박사

Analysis on the variations in suspended sediment concentration (SSC) in relation to the controlling factors using geostationaryoOcean color imager (GOCI) in the Gyeonggi Bay, the West Coast of Korea

엄진아 2016년
논문상세정보
' Analysis on the variations in suspended sediment concentration (SSC) in relation to the controlling factors using geostationaryoOcean color imager (GOCI) in the Gyeonggi Bay, the West Coast of Korea' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • geostationary ocean color imager (GOCI)
  • gyeonggi-bay
  • resuspension
  • suspended sediment concentration
  • 경기만
  • 부유퇴적물농도
  • 재부유
  • 천리안해양관측위성
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
20 0

0.0%

' Analysis on the variations in suspended sediment concentration (SSC) in relation to the controlling factors using geostationaryoOcean color imager (GOCI) in the Gyeonggi Bay, the West Coast of Korea' 의 참고문헌

  • http://www.kma.go.kr/weather/climate/data_sea.jsp
  • http://mgis.kordi.re.kr/mgisweb/main.asp
  • http://lms.seos-project.eu
  • http://landsat.usgs.gov/band_designations_landsat_satellites.php
  • Zang, M., Tang, J., Dong, Q., Song, Q, and Ding, J. (2010). Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114, 392-403.
  • Yang, C.S. (1989). Active moribund tidal sand ridges in the East China Sea and the southern Yellow Sea. Marin Geology, 88, 97– 116.
  • Wright, L.D., Kim, S.C., and Friedrichs, C.T. (1997). Biological mediation of bottom boundary layer processes and sediment suspension in lower Chesapeake Bay. Marine Geology, 141, 99-115.
  • Wright, J., Colling, A., and Park, D. (1999). Waves, Tides, and Shallow-water Processes. Open University Course Team, pp. 96-176.
  • Wang, Y.P., Voulgaris, G., Li, Y., Gao, J., Chen, J., and Gao, S. (2013). Sediment resuspension, flocculation, and settling in a macrotidal estuary. Journal of Geophysical Research : Oceans, 118, 5591-5608.
  • Wang, M., Shi, W., and Jiang, L. (2012). Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region. Optics Express, 20, 741-753.
  • Wang, J.J. and Lu, X.X. (2010). Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China. Science of the Total Environment, 408, 1131-1138.
  • Vosough, Amir (2011). Wave Energy. International Journal of Multidisciplinary Sciences and Engineering, 2(7), 60-63.
  • Volpe, V., Silvestri, S., and Marani, M. (2011). Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote sensing of Environment, 115, 44-54.Wang, M. and Shi, W., 2005. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: two case studies. Geophysical Research Letters, 32, 1-5. doi:10.1029/2005GL022917
  • Velegrakis, A.F., Gao, S., Lafite, R., Dupont J.P., Huault, M.F., Nash, L.A., and Collins, M.B. (1997). Resuspension and advection processes affecting suspended particulate matter concentrations in the central English Channel. Journal of Sea Research, 38, 17-34.
  • Vaughan, W.C., Briggs, K.B., Kim, J.W., Bianchi, T. S., and Smith, R.W. (2009). Stromgeneraged sediment distribution along the northwest Florida Inner Continental Shelf. IEEE Journal of Oceanic Engineering, 34(4), 495-515.
  • Sipelgas, L., Raudsepp, U., and Kouts, T. (2006). Operational monitoring of suspended matter distribution using MODIS images and numerical modelling. Advanceds in Space Research, 38, 2182-2188.
  • Sathyendranath, S., Platt, T., Caverhill, C., Warnock, R., and Lewis, M. (1989). Remote Sensing of Oceanic Primary Production: Computations Using a Spectral Model. Deep Sea Research Part A. Oceanographic Research Papers, 36, 431–453.
  • Sathyendranath, S., Gouveia, A. D., Shetye, S., Ravindran, P., and Platt, T. (1991). Biological Control of Surface Temperature in the Arabian Sea. Nature, 349, 54–56.
  • Ryu, J.H., Moon, J.E., Min, J.E., and Ahn, Y.H. (2007). Monitoring the coastal waters of the Yellow Sea using Ferry Box and SeaWiFS Data. Korean Journal of Remote Sensing, 23(4), 323-334.
  • Ryu, J.H., Han, H.J., Cho. S., Park, Y.J., and Ahn, Y.H. (2012). Overview of Geostationary Ocean Color Imager (GOCI) and GOCI Data Processing System (GDPS). Ocean Sciences, 47(3), 223-233.
  • Ruddick, K.G., Ovidio, F., and Rijkeboer, M. (2000). Atmospheric correction of SeaWiFS imagery of turbid coastal and inland water. Applied Optics, 39(6), 897-912.
  • Rodriguez-Guzman, V. and Gilbes-Santaella, F. (2009). Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay. International Journal of Systems Applications, Engineering and Development, 3(1), 36-44.
  • Ree, J.H., Cho, M., Kwon, S.T., Nakamura, E. (1996). Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology, 24, 1071–1074.
  • Pritchard , D. W. (1967). Observations of circulation in coastal plain estuaries. In: Lauff, G.H. (eds.), Estuaries, Washington, DC: American Association for the Advancement of Science, pp. 37 – 44.
  • Platt, T., Sathyendranath, S., Caverhill, C., and Lewis, M. (1988). Ocean Primary Production and Available Light: Further Algorithms for Remote Sensing. Deep Sea Research Part A. Oceanographic Research Papers, 35, 855–879.
  • Petus, C., Chust, G., Gohin, F., Doxaran, D., Froidefond, J.M., and Sagarminaga, Y. (2010). Estimating turbidity and total suspended matter in the Adour River plume (south Bay of Biscay) using MODIS 250-m imagery. Continental Shelf Research, 30(5), 379-392.
  • Pearson, K. (1895). Mathematical contributions to the theory of evolution, II: Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London. A, 186, 343–414.
  • Park, J.S. (2012). A study on characteristics of sediments transport in gyeonggi bay through sedimentological analyses of surface suspended sediment and numerical simulation. Incheon, Republic of Korea: Inha University, Ph. D. dissertation, 140p.
  • Paphitis, D., Collins M.B., Nash, L.A., and Wallbridge, S. (2002). Settling velocities and entrainment thresholds of biogenic sands (shell fragments) under unidirectional flow. Sedimentology, 49, 211-225.
  • Panagiotopoulos, I., Voulgaris, G., and Collins, M.B. (1997). The influence of clay on the threshold of movement of fine sandy beds. Coastal Engineering, 32, 19-43.
  • Osborne, P.D. and Vincent, C.E. (1996). Vertical and horizontal structure in suspended sand concentrations and wave induced fluxes over bedforms. Marine Geology, 131, 195-208.
  • Oh, J.-K. and Bang, K.-Y. (2003). Sedimentologic linkage of depositional environments of Han river and Kyunggi bay, Korea. The Sea, 8(3), 225-236.
  • Oh, J. (1995). Sedimentation processes of the suspended sediments in Yumha channel of the Han River estuary, Korea. Journal of the Korean Earth Science Society, 16(1), 20-29.
  • Morel, A. and Antoine, D. (1994). Heating Rate Within the Upper Ocean in Relation to its Bio-Optical State. Journal of Physical Oceanography, 24, 1652–1665.
  • Moon, J.E., Park, Y.J., Ryu, J.H., Choi, J.K., Ahn, J.H., Min, J.E., Son, Y.B., Lee, S.J., Han, H.J., and Ahn, Y.H. (2012). Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011. Ocean Science Journal, 47(3), 261-277.
  • Mitchener, H. and Torfs, H. (1996). Erosion of mud/sand mixtures. Coastal Engineering, 29, 1-25.
  • Min, J.E., Ryu, J.H. and Park Y.J. (2015). An Analysis of the relationship between inherent optical properties and ocean color algorithms around the Korean waters. Korean Journal of Remote Sensing, 31(5), 473-490.
  • Liu, Z.X., Huang, Y.C., and Zhang, Q.N. (1989). Tidal sand ridges in the southeastern Yellow Sea. Journal of Sedimentary Petrology, 59, 432– 437. McCave, I.N. (1984). Erosion, transport and deposition of finegrained marine sediments.
  • Li, M.Z., Wright, L.D., and Amos, C.L. (1996). Predicting ripple roughness and sand resuspension under combined flows in a shoreface environment. Marine Geology, 130, 139–161.
  • Li, M.Z. and Amos, C.L. (1998). Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment. Continental Shelf Research, 18, 941–970.
  • Li, C.X., Zhang, J.Q., Fan, D.D., and Deng, B. (2001). Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China. Marin Geology 173, 97–120.
  • Lewis, M., Carr, M., Feldman, G., Esaias, W., and McClain, C. (1990). Influence of Penetrating Solar Radiation on the Heat Budget of the Equatorial Pacific Ocean. Nature, 347, 543–545.
  • Lee, Y.K., Ryu, J.H., Choi, J.K., Soh, J.G., Eom, J.A., and Won, J.S. (2011). A Study of Decadal Sedimentation Trend Changes by Waterline Comparisons within the Ganghwa Tidal Flats Initiated by Human Activities. Journal of Coastal Research, 27 (5), 857 – 869.
  • Lee, M.S., Park, K.Y., Chung, J.Y., Ahn, Y.H., and Moon, J.E. (2011). Estimation of coastal suspended sediment concentration using satellite data and oceanic insitu measurements. Korean Journal of Remote Sensing, 27(6), 677-692.
  • Lee, H.J., Park, J.Y., Lee, S.H., Lee, J.M., and Kim, T.K. (2013). Suspended Sediment Transport in a Rock-Bound, Macrotidal Estuary: Han Estuary, Eastern Yellow Sea. Journal of Coastal Research, 29(2), 358 – 371.
  • Lee, H.J., Jeong, K.S., Han, S.J., and Bahk, K.S. (1988). Heavy minerals indicative of Holocene transgression in the southeastern Yellow Sea. Continental Shelf Research, 8, 255– 266.
  • Lee, G.S., Kim, D.C., Seo, Y.K., Yi, H.I., and Yoo, S. (2009). Sedimentary environment and sequence study using high resolution seismic survey in Gyunggi Bay, the Yellow sea. Korean Journal of Fisheries and Aquatic Sciences, 42(6), 683- 694.
  • Lee, D.H. and Woo, S.-B. (2011). Characteristics of cross–channel momentum balance at Yeomha Channel, Gyeonggi bay, South Korea. Proceedings of the 11th International Coastal Symposium (Szczecin, Poland), pp. 1515-1519.
  • Lee, C.B., Yoo, H.R., and Park, J.S. (1992). Destibution and properties of Intertidal surface sediments of Kyeonggi Bay, west coast of Korea. The Journal of the Oceanological Society of Korea. 27(4), 277-289.
  • Lee, B., Ahn, J.H., Park, Y.J., and Kim, S.W. (2013). Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm. Korean Journal of Remote Sensing, 29(2), 173-182.
  • Krone, R.B. (1975). Effects of physical alterations, In: Wiley, M., (ed.), Estuarine processes. London, New York : Academic press, 1p.
  • Korea Meteorological Administration Staff (2001). Climatological Standard Normals of Korea, Monthly Normals Annual Report, Seoul, Korea. Seoul, Republic of Korea: Korea Meteorological Administration, 632p.
  • Klein, G.D., Park, Y.A., Chang, J.H., and Kim, C.S. (1982). Sedimentology of a subtidal, tide-dominated sand body in the Yellow Sea, Southwest Korea. Marine Geology, 50, 221– 240.
  • Kim, J., Furukawa, Y., Curry, K.J., and Bennett, R.H. (2012). Role of Chitin in Montmorillonite Fabric : Transmission Electron Microscope Observations. Clays and Clay Minerals, 60(1), 89-98.
  • Kim, C.S., Lim, H.S., Kim, J.A., and Kim, S.J., (2009). Residual flow and its implication to macro-tidal flats in Kyunggi Bay estuary of Korea. Journal of Coastal Research, 56, 976-980.
  • Kim, C.S. and Lim, H.S. (2009). Sediment dispersal and deposition due to sand mining in the coastal waters of Korea. Continental Shelf Research, 29, 194-204.
  • Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200.
  • Ji, Z.G. (2008). Hydrodynamics and Water Quality Modeling Rivers, Lakes, and Estuaries. Canada: John Wiley & Sons, Inc., Hoboken, New Jersey, 113- 634p.
  • In: Stow, D. and Piper, D.J.W. (ed.), Fine-grained Sediments: Deep WaterProcesses and Facies. London : Geological Society (Special Publications). 15, pp. 35-69.
  • IOCCG Staff (2010). Atmospheric Correction for Remotely-Sensed Ocean-Colour Products. Dartmouth, Canada: Reports of the International Ocean-Colour Coordinating Group.
  • IOCCG Staff (2000). Remote Sensing of Ocean Colour in Coastal, and Other Optically- Complex, Waters. Ispra, Italy: Reports of the International Ocean-Colour Coordinating Group.
  • IOCCG Staff (1998). Minimum requirements for an operational, ocean-colour sensor for the open ocean. Villefranche-sur-Mer, France: International Ocean-Colour Coordinating Group and an Affiliated Program of the Scientific Committee on Oceanic Research, 30p.
  • Hu, C., Carder, K.L., and Muller-Karger, F.E. (2000). Atmospheric correction of SeaWiFS imagery over turbid coastal waters : A practical method. Remote Sensing of Environment, 74, 195-206.
  • He, X., Bai, Y., Pan, D., Huang, N., Dong, X., Chen, J., Chen, C.T.A., and Cui, Q. (2013). Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sensing of Environment, 133, 225-239.
  • Goyens, C., Jamet, C., and Ruddick K.G. (2013). Spectral relationships for atmospheric correction. II. Improving NASA’s standard and MUMM near infra-red modeling schemes, Optics Express, 21(18), 21176-21187.
  • Gordon, H.R. (1978). Removal of atmospheric effects fromsatellite imagery of the oceans. Applied Optics, 17, 1631-1636.
  • Gordon, H.R, Brown, J.W, and Evans, R.H. (1988). Exact rayleigh scattering calculations for use with the imbus 7 coastal zone color scanner, Applied Optics, 27, 862- 871.
  • Gordon, H. R. and Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Applied Optics, 33, 443-452.
  • Gordon, H. R. and Morel, A. (1983). Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. A Review, Lecture Notes on Coastal and Estuarine Studies, R. T. Barber, N. K. Mooers, M. J. Bowman and B. Zeitzschel (eds.), Springer-Verlag, New York, 114 p.
  • Gordon, H. R. (1997). Atmospheric correction of ocean color imagery in the earth observing systemera. J. Geophys. Res. 102: 17,081-17,106.
  • Gordon, H. R. (1993). Radiative transfer in the atmosphere for correction of ocean color remote sensing. In: V. Barale and P. M. Schlittenhardt (eds.), Ocean Colour: Theory and Applications in a Decade of CZCS Experience, Kluwer Academic Publishers, Dordrecht, pp. 33-77.
  • Garrison, T. (2013). Oceanography : An invitation to marine science (eighth edition). Canada : College Bookstore Wholesale, 303p.
  • Furukawa, Y., Watkins, J.L., Kim, J. Curry, K.J., and Bennett, R.H. (2009). Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater. Geochemical Transactions, 10(2), 1-11. Gao, S., Xie, Q.C., and Feng, Y.J. (1990). Fine-grained sediment transport and sorting by tidal exchange in Xiangshan Bay, Zhejiang, China. Estuarine, Coastal and Shelf Science, 31, 397-409.
  • Folk, R.L. (1968). A review of grain size parameters. Sedimentology, 6, 73-93.
  • Fisher, J.S., Sill, B.L., and Clark, D.F. (1983). Organic detritus particles: Initiation of motion criteria on sand and gravel beds. Water Resource Research, 19(6), 1627-1631.
  • Fettweis, M., Nechad, B., and Eynde, D.V. (2007). An estimate of the suspended particulate matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurements and numerical model results. Continental Shelf Research, 27, 1568-1583.
  • Collins, M.B. and Rigler, J.K. (1982). The use of settling velocity in defining the initiation of motion of heavy mineral grains under unidirectional flow. Sedimentology, 29, 419‑426.
  • Chough, S.K., Lee, H.J., and Yoon, S.H. (2000). Marine Geology of Korean Seas. Elsevier, Amsterdam.
  • Choi, Y.K. and Kwon, J.N. (1998). Seasonal variation of transparency in the southeastern Yellow Sea. Journal of Korean Fisheries Society, 31(3), 323-329.
  • Choi, N.Y., Yoon, B.I., Kim, J.W., Song, J.I., Lim, E.P., and Woo, S.B. (2012). The relation of cross-sectional residual current and stratification during spring and neap tidal cycle at Seokmo channel, Han River estuary located at South Korea. Korean Society of Coastal and Ocean Engineers, 24(3), 149-158.
  • Choi, J.Y. (1993). Seasonal variations of suspended matters in the Keum estuary and its adjacent coastal area. The journal of the Oceanological Society of Korea, 28(4), 272-280.
  • Choi, J.K., Park, Y.J., Lee, B.R., Eom, J., Moon J.E., and Ryu, J.H. (2014). Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity. Remote Sensing of Environment, 146, 24-35.
  • Choi, J.K., Park, Y.J., Ahn, J.H., Lim, H.S., Eom, J., and Ryu, J.H. (2012). GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. Journal of Geophysical Research, 117(C9), 1-10. doi:10.1029/2012JC008046
  • Choi, B.H., Kim K.O., and Eum, H.M. (2002). Digital Bathymetric and Topographic Data for Neighboring Seas of Korea.Korean Society of Coastal and Ocean Engineers, 14(1) 41-50.
  • Cho, S., Ahn, Y.H., Ryu, J.H., Kang, G.S., and Youn, H.S. (2010). Development of Geostationary Ocean Color Imager (GOCI). Korean Journal of Remote Sensing, 26(2), 157-165
  • Cheng, Z., Wang, X.H., Paull, D., and Gao, J. (2016). Application of the Geostationary Ocean Color Imager to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary. Remote Sensing, 8, 244- 264.
  • Brando, V., Dekker, A., Marks, A., Qin, Y., and Oubelkheir, K. (2006). Chlorophyll and suspended sediment assessment in a macrotidal tropical estuary adjacent to the Great Barrier Reef: spatial and temporal assessment using remote sensing, Canberra, Australia: Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, Technical Report No. 74, 17p.
  • Blumberg, A.F. and Mellor, G.L. (1987). A description of three-dimensional coastal ocean circulation model. In: Heaps, N.S. (ed.), Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences. Washington, D.C.: American Geophysical Union. pp. 1-16.
  • Bianchi, T. S. (2013). Estuaries: Where the River Meets the Sea. Nature Education Knowledge, 4(4), 12p.