박사

Fabrication and Characterization of 3D Printed Scaffold based on PLA/TCP for Bone Tissue Engineering : 3차원 프린팅 기술을 이용한 다공성 폴리락타이드/β-삼인산칼슘 인공지지체의 제작 및 조직공학적 골형성에 관한 연구

논문상세정보
' Fabrication and Characterization of 3D Printed Scaffold based on PLA/TCP for Bone Tissue Engineering : 3차원 프린팅 기술을 이용한 다공성 폴리락타이드/β-삼인산칼슘 인공지지체의 제작 및 조직공학적 골형성에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 의료과학 약
  • 3차원 적층 시스템
  • osteogenic
  • poly (lactic acid)
  • three-dimensional printing
  • tissue engineering
  • β-tricalciumphosphate
  • 삼인삼칼슘
  • 인공 지지체
  • 조직공학
  • 폴리락티산
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
423 0

0.0%

' Fabrication and Characterization of 3D Printed Scaffold based on PLA/TCP for Bone Tissue Engineering : 3차원 프린팅 기술을 이용한 다공성 폴리락타이드/β-삼인산칼슘 인공지지체의 제작 및 조직공학적 골형성에 관한 연구' 의 참고문헌

  • Zhang, Faming, Chang, Jiang, Lu, Jianxi, Lin, Kaili, and Ning, Congqin. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Acta Biomaterialia 3(6), 896-904. 2007.
  • Yasunaga T, Matsusue Y, Furukawa T, Shikinami Y, Okuno M, Nakamura T. Bonding behavior of ultrahigh strength unsintered hydroxyapatite particles/poly(l-lactide) composites to surface of tibial cortex in rabbits. J Biomed Mater Res 1999;47:412–419.
  • Xiaodu Wang and Qingwen Ni. Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. Journal of Orthopaedic Research 21(2), 312-319. 2003.
  • Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Controlled Release 1996;40:77–87.
  • William R. Moore, Stephen E. Graves, and Gregory I. Bain. Synthetic bone graft substitutes. ANZ Journal of Surgery 71(6), 354-361. 2001. Blackwell Publishing Ltd.
  • Verheyen CCPM, Wijn de JR, Blitterswijk van CA, Groot de K, Rozing PM. Evaluation of hydroxyapatite/poly(l-lactide) composites: An animal study on push-out strength and interface histology. J Biomed Mater Res 1993;27:433– 444.
  • Van der Elst M, Klein CPAT, De Blieck-Hogervorst JM, Patka P, Haarman HJTM. Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: A long term in vivo study in the sheep femora. Biomaterials 1999;20:121–128.
  • Vacanti, Joseph P and Langer, Robert. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet 354(Supplement 1), S32-S34. 99.
  • Todo, Mitsugu, Park, Sang Dae, Arakawa, Kazuo, and Takenoshita, Yasuharu.Relationship between microstructure and fracture behavior of bioabsorbable HA/PLLA composites: The 11th US-Japan Conference on Composite Materials. Composites Part A: Applied Science and Manufacturing 37(12), 2221-2225. 2006.
  • Takizawa T, Akizuki S, Horiuchi H, Yasukawa Y. Foreign body gonitis caused by a broken poly-l-lactic acid screw. Arthroscopy 1998;14:329,330.
  • T. Duckworth (1995) Orthopaedics and Fractures, Blackwell Science Ltd, UK
  • Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, Caplan AI. Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 2000;18:773–780.
  • Schakenraad JM, Hardonk MJ, Feijen J, Molenaar I, Nieuwenhuis P. Enzymatic activity towards poly(l-lactic acid) implants. J Biomed Mater Res 1990;24:529 – 545.
  • Sarazin, Pierre, Roy, Xavier, and Favis, Basil D. Controlled preparation and properties of porous poly(-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials 25(28), 5965-5978. 2004.
  • Rizzi SC, Heath DJ, Coombes AG, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 2001;55:475– 486.
  • Riminucci, M. and Bianco, P. (2003) Building bone tissue: matrices and scaffolds in physiology and biotechnology. Braz J Med Biol Res 36, 1027-36.
  • Rezwan, K., Chen, Q. Z., Blaker, J. J., and Boccaccini, Aldo Roberto. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413-3431. 2006.
  • Peltoniemi HH, Hallikainen D, Toivonen T, Helevirta P, Waris T. SR-PLLA and SR-PGA miniscrews: Biodegradation and tissue reactions in the calvarium and duramater. J Craniomaxillofac Surg 1999;27:42–50.
  • Pamela Habibovic and Klaas de Groot. Osteoinductive biomaterials-properties and relevance in bone repair. Journal of Tissue Engineering and RegenerativeMedicine 1(1), 25-32. 2007.
  • Paivarinta U, Bostman O, Majola A, Toivonen T, Tormala P, Rokkanen P. Intraosseous cellular response to biodegradable fracture fixation screws made of polyglycolide or polylactide. Arch Orthop Trauma Surg 1993;112:71–74.
  • Oxford University Press (2003) Concise colour medical dictionary, Oxford University Press, UK
  • Novicoff, Wendy M., Manaswi, Abhijit, Hogan, MaCalus V., Brubaker, Shawn M., Mihalko, William M., and Saleh, Khaled J. Critical Analysis of the Evidence for Current Technologies in Bone-Healing and Repair. J Bone Joint Surg Am 90(Supplement_1), 85-91. 2008.
  • N. Sultana, M. Wang, Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J. Mater. Sci.: Mater. Med. 19 (2008) 2555–2561.
  • Mroz, Thomas E., Lin, Eric L., Summit, Matthew C., Bianchi, John R.,Keesling, Jr. Jim E., Roberts, Michael, Vangsness, Jr. C. Thomas, and Wang, Jeffrey C. Biomechanical analysis of allograft bone treated with a novel tissue sterilization process. The Spine Journal 6(1), 34-39. 2006.
  • Mikos, A.G., McIntire, L.V., Anderson, J.M. and Babensee, J.E. (1998) Host response to tissue engineered devices. Adv Drug Deliv Rev 33, 111-139.
  • Martinek V, Friederich NF. Tibial and pretibial cyst formation after anterior cruciate ligament reconstruction with bioabsorbable interference screw fixation. Arthroscopy 1999;15:317–320.
  • Margareta Nordin and Victor H.Frankel (1989) Basic Biomechanics of the Musculoskeletal system, Williams & Wilkins, USA
  • Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(-hydroxyacids)/hydroxyapatite composite scaffolds. J Biomed Mater Res 2001;54:284–293.
  • M. Stoppato, Matteo Stoppato, Eleonora Carletti, Viktoryia Sidarovich, Alessandro Quattrone, Ronald E Unger, Charles J Kirkpatrick, Claudio Migliaresi, Antonella Motta, Influence of scaffold pore size on collagen I development: A new in vitro evaluation perspective. J. Bioact. Compat. Pol. 28 (2013) 16–32.
  • M. Kucharska, Beata Butruka, Katarzyna Walenkoa, Tomasz Brynkb, Tomasz Ciacha. Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application Mater. Lett. 85 (2012) 124–127.
  • M. J. W. Hubble. Bone transplantation. Current Orthopaedics Volume 15(Issue 3), Pages 199-205. 2001.
  • Louis Solomon, David Warwick and Selvadurai Nayagam (2005) Apley's Concise System of Orthopaedics and Fractures, Hodder Headline Group, UK
  • Loh, Q. L. & Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19, 485–502 (2013).
  • Livingston, T., Ducheyne, P., and Garino, J. In vivo evaluation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res 62(1), 1-13. 2002.
  • Lin FH, Chen TM, Lin CP, Lee CJ. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif Organs 1999;23:186 –194.
  • Liebschner, Michael A. K. Biomechanical considerations of animal models used in tissue engineering of bone: Animal Models for Tissue Engineering Applications. Biomaterials 25(9), 1697-1714. 2004.
  • Liebschner, Michael A. K. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25(9), 1697-1714. 2004.
  • Leong, K. F., Cheah, C. M., and Chua, C. K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13), 2363-2378. 2003.
  • Le Huec JC, Lesprit E, Delavigne C, Cle ment D, Chauveaux D, Le Rebeller A. Tricalcium phosphate ceramics and allografts as bone substitutes for postero-lateral spine fusion in idiopathic scoliosis: Comparative clinical results at 4 years. Acta Orthop Belg 1997;63/3:202–211.
  • Le Huec J-C, Langlois V, Liquois F, Lesprit E, Cle ment D. Arthrode`se intersomatique cervicale par greffon en phosphate tricalcique- etude re trospective de 33 cas. 1 a` 3 ans de recul. Rachis 2001;13/3:197–202.
  • Larry L. Hench and June Wilson (1999) An Introduction to Bioceramics, World Scientific Publishing Co., UK
  • Lajtai G, Noszian I, Humer K, Unger F, Aitzetmuller G, Orthner E. Serial magnetic resonance imaging evaluation of operative site after fixation of patellar tendon graft with bioabsorbable interference screws in anterior cruciate ligament reconstruction. Arthroscopy 1999;15:709 –718.
  • Kim, S. H. et al. Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Sci Rep 3, 1198 (2013).
  • Kikuchi M, Tanaka J, Koyama Y, Takakuda K. Cell culture test of TCP/CPLA composite. J Biomed Mater Res 1999;48:108–110.
  • Karin A. Hing. Bone repair in the twenty-first century: biology, chemistry or engineering? Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences 362, 2821-2850. 2004.
  • Kai-Uwe Lewandrowski, Donald L. Wise, Debra J. Trantolo, Joseph D. Gresser, Michael J. Yazemski, and David E. Altoobelli. Tissue Engineering and Biodegradable Equivalents-Scientific and Clinical Applications. 2002. USA, Marcel Dekker Inc. 2002.
  • Jeffrey B Kerr (2000) Atlas of Functional Histology , Mosby, USA
  • Ignjatovic N, Savic V, Najman S, Plavgic M, Uskokovic D. A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 2001;22:571–575.
  • Hong, Sun, Hong, Soon, and Kohn, David. Nanostructural analysis of trabecular bone. 20(7), 1419-1426. 2009-.
  • Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamshidi K. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 1986;7:183–187.
  • Hench, Larry L. Genetic design of bioactive glass. Journal of the European Ceramic Society 29(7), 1257-1265. 2009.
  • Hench, L. L. (ii) The challenge of orthopaedic materials. Current Orthopaedics 14(1), 7-15. 2000.
  • Hamer, A. J., Colwell, A., and Eastell, R. Biomechanical and biochemicalchanges in cortical allograft bone after gamma irradiation. Bone 19(6), 696. 96.
  • Habibovic, Pamela, Gbureck, Uwe, Doillon, Charles J., Bassett, David C., van Blitterswijk, Clemens A.,and Barralet, Jake E. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29(7), 944-953.2008.
  • H. Yoshikawa, Noriyuki Tamai, Tsuyoshi Murase, Akira Myoui, Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J. R. Soc. Interface 6 (2009) S341–S348.
  • H. Cao, N. Kuboyama, A biodegradable porous composite scaffold of PGA/β -TCP for bone tissue engineering. Bone 46 (2010) 386–395.
  • Guelinckx P J and Sinsel N K. The "Eve" procedure: the transfer of vascularized seventh rib, fascia, cartilage, and serratus muscle to reconstruct difficult defects. Plast Reconstr Surg 97(3), 527-35. 96.
  • Griffith LG, Wu B, Cima MJ, Powers MJ, Chaignaud B, Vacanti JP. In vitro organogenesis of liver tissue. Ann N Y Acad Sci 1997;831:382–397.
  • Greenwald, A. Seth, Boden, Scott D., Goldberg, Victor M., Khan, Yusuf, Laurencin, Cato T., and Rosier, Randy N. Bone-Graft Substitutes: Facts, Fictions, and Applications. J Bone Joint Surg Am 83, S98-103. 2001.
  • Gogolewski, S. Bioresorbable polymers in trauma and bone surgery: Bioresorbierbare Polymere in der Trauma- und Knochenchirurgie: Polymeres bioresorbables en traumatologie et chirurgie orthopedique: Los polimeros biorreabsorbibles en la cirugia osea y traumatologica. Injury 31(Supplement 4), D28-D32. 2000.
  • Giannoudis, Peter V., Dinopoulos, Haralambos, and Tsiridis, Eleftherios. Bone substitutes: An update: Proceedings from the 1st European Clinical Symposium on Bone and Tissue Regeneration 27-28 November 2004. Injury 36(3, Supplement 1), S20-S27. 2005.
  • Gary Delforge (2002) Musculoskeletal Trauma: Implications for Sports Injury Management, Human Kinetics, USA
  • Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng 2001;7:363–371.
  • Galois L, Mainard D, Delagoutte J-P. -Tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Int Orthop (SICOT) 2002;26:109–115.
  • Galois L, Mainard D, Cohen P, Delagoutte J-P. 23 cas d’utilisation du phosphate tricalcique pour le comblement des pertes de substance osseuse au pied. Med Chir Pied 2001;17:44–53.
  • Furukawa T, Matsusue Y, Yasunaga T, Nakagawa Y, Okada Y, Shikinami Y, Okuno M, Nakamura T. Histomorphometric study on high-strength hydroxyapatite/poly(l-lactide) composite rods for internal fixation of bone fractures. J Biomed Mater Res 2000;50:410–419.
  • Fuchs M, Koster G, Krause T, Merten HA, Schmid A. Degradation of and intraosseous reactions to biodegradable poly-llactide screws: A study in minipigs. Arch Orthop Trauma Surg 1998;118:140 –144.
  • Finkemeier, Christopher G. Bone-Grafting and Bone-Graft Substitutes. J Bone Joint Surg Am 84(3), 454-464. 2002.
  • Erbe, E. M., Marx, J. G., Clineff, T. D., and Bellincampi, L. D. Potential of an ultraporous betatricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 10 Suppl 2, S141-6. 2001.
  • Daniels AU, Andriano KP, Smutz WP, Chang MK, Heller J. Evaluation of absorbable poly(ortho esters) for use in surgical implants. J Appl Biomater 1994;5:51– 64.
  • Dale Layman (2004) Physiology demystified, McGraw-Hill, USA
  • D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials 21 (2000) 2529–2543.
  • Cima MJ, Sachs E, Cima LG, Yoo J, Khanuja S, Borland SW, Wu B, Giordano RA. Computer-Derived Microstructures by 3D Printing: Bio-and Structural Materials. In: Proceedings of the Solid Freeform Fabrication Symposium, DTIC Document, The University of Texas at Austin in Austin, Texas. 1994. pp 181– 190.
  • C. Mauli Agrawal and Kyriacos A. Athanasiou. Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research 38(2), 105-114. 97.
  • Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E. Lemons(2004) Biomaterials Science: An Introduction to Materials in Medicine, Elsevier Inc.,
  • Bucholz, Robert W. MD. Nonallograft Osteoconductive Bone Graft Substitutes. Clinical Orthopaedics & Related Research February 395, 44-52. 2002.
  • Botez, P., Sirbu, P., Simion, L., Munteanu, Fl., and Antoniac, I. Application of a biphasic macroporous synthetic bone substitutes CERAFORM: clinical and histological results. European journal of orthopaedic surgery and traumatology 19(6), 387-395. 2009.
  • Bostman OM. Osteoarthritis of the ankle after foreign-body reaction to absorbable pins and screws: A three- to nine-year follow-up study. J Bone Joint Surg Br 1998;80:333–338.
  • Bostman OM, Philajamaki HK. Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop 2000;371:216 –227.
  • Bos RR, Rozema FR, Boering G, Nijenhuis AJ, Pennings AJ, Verwey AB, Nieuwenhuis P, Jansen HW. Degradation of and tissue reaction to biodegradable poly(l-lactide) for use as internal fixation of fractures: A study in rats. Biomaterials 1991;12:32–36.
  • Bonnevialle P, Abid A, Mansat P, Verhaeghe L, Cle ment D,Mansat M. Oste otomie tibiale de valgisation par addition mediale d’un coin de phosphate tricalcique. Revue de Chirurgie Orthope dique 2002;88:486–492.
  • Bergsma JE, de Bruijn WC, Rozema FR, Bos RR, Boering G. Late degradation tissue response to poly(l-lactide) bone plates and screws. Biomaterials 1995;16:25– 31.
  • Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC. Foreign body reactions to resorbable poly(l-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 1993;51:666–670
  • B. D. Porter, J. B. Oldham, S.-L. He, and M. E. Zobitz. Mechanical Properties of a Biodegradable Bone Regeneration Scaffold. Journal of Biomechanical Engineering 122(3), 286-288. 2000. American Society of Mechanical Engineers.
  • Alexander P. Spence (1986) Basic Human Anatomy, Benjamin-Cummings, USA