6911-6919.
  • [6-4] Myren, C., H rnell, C., Bj rnbom, E., & Sj str m, K. (2002). Catalytic tar decomposition of biomass pyrolysis gas with a combination of dolomite and silica. Biomass and Bioenergy, 23(3), 217-227.
  • [6-3] Gil, J., Caballero, M. A., Mart n, J. A., Aznar, M. P., & Corella, J. (1999). Biomass gasification with air in a fluidized bed: effect of the in-bed use of dolomite under different operation conditions. Industrial & Engineering Chemistry Research, 38(11), 4226-4235.
  • [6-2] Simell, P. A., Hirvensalo, E. K., Smolander, V. T., & Krause, A. O. I. (1999). Steam reforming of gasification gas tar over dolomite with benzene as a model compound. Industrial & Engineering Chemistry Research, 38(4), 1250-1257.
  • [6-20] Kabe, T., Godo, M., Ishihara, A., Qian, W., Otsuki, S., & Mukai, K. (1998). Estimation of the behaviour of hydrogen in naphthalene in pyrolysis of coal tar using tritium tracer methods. Fuel, 77(8), 815-820.
  • [6-1] Gaiwad, R., Boward, W., & Depriest, W. Dry Flue Gas Desulfurization Technology Evaluation.
  • [6-19] Bruinsma, O. S. L., & Moulijn, J. A. (1988). The pyrolytic formation of polycyclic aromatic hydrocarbons from benzene, toluene, ethylbenze, e, styrene, phenylacetylene and n-decane in relation to fossil fuels utilization. Fuel processing technology, 18(3), 213-236.
  • [6-18] Bredael, P., Vinh, T. H., & Braekman-Danheux, C. (1983). Pyrolysis of naphthalenic derivatives: 3. Pyrolysis of naphthols, hydronaphthols and perhydronaphthols. Fuel, 62(10), 1193-1198.
  • [6-17] Kaupp, A. (2013). Gasification of rice hulls: theory and praxis. Springer-Verlag.
  • [6-16] Boroson, M. L., Howard, J. B., Longwell, J. P., & Peters, W. A. (1989). Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars. AIChE Journal, 35(1), 120-128.
  • [6-15] Jess, A. (1996). Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels. Fuel, 75(12), 1441-1448.
  • [6-14] Cypres, R., & Bettens, B. (1986). Study of the cracking mechanism of phenanthrene and perhydrophenanthrene, labelled in specific positions by 14 C and 3 H. Fuel, 65(4), 507-514.
  • [6-13] Cypres, R., & Bettens, B. (1974). Mecanismes de fragmentation pyrolytique du phenol et des cresols. Tetrahedron, 30(10), 1253-1260.
  • [6-12] Cypr s, R., & Lejeune, C. Craque thermique de m-cr sol, du b nzene, du tolu ne et du ph nol entre 650 et 850 C. Ann. Mines Belgique, 7, 8.
  • [6-11] Neeft, J. P. A. (2005). Rationale for setup of impinger train as used in the Technical Specification of Sampling and Analysis of Tar and Particles in the Product Gases of Biomass Gasification. Senter-Novem, CEN BT/TF, 143.
  • [6-10] Sircar, S., Golden, T. C., & Rao, M. B. (1996). Activated carbon for gas separation and storage. Carbon, 34(1), 1-12.
  • [5-8] Pohořel , M., Voseck , M., Hejdova, P., Punčoch ř, M., Skoblja, S., Staf, M., ... & Svoboda, K. (2006). Gasification of coal and PET in fluidized bed reactor. Fuel, 85(17), 2458-2468.
  • [5-7] Irfan, M. F., Arami-Niya, A., Chakrabarti, M. H., Daud, W. M. A. W., & Usman, M. R. (2012). Kinetics of gasification of coal, biomass and their blends in air (N 2/O 2) and different oxy-fuel (O 2/CO 2) atmospheres. Energy, 37(1), 665-672.
  • [5-6] Kumabe, K., Hanaoka, T., Fujimoto, S., Minowa, T., & Sakanishi, K. (2007). Co-gasification of woody biomass and coal with air and steam. Fuel, 86(5), 684-689.
  • [5-5] Pinto, F., Franco, C., Andre, R. N., Tavares, C., Dias, M., Gulyurtlu, I., & Cabrita, I. (2003). Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel, 82(15), 1967-1976.
  • [5-4] Hern ndez, J. J., Aranda-Almansa, G., & Serrano, C. (2010). Co-gasification of biomass wastes and coal− coke blends in an entrained flow gasifier: an experimental study. Energy and Fuels, 24(4), 2479.
  • [5-3] Seo, M. W., Goo, J. H., Kim, S. D., Lee, S. H., & Choi, Y. C. (2010). Gasification characteristics of coal/biomass blend in a dual circulating fluidized bed reactor. Energy & Fuels, 24(5), 3108-3118.
  • [5-2] Pan, Y. G., Velo, E., Roca, X., Manya, J. J., & Puigjaner, L. (2000). Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production. Fuel, 79(11), 1317-1326.
  • [5-1] Sj str m, K., Chen, G., Yu, Q., Brage, C., & Ros n, C. (1999). Promoted reactivity of char in co-gasification of biomass and coal: synergies in the thermochemical process. Fuel, 78(10), 1189-1194.
  • [4-9] Kumar, A., Eskridge, K., Jones, D. D., & Hanna, M. A. (2009). Steam–air fluidized bed gasification of distillers grains: effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresource Technology, 100(6), 2062-2068.
  • [4-8] Cho, S. J., Jung, H. Y., Seo, Y. C., & Kim, W. H. (2010). Studies on gasification and melting characteristics of automobile shredder residue. Environmental Engineering Science, 27(7), 577-586.
  • [4-7] Kumar, A., Eskridge, K., Jones, D. D., & Hanna, M. A. (2008). Steam-air fluidized-bed gasification of distillers grains. In 2008 Providence, Rhode Island, June 29–July 2, 2008 (p. 1). American Society of Agricultural and Biological Engineers.
  • [4-6] Rezaiyan, J., & Cheremisinoff, N. P. (2005). Gasification technologies: a primer for engineers and scientists. CRC press.
  • [4-5] Kiel, J. H. A., Van Paasen, S. V. B., Neeft, J. P. A., Devi, L., Ptasinski, K. J., Janssen, F. J. J. G., ... & Padban, N. (2004). Primary measures to reduce tar formation in fluidised-bed biomass gasifiers. ECN, ECN-C-04-014.
  • [4-4] Guo, X., Xiao, B., Liu, S., Hu, Z., Luo, S., & He, M. (2009). An experimental study on air gasification of biomass micron fuel (BMF) in a cyclone gasifier. international journal of hydrogen energy, 34(3), 1265-1269.
  • [4-3] He, M., Xiao, B., Liu, S., Guo, X., Luo, S., Xu, Z., ... & Hu, Z. (2009). Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): influence of steam to MSW ratios and weight hourly space velocity on gas production and composition. International Journal of hydrogen energy, 34(5), 2174-2183.
  • [4-2] He, M., Xiao, B., Hu, Z., Liu, S., Guo, X., & Luo, S. (2009). Syngas production from catalytic gasification of waste polyethylene: influence of temperature on gas yield and composition. International journal of hydrogen energy, 34(3), 1342-1348.
  • [4-1] He, M., Hu, Z., Xiao, B., Li, J., Guo, X., Luo, S., ... & Liu, S. (2009). Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. International Journal of Hydrogen Energy, 34(1), 195-203.
  • [4-16] Nacken, M., Ma, L., Engelen, K., Heidenreich, S., & Baron, G. V. (2007). Development of a tar reforming catalyst for integration in a ceramic filter element and use in hot gas cleaning. Industrial & Engineering Chemistry Research, 46(7), 1945-1951.
  • [4-15] Symonds, R. T., Lu, D. Y., Hughes, R. W., Anthony, E. J., & Macchi, A. (2009). CO2 capture from simulated syngas via cyclic carbonation/calcination for a naturally occurring limestone: pilot-plant testing. Industrial & Engineering Chemistry Research, 48(18), 8431-8440.
  • [4-14] Brebbia, C. A., Passerini, G., & Itoh, H. (2014). Waste Management and the Environment VII (Vol. 180). WIT Press.
  • [4-13] Chen, G., Andries, J., Luo, Z., & Spliethoff, H. (2003). Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects. Energy conversion and management, 44(11), 1875-1884.
  • [4-12] Smoot, L. D., & Smith, P. J. (2013). Coal combustion and gasification. Springer Science & Business Media.
  • [4-11] Siefert, N. S., Shekhawat, D., Litster, S., & Berry, D. A. (2013). Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture. Energy & Fuels, 27(8), 4278-4289.
  • [4-10] Cash, J. T., & Rudolph, J. C. (2015). U.S. Patent No. 8,945,423. Washington, DC: U.S. Patent and Trademark Office.
  • [3-4] Rezaiyan, J., & Cheremisinoff, N. P. (2005). Gasification technologies: a primer for engineers and scientists. CRC press.
  • [3-3] Gullett, B. K., Raghunathan, K., & Dunn, J. E. (1998). The effect of cofiring high-sulfur coal with municipal waste on formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran. Environmental engineering science, 15(1), 59-70.
  • [3-2] Grammelis, P., Basinas, P., Malliopoulou, A., & Sakellaropoulos, G. (2009). Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel, 88(1), 195-205.
  • [3-1] Nagano, S., Tamon, H., Adzumi, T., Nakagawa, K., & Suzuki, T. (2000). Activated carbon from municipal waste. Carbon, 38(6), 915-920.
  • [2-9] Van Paasen, S. V. B., Kiel, J. H. A., & Veringa, H. J. (2004). Tar formation in a fluidised bed gasifier. Impact of fuel properties and operating conditions.
  • [2-8] Milne, T. A., Abatzoglou, N., & Evans, R. J. (1998). Biomass gasifier" tars": Their nature, formation, and conversion (Vol. 570). Golden, CO: National Renewable Energy Laboratory.
  • [2-7] Evans, R. J., & Milne, T. A. (1997). Chemistry of tar formation and maturation in the thermochemical conversion of biomass. In Developments in thermochemical biomass conversion (pp. 803-816). Springer Netherlands.
  • [2-6] Jordan, C. A., & Akay, G. (2012). Occurrence, composition and dew point of tars produced during gasification of fuel cane bagasse in a downdraft gasifier. Biomass and bioenergy, 42, 51-58.
  • [2-5] Wang, L., Weller, C. L., Jones, D. D., & Hanna, M. A. (2008). Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy, 32(7), 573-581.
  • [2-4] Jordan, C. A., & Akay, G. (2013). Effect of CaO on tar production and dew point depression during gasification of fuel cane bagasse in a novel downdraft gasifier. Fuel processing technology, 106, 654-660.
  • [2-3] Higman, C., & Van der Burgt, M. (2008). Gasification processes. Gasification,, 91-191.
  • [2-2] Basu, P. (2006). Combustion and gasification in fluidized beds. CRC press.
  • [2-23] Lammers, G., Beenackers, A. A. C. M., & Corella, J. (1997). Catalytic tar removal from biomass producer gas with secondary air. In Developments in thermochemical biomass conversion (pp. 1179-1193). Springer Netherlands.
  • [2-22] Stevens, D. J. (2001). Hot gas conditioning: recent progress with larger-scale biomass gasification systems. NREL Subcontractor Report (NREL/SR-510-29952).
  • [2-21] Aznar, M. P., Corella, J., Gil, J., Martin, J. A., Caballero, M. A., Olivares, A., ... & Franc s, E. (1997). Biomass gasification with steam and oxygen mixtures at pilot scale and with catalytic gas upgrading. Part I: Performance of the gasifier. In Developments in thermochemical biomass conversion (pp. 1194-1208). Springer Netherlands.
  • [2-20] Garcia, L., Salvador, M. L., Arauzo, J., & Bilbao, R. (1999). Catalytic steam gasification of pine sawdust. Effect of catalyst weight/biomass flow rate and steam/biomass ratios on gas production and composition. Energy & Fuels, 13(4), 851-859.
  • [2-1] Rezaiyan, J., & Cheremisinoff, N. P. (2005). Gasification technologies: a primer for engineers and scientists. CRC press.
  • [2-19] Herguido, J., Corella, J., & Gonzalez-Saiz, J. (1992). Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock. Industrial & engineering chemistry research, 31(5), 1274-1282.
  • [2-18] Kinoshita, C. M., Wang, Y., & Zhou, J. (1994). Tar formation under different biomass gasification conditions. Journal of Analytical and Applied Pyrolysis, 29(2), 169-181.
  • [2-17] Gil, J., Corella, J., Aznar, M. P., & Caballero, M. A. (1999). Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution. Biomass and Bioenergy, 17(5), 389-403.
  • [2-16] Knight, R. A. (2000). Experience with raw gas analysis from pressurized gasification of biomass. Biomass and Bioenergy, 18(1), 67-77.
  • [2-15] Devi, L., Ptasinski, K. J., & Janssen, F. J. (2003). A review of the primary measures for tar elimination in biomass gasification processes. Biomass and bioenergy, 24(2), 125-140.
  • [2-14] Dayton, D. (2002). A review of the literature on catalytic biomass tar destruction. US DOE NREL Report Golden, CO, 510-32815.
  • [2-13] Sutton, D., Moisan, J. F., & Ross, J. R. H. (2001). Kinetic study of CO2 reforming of propane over Ru/Al2O3. Catalysis letters, 75(3-4), 175-181.
  • [2-12] Delgado, J., Aznar, M. P., & Corella, J. (1996). Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: life and usefulness. Industrial & Engineering Chemistry Research, 35(10), 3637-3643.
  • [2-11] Abu El-Rub, Z., Bramer, E. A., & Brem, G. (2004). Review of catalysts for tar elimination in biomass gasification processes. Industrial & engineering chemistry research, 43(22), 6911-6919.
  • [2-10] Rabou, L. P., Zwart, R. W., Vreugdenhil, B. J., & Bos, L. (2009). Tar in biomass producer gas, the Energy research Centre of the Netherlands (ECN) experience: an enduring challenge. Energy & Fuels, 23(12), 6189-6198.
  • [1-9] Larson, E. D., & Marrison, C. I. (1997). Economic scales for first-generation biomass-gasifier/gas turbine combined cycles fueled from energy plantations. Journal of Engineering for Gas Turbines and Power, 119(2), 285-290.
  • [1-8] Williams, R. H., & Larson, E. D. (1996). Biomass gasifier gas turbine power generating technology. Biomass and Bioenergy, 10(2), 149-166.
  • [1-7] de Souza-Santos, M. (1999). A feasibility study of an alternative power generation system based on biomass gasification/gas turbine concept. Fuel, 78(5), 529-538.
  • [1-6] Minchener, A. J. (2005). Coal gasification for advanced power generation. Fuel, 84(17), 2222-2235.
  • [1-5] Liu, H., Ni, W., Li, Z., & Ma, L. (2008). Strategic thinking on IGCC development in China. Energy policy, 36(1), 1-11.
  • [1-4] McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource technology, 83(1), 37-46.
  • [1-3] Birol, F. (2008). World energy outlook. Paris: International Energy Agency.
  • [1-2] Tissot, B. P., & Welte, D. H. (2013). Petroleum formation and occurrence. Springer Science & Business Media.
  • [1-1] Clark, G., & Jacks, D. (2007). Coal and the industrial revolution, 1700–1869. European Review of Economic History, 11(01), 39-72.
  • [1-19] Statics Korea, “The Status of Korea Waste Treatment”, Statics Korea (2013)
  • [1-18] Kim, Y. J. (2012). Volume-based waste fee system in Korea. Knowledge Sharing Program: KSP Modularization.
  • [1-17] Flake, L. G. (Ed.). (2008). Understanding New Political Realities in Seoul: Working Toward a Common Approach to Strengthen US-Korean Relations. Maureen and Mike Mansfield Foundation.
  • [1-16] Kim, J., Park, J., Kim, H., & Heo, E. (2012). Assessment of Korean customers’ willingness to pay with RPS. Renewable and sustainable energy reviews, 16(1), 695-703.
  • [1-15] The Korea Ministry of Environment, “Conservation of resources and Recycling Promotion Act”, The Korea Ministry of Environment
  • [1-14] Lee, J. W., Yoo, Y. D., & Yun, Y. S. (2011). Research and Development & Commercial Deployment Status for Coal Gasification Technology-Mainly from GTC 2010. Journal of Energy Engineering, 20(2), 123-142.
  • [1-13] Gassner, M., & Mar chal, F. (2009). Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass. Biomass and bioenergy, 33(11), 1587-1604.
  • [1-12] Syred, C., Fick, W., Griffiths, A. J., & Syred, N. (2004). Cyclone gasifier and cyclone combustor for the use of biomass derived gas in the operation of a small gas turbine in cogeneration plants. Fuel, 83(17), 2381-2392.
  • [1-11] Lobachyov, K., & Richter, H. J. (1996). Combined cycle gas turbine power plant with coal gasification and solid oxide fuel cell. Journal of Energy Resources Technology, 118(4), 285-292.
  • [1-10] G kalp, I., & Lebas, E. (2004). Alternative fuels for industrial gas turbines (AFTUR). Applied Thermal Engineering, 24(11), 1655-1663.