박사

천연점토, 수용성 폴리머 및 이온성 액체의 메탄 하이드레이트 형성 억제 특성 분석 = Inhibition Effect of Natural clays, Water soluble polymers, and Ionic liquids on Methane Hydrate Formation

박혜옥 2016년
논문상세정보
' 천연점토, 수용성 폴리머 및 이온성 액체의 메탄 하이드레이트 형성 억제 특성 분석 = Inhibition Effect of Natural clays, Water soluble polymers, and Ionic liquids on Methane Hydrate Formation' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 위생과 도시 공학
  • Gas hydrate
  • inhibitor
  • ionic liquids
  • natural clay
  • water soluble polymers
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
57 0

0.0%

' 천연점토, 수용성 폴리머 및 이온성 액체의 메탄 하이드레이트 형성 억제 특성 분석 = Inhibition Effect of Natural clays, Water soluble polymers, and Ionic liquids on Methane Hydrate Formation' 의 참고문헌

  • 한국에너지공단
    2015 에너지 통계 핸드북 [2015]
  • 한국과학기술원, 심해저 퇴적층내 메탄 하이드레이트 형성 과정 및 결정 구조 규명
    교육과학기술부 원자력 연구 기반 확충사업 보고서 [2008]
  • 정부 관계부처 합동
    Post-2020 온실가스 감축목표 설정 추진계획 [2015]
  • 에너지경제연구원
    에너지 통계 연보 [2013]
  • 에너지경제연구원
    기후변화협약 대응을 위한 중장기 정책 및 전략에 관한 연구 [2004]
  • 신 재생에너지 정책 동향 및 지속가능성 분석
    김유정 과학기술정책, 154, 41-59 [2005]
  • 국내 에너지산업전망 및 시사점
  • 가스하이드레이트 기술개발 현황
    허대기 한국지구시스템공학회지, 42, 206-213 [2005]
  • Zeng, H., Wilson, L. D., Walker, V. K., and Ripmeester, J. A., Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation, Journal of the American Chemical Society, 128, 2844-2850 (2006).
  • Zatsepina, O. Y., Riestenberg, D., McCallum, S. D., Gborigi, M., Brandt, C., Buffett, B. A., and Phelps, T. J., Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology. American Mineralogist, 89, 1254-1259 (2004).
  • Zare, M., Haghtalab, A., Ahmadi, A. N., Nazari, K., and Mehdizadeh, A., Effect of imidazolium based ionic liquids and ethylene glycol monoethyl ether solutions on the kinetic of methane hydrate formation. Journal of Molecular Liquids, 204, 236-242 (2015).
  • Zanjani, N. G., Moghaddam, A. Z., Nazari, K., and Mohammad-Taheri, M., Enhancement of methane purification by the use of porous media in hydrate formation process, Journal of Petroleum Science and Engineering, 96, 102-108 (2012).
  • Yoshizawa, M., Ogihara, W., and Ohno, H., Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers, Polymers for Advanced Technologies, 13(8), 589-594, (2002).
  • Yeon, S. H., Seol, J., Seo, Y. J., Park, Y., Koh, D. Y., Park, K. P., and Lee, H., Effect of interlayer ions on methane hydrate formation in clay sediments, Journal of Physical Chemistry B, 113, 1245-1248 (2009).
  • Yang, J., and Tohidi, B., Characterization of inhibition mechanisms of kinetic hydrate inhibitors using ultrasonic test technique, Chemical Engineering Science, 66, 278-283 (2011).
  • Yagasaki, T., Matsumoto, M., & Tanaka, H., Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study. Physical Chemistry Chemical Physics, 17(48), 32347-32357 (2015).
  • Xu, Y., Yang, M., and Yang, X., Chitosan as green kinetic inhibitors for gas hydrate formation, Journal of Natural Gas Chemistry, 19, 431-435 (2010).
  • Xiao, C., and Adidharma, H., Dual function inhibitors for methane hydrate, Chemical Engineering Science, 64, 1522-1527 (2009).
  • Xiao, C., Wibisono, N., and Adidharma, H., Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chemical Engineering Science, 65, 3080-3087 (2010).
  • Wu, Q., and Zhang, B., Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation. Journal of Natural Gas Chemistry, 19, 446-451 (2010).
  • Wilson, P. W., and Haymet, A. D. J., Hydrate formation and re-formation in nucleating THF/water mixtures show no evidence to support a “memory” effect. Chemical Engineering Journal, 161, 146-150 (2010).
  • Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chemical Reviews, 99, 2071-2084, (1999).
  • Vysniauskas, A., and Bishnoi, P. R., A kinetic study of methane hydrate formation. Chemical Engineering Science, 38, 1061-1072 (1983).
  • Uchida, T., Takeya, S., Chuvilin, E. M., Ohmura, R., Nagao, J., Yakushev, V. S., and Narita, H., Decomposition of methane hydrates in sand, sandstone, clays, and glass beads, Journal of Geophysical Research: Solid Earth, 109 (2004).
  • Uchida, T., Moriwaki, M., Takeya, S., Ikeda, I. Y., Ohmura, R., Nagao, J., and Mae, S., Two‐step formation of methane–propane mixed gas hydrates in a batch‐type reactor, AIChE Journal, 50, 518-523 (2004).
  • Uchida, T., Ebinuma, T., and Narita, H., Observations of CO2-hydrate decomposition and reformation processes, Journal of Crystal Growth, 217, 189-200 (2000).
  • Uchida, T., Ebinuma, T., Takeya, S., Nagao, J., and Narita, H., Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media, Journal of Physical Chemistry B, 106, 820-826 (2002).
  • USEPA, Method 9081: Cation-exchange capacity(sodium acetate), In: Test Methods for the Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods. SW-846, Office of Solid Waste, Washington, DC (1986).
  • Tumba, K., Reddy, P., Naidoo, P., Ramjugernath, D., Eslamimanesh, A., Mohammadi, A. H., and Richon, D., Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid, Journal of Chemical and Engineering Data, 56, 3620-3629 (2011).
  • Tsuda, H., and Arends, J., Raman spectroscopy in dental research: a short review of recent studies, Advances in Dental Research, 11, 539-547 (1997).
  • Torres, M. E., Trehu, A. M., Cespedes, N., Kastner, M., Wortmann, U. G., Kim, J. H., and Collett, T., Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311. Earth and Planetary Science Letters, 271, 170-180 (2008).
  • Tipping, W. J., Lee, M., Serrels, A., Brunton, V. G., and Hulme, A. N., Stimulated Raman scattering microscopy: an emerging tool for drug discovery, Chemical Society Reviews, 45, 2075-2089 (2016).
  • Talaghat, M. R., Intensification of the performance of kinetic inhibitors in the presence of polyethylene oxide and polypropylene oxide for simple gas hydrate formation in a flow mini-loop apparatus, Fluid Phase Equilibria, 289, 129-134 (2010).
  • Takeya, S., Hori, A., Hondoh, T., and Uchida, T., Freezing-memory effect of water on nucleation of CO2 hydrate crystals, Journal of Physical Chemistry B, 104, 4164-4168 (2000).
  • Taheria, M. M. and Moghaddama, A. Z., The role of thermal path on the accuracy of gas hydrate phase equilibrium data using isochoric method, Fluid Phase Equilibria, 338, 257-264 (2013).
  • Subramanian, S., and Sloan, E. D., Molecular measurements of methane hydrate formation, Fluid Phase Equilibria, 158, 813-820 (1999).
  • Subramanian, S., Kini, R. A., Dec, S. F., and Sloan, E. D., Evidence of structure II hydrate formation from methane+ethane mixtures. Chemical Engineering Science, 55, 1981-1999 (2000).
  • Su, X., Song, C. B., and Fang, N. Q. 10. Relationship between sediment granulometry and the presence of gas hydrate on hydrate tidge, Proceedings of Ocean Drilling Program, Scientific Results, 1-30 (2006).
  • Smith, J. M., Van Ness, H. C., and Abbott, M. M., Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, Inc., New York, (2001).
  • Smith, E., and Dent, G., Modern Raman Spectroscopy: A Practical Approach, John Wiley and Sons (2013).
  • Sloan, E. D., Subramanian, S., Matthews, P. N., Lederhos, J. P., and Khokhar, A. A., Quantifying hydrate formation and kinetic inhibition, Industrial and Engineering Chemistry Research, 37, 3124-3132 (1998).
  • Sloan, E. D., Fundamental principles and applications of natural gas hydrates, Nature, 426, 353-363 (2003).
  • Sloan Jr, E. D., and Koh, C., Clathrate hydrates of natural gases, CRC press (2007).
  • Sloan Jr, E. D., and Koh, C., Clathrate Hydrates of Natural Gases, CRC press (2008).
  • Singh, G., and Kumar, A.,Ionic liquids: Physico-chemical, solvent properties and their applications in chemical processes, Indian Journal of Chemistry Section A, 47, 495 (2008).
  • Sheldon, R., Catalytic reactions in ionic liquids, Chemical Communications, 23, 2399-2407, (2001).
  • Seo, Y., and Kang, S. P., Inhibition of methane hydrate re-formation in offshore pipelines with a kinetic hydrate inhibitor, Journal of Petroleum Science and Engineering, 88, 61-66 (2012).
  • Sefidroodi, H., Abrahamsen, E., and Kelland, M. A., Investigation into the strength and source of the memory effect for cyclopentane hydrate. Chemical Engineering Science, 87, 133-140 (2013).
  • Saw, V. K., Ahmad, I., Mandal, A., Udayabhanu, G., and Laik, S., Methane hydrate formation and dissociation in synthetic seawater, Journal of Natural Gas Chemistry, 21, 625-632 (2012).
  • Roozeboom, H. W., Sur l’hydrate de chlore, Recueil des Travaux Chimiques des Pays-Bas, 3, 59-72 (1884).
  • Rogers, R., Zhang, G., Dearman, J., and Woods, C., Investigations into surfactant/gas hydrate relationship, Journal of Petroleum Science and Engineering, 56, 82-88 (2007).
  • Riestenberg, D., West, O., Lee, S., McCallum, S., and Phelps, T. J., Sediment surface effects on methane hydrate formation and dissociation. Marine Geology, 198, 181-190 (2003).
  • Richard, A. R., and Adidharma, H., The performance of ionic liquids and their mixtures in inhibiting methane hydrate formation, Chemical Engineering Science, 87, 270-276 (2013).
  • Rad S. A., Khodaverdiloo K. R., Karamoddin M., Varaminian F., Peyvandi K., Kinetic study of amino acids inhibition potential of Glycine and L-leucine on the ethane hydrate formation, Journal of Natural gas Science and Engineering, 26, 819-826, (2015).
  • Prasad, P. S. R., Sowjanya, Y., and Prasad, K. S., Micro-Raman investigations of mixed gas hydrates, Vibrational Spectroscopy, 50, 319-323 (2009).
  • Prasad, P. S. R., Prasad, K. S., Sowjanya, Y., and Sain, K., Laser micro Raman investigations on gas hydrates, Current Science, 94, 1495-1499 (2008).
  • Pi ero, E., Gr cia, E., Mart nez-Ruiz, F., Larrasoa a, J. C., Vizcaino, A., and Ercilla, G., Gas hydrate disturbance fabrics of southern Hydrate Ridge sediments (ODP Leg 204): Relationship with texture and physical properties. Geo-Marine Letters, 27, 279-288 (2007).
  • Paull, C. K., and Dillon, W. P., Natural gas hydrates: Occurrence, distribution, and detection, Washington DC American Geophysical Union Geophysical Monograph Series, 124 (2001).
  • Park, S., Lee, S., Lee, Y., Lee, Y., and Seo, Y., Hydrate-based pre-combustion capture of carbon dioxide in the presence of a thermodynamic promoter and porous silica gels, International Journal of Greenhouse Gas Control, 14, 193-199 (2013).
  • Park, S. S., Park, Y. B., and Kim, N. J., A Comparative Study on the Formation of Methane Hydrate Using Natural Zeolite and Synthetic Zeolite 5A, Journal of the Korean society for New and Renewable Energy, 8, 24-32 (2012).
  • Park, S. S., An, E. J., Kim, D. J., Jeon, Y. H., and Kim, N. J., A study on the methane hydrate formation using natural zeolite, Korean Journal of Air-Conditioning and Refrigeration Engineering, 23, 259-264 (2011).
  • Parent, J. S., and Bishnoi, P. R., Investigations into the nucleation behaviour of methane gas hydrates. Chemical Engineering Communications, 144, 51-64 (1996).
  • O’Reilly, R. K., Ieong, N. S., Chua, P. C., Kelland, M. A., Missing poly(N-vinyl lactam) kinetic hydrate inhibitor: high-pressure kinetic hydrate inhibition of structure II gas hydrates with poly(N-vinyl piperidone) and other poly(N-vinyl lactam) homopolymers, Energy and Fuels, 25, 4595-4599 (2011).
  • Ohno, H., Strobel, T. A., Dec, S. F., Sloan, Jr, E. D., and Koh, C. A., Raman studies of methane−ethane hydrate metastability, Journal of Physical Chemistry A, 113, 1711-1716 (2009).
  • Ohmura, R., Ogawa, M., Yasuoka, K., and Mori, Y. H., Statistical study of clathrate-hydrate nucleation in a water /hydrochlorofluorocarbon system: Search for the nature of the “memory effect”, Journal of Physical Chemistry B, 107, 5289-5293 (2003).
  • OECD/OCDE, OECD guidelines for the testing of chemicals. Predatory mite (Hypoaspis (Geolaelaps) auleifer) reproduction test in soil, OECD/OCDE, (2008).
  • Nazari, K., Moradi, M. R., and Ahmadi, A. N., Kinetic modeling of methane hydrate formation in the presence of low‐dosage water‐soluble ionic liquids, Chemical Engineering and Technology, 36, 1915-1923 (2013).
  • Nazari, K., Ahmadi, A. N., Moradi, M. R., Sahraei, V., Taghikhani, V., and Ghobti, C. A., Thermodynamic study of methane hydrate formation in the presence of [BMIM][BF4] and [BMIM][MS] ionic liquids, In: Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 17-21 (2011).
  • Nam, S. C., Linga, P. and Englezos. P., Formation and decomposition of methane hydrate using silica sand, Journal of the Korean Industrial and Engineering Chemistry, 19, 680-684 (2008).
  • NaCl, MgCl2, NiCl2를 첨가한 R22(CHClF2) 하이드레이트의 포집 거동 및 라만 분광학적 분석에 대한 연구
    이창호 한국해양대학교 [2015]
  • Moridis, G. J., and Sloan, E. D., Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments, Energy Conversion and Management, 48, 1834-1849, (2007).
  • Mohammad-Taheri, M., Moghaddam, A. Z., Nazari, K., and Zanjani, N. G., The role of thermal path on the accuracy of gas hydrate phase equilibrium data using isochoric method. Fluid Phase Equilibria, 338, 257-264 (2013).
  • Milkov, A. V., and Sassen, R., Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope, Marine and Petroleum Geology, 17, 981-991 (2000).
  • Maumene, M. E., Sur les hydrate de chlore, Bulletion de la Societe Chemique de France, 39 (1883).
  • Makogon, Y. F., Hydrate of Hydrocarbons, PennWell Books, Oklahoma, (1997).
  • Makogon, I. F., Hydrates of Natural Gas, Tulsa, Okla, USA: PennWell Books (1981).
  • Magnusson C. D., Kelland M. A., Nonpolymeric kinetic hydrate inhibitors : Alkylated ethyleneamine oxides, Energy Fuels, 29, 6347-6354, (2015).
  • MacKay, M. E., Moore, G. F., Cochrane, G. R., Moore, J. C., and Kulm, L. D., Landward vergence and oblique structural trends in the Oregon margin accretionary prism: Implications and effect on fluid flow, Earth and Planetary Science Letters, 109, 477-491 (1992).
  • Lu, H., Zeng, H., Ripmeester, J. A., Kawasaki, T., Fujii, T., and Nakamizu, M., Sediment control on the saturation level of gas hydrate in nature environments, In: Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada (2008).
  • Liu, C., Lu, H., Ye, Y., Ripmeester, J. A., and Zhang, X., Raman spectroscopic observations on the structural characteristics and dissociation behavior of methane hydrate synthesized in silica sands with various sizes, Energy and Fuels, 22, 3986-3988 (2008).
  • Liu, B., Pang, W., Peng, B., Sun, C., and Chen, G., Heat transfer related to gas hydrate formation/dissociation. Developments in Heat Transfer, 477-502 (2010).
  • Linga, P., Kumar, R., and Englezos, P., Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures, Chemical Engineering Science, 62, 4268-4276 (2007).
  • Linga, P., Haligva, C., Nam, S. C., Ripmeester, J. A., and Englezos, P., Gas hydrate formation in a variable volume bed of silica sand particles, Energy and Fuels, 23, 5496-5507 (2009).
  • Li, J., Liang, D., Guo, K., Wang, R., and Fan, S., Formation and dissociation of HFC134a gas hydrate in nano-copper suspension, Energy Conversion and Management, 47, 201-210 (2006).
  • Lee, J. D., Wu, H., and Englezos, P., Cationic starches as gas hydrate kinetic inhibitors. Chemical Engineering Science, 62, 6548-6555 (2007).
  • Lee, J. D., Susilo, R., and Englezos, P., Methane–ethane and methane–propane hydrate formation and decomposition on water droplets, Chemical Engineering Science, 60, 4203-4212 (2005).
  • Lee, J. D. and Englezos, P., Enhancement of the performance of gas hydrate kinetic inhibitors with polyethylene oxide, Chemical Engineering Science, 60, 5323-5330 (2005).
  • Lederhos, J. P., Long, J. P., Sum, A., Christiansen, R. L., and Sloan, E. D., Effective kinetic inhibitors for natural gas hydrates, Chemical Engineering Science, 51, 1221-1229 (1996).
  • Kvenvolden, K. A., and McMenamin, M. A., Hydrates of natural gas: a review of their geologic occurrence, US Geological Survey Circular (1980).
  • Kvenvolden, K. A., and Lorenson, T. D., The Global Occurrence of Natural Gas Hydrate, American Geophysical Union (2001).
  • Kvenvolden, K. A., Methane hydrate—a major reservoir of carbon in the shallow geosphere?, Chemical Geology, 71, 41-51, (1988).
  • Kvenvolden, K. A., A Primer on the Geological Occurrence of Gas Hydrate. Geological Society, London, Special Publications, 137, 9-30 (1998).
  • Kumar, S., Cho, J. H., and Moon, I., Ionic liquid-amine blends and CO2 BOLs: prospective solvents for natural gas sweetening and CO2 capture technology—a review, International Journal of Greenhouse Gas Control, 20, 87-116 (2014).
  • Kumar, R., Linga, P., Moudrakovski, I., Ripmeester, J. A., and Englezos, P., tructure and kinetics of gas hydrates from methane/ethane/propane mixtures relevant to the design of natural gas hydrate storage and transport facilities. AIChE Journal, 54(8), 2132-2144 (2008).
  • Komai, T., Kang, S. P., Yoon, J. H., Yamamoto, Y., Kawamura, T., and Ohtake, M., In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point, Journal of Physical Chemistry B, 108, 8062-8068 (2004).
  • Koh, C. A., Westacott, R. E., Zhang, W., Hirachand, K., Creek, J. L., and Soper, A. K., Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilibria, 194, 143-151, (2002).
  • Koh, C. A., Towards a fundamental understanding of natural gas hydrates, Chemical Society Reviews, 31, 157-167 (2002).
  • Kitajima, T., Ohtsubo, N., Hashimoto, S., Makino, T., Kodama, D., and Ohgaki, K., Study on prompt methane hydrate formation derived by addition of ionic liquid, American Chemical Science Journal, 2, 100-110 (2012).
  • Kim, K. S., Kang, J. W., and Kang, S. P., Tuning ionic liquids for hydrate inhibition, Chemical Communications, 47, 6341-6343 (2011).
  • Kim, J., Shin, K., Seo, Y., Cho, S. J., and Lee, J. D., Synergistic hydrate inhibition of monoethylene glycol with poly (vinylcaprolactam) in thermodynamically underinhibited system, The Journal of Physical Chemistry B, 118, 9065-9075 (2014).
  • Kim, H. T. Kim, E. S. Kim, K. S., and Kang, S. P., Smart ionic liquids for hydrate inhibition, Korean Industrial Chemistry News, 16, 33-41 (2013).
  • Kelland, M. A., Kv stad, A. H., and Astad, E. L., Tetrahydrofuran hydrate crystal growth inhibition by trialkylamine oxides and synergism with the gas kinetic hydrate inhibitor poly(N-vinyl caprolactam), Energy and Fuels, 26, 4454-4464 (2012).
  • Kelland, M. A., History of the development of low dosage hydrate inhibitors, Energy and Fuels, 20, 825-847 (2006).
  • Ke, W., Svartaas, T. M., and Abay, H. K., Effects of low concentration methanol, PVP and PVCap on structure-I methane hydrate formation. Journal of Energy and Power Engineering, 7, 432-439 (2013).
  • Katsuki, D., Ohmura, R., Ebinuma, T., and Narita, H., Methane hydrate crystal growth in a porous medium filled with methane-saturated liquid water, Philosophical Magazine, 87, 1057-1069 (2007).
  • Kashchiev, D., and Firoozabadi, A., Nucleation of gas hydrates, Journal of Crystal Growth, 243, 476-489 (2002).
  • Kashchiev, D., and Firoozabadi, A., Induction time in crystallization of gas hydrates, Journal of Crystal Growth, 250, 499-515 (2003).
  • Karadas, F., Atilhan, M., and Aparicio, S., Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening, Energy and Fuels, 24, 5817-5828 (2010).
  • Karaaslan, U., and Parlaktuna, M., PEO a new hydrate inhibitor polymer, Energy and Fuels, 16, 1387-1391 (2002).
  • Kang, S. P., Kim, E. S., Shin, J. Y., Kim, H. T., Kang, J. W., Cha, J. H., and Kim, K. S., Unusual synergy effect on methane hydrate inhibition when ionic liquid meets polymer, Royal Society of Chemistry Advances, 3, 19920-19923 (2013).
  • Kang, S. P., Jung, T., and Lee, J. W., Macroscopic and spectroscopic identifications of the synergetic inhibition of an ionic liquid on hydrate formations, Chemical Engineering Science, 143, 270-275 (2016).
  • Kamath, V. A., and Godbole, S. P,. Evaluation of hot-brine stimulation technique for gas production from natural gas hydrates, Journal of Petroleum Technology, 39, 1-379 (1987).
  • Kamal, M. S., Hussein, I. A., Sultan, A. S., and von Solms, N., Application of various water soluble polymers in gas hydrate inhibition, Renewable and Sustainable Energy Reviews, 60, 206-225 (2016).
  • Jiang, G., Wu, Q., and Zhan, J., Effect of cooling rate on methane hydrate formation in media, Fluid Phase Equilibria, 298, 225-230 (2010).
  • Ieong, N. S., Redhead, M., Bosquillon, C., Alexander, C., Kelland, M., and O’Reilly, R. K., The missing lactam-thermoresponsive and biocompatible poly (N-vinylpiperidone) polymers by xanthate-mediated RAFT polymerization, Macromolecules, 44, 886-893 (2011).
  • Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., and Rogers, R. D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chemistry, 3, 156-164 (2001).
  • Hong, S. Y., Lim, J. I., Kim, J. H., and Lee, J. D., Kinetic studies on methane hydrate formation in the presence of kinetic inhibitor via in situ Raman spectroscopy, Energy and Fuels, 26, 7045-7050 (2012).
  • He, Y., Rudolph, E. S. J., Zitha, P. L., and Golombok, M., Kinetics of CO2 and methane hydrate formation: An experimental analysis in the bulk phase. Fuel, 90, 272-279 (2011).
  • Hammerschmidt, E. G., Formation of gas hydrates in natural gas transmission lines, Industrial and Engineering Chemistry, 26, 851-855 (1934).
  • Garvey, S. L., Anion Effects in the Extraction of Metal Ions into Room-Temperature Ionic Liquids (RTILS), Doctoral dissertation, The University of Wisconsin-Milwaukee, (2013)
  • Galiński, M., Lewandowski, A., and Stępniak, I., Ionic liquids as electrolytes, Electrochimica Acta, 51, 5567-5580 (2006).
  • Englezos, P., Kalogerakis, N., Dholabhai, P. D., and Bishnoi, P. R., Kinetics of formation of methane and ethane gas hydrates, Chemical Engineering Science, 42, 2647-2658 (1987).
  • Englezos, P., & Hall, S., Phase equilibrium data on carbon dioxide hydrate in the presence of electrolytes, water soluble polymers and montmorillonite, Canadian Journal of Chemical Engineering, 72, 887-893 (1994).
  • Duchateau, C., Pou, T. E., Hidalgo, M., Gl nat, P., and Dicharry, C., Interfacial measurements for laboratory evaluation of kinetic hydrate inhibitors. Chemical Engineering Science, 71, 220-225 (2012).
  • Ditte, A., Sur la cristallisation de l’hydrate de chlore, Comptes Rendus Chimie, 95 (1882).
  • Dickens, G. R., and Quinby-Hunt, M. S., Methane hydrate stability in seawater. Geophysical Research Letters, 21, 2115-2118 (1994).
  • Dholabhai, P. D., Kalogerakis, N., and Bishnoi, P. R., Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions. Journal of Chemical and Engineering Data, 38, 650-654 (1993).
  • Del Villano, L., and Kelland, M. A., An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on Structure II gas hydrate, Chemical Engineering Science, 65, 5366-5372, (2010).
  • Del Villano, L., Kelland, M. A., Miyake, G. M., and Chen, E. Y. X., Effect of polymer tacticity on the performance of poly (N, N-dialkylacrylamide) s as kinetic hydrate inhibitors, Energy and Fuels, 24, 2554-2562 (2010).
  • Daraboina, N., Linga, P., Ripmeester, J., Walker, V. K., and Englezos, P., Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 2. Stirred reactor experiments. Energy and Fuels, 25, 4384-4391 (2011).
  • Dallimore, S. R., Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. Ottawa, Ontario, Canada: Geological Survey of Canada, (2005).
  • Dacosta, R. S., Wilson, B. C., and Marcon, N. E., New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions, Journal of Gastroenterology and Hepatology, 17, 85-104 (2002).
  • Clarke, M. A., Majumdar, A., Bishnoi, P. R., Experimental investigation of carbon dioxide hydrate formation conditions in the presence of KNO3, MgSO4, and CuSO4, Journal of Chemical and Engineering Data, 49, 1436-1439 (2004).
  • Chuvilin, E. M., Istomin, V. A., and Safonov, S. S., Residual nonclathrated water in sediments in equilibrium with gas hydrate: Comparison with unfrozen water, Cold Regions Science and Technology, 68, 68-73 (2011).
  • Chua, P. C., and Kelland, M. A., Poly (N-vinyl azacyclooctanone): a more powerful structure II kinetic hydrate inhibitor than poly (N-vinyl caprolactam), Energy and Fuels, 26, 4481-4485 (2012).
  • Christophe, D., Glenat, P., Pou, T. E., Hidalgo, M., Dicharry, C., Hydrate precursor test method for the laboratory evaluation of kinetic hydrate inhibitors, Energy and Fules, 24, 616-623 (2010).
  • Cha, S. B., Ouar, H., Wildeman, T. R., and Sloan, E. D., A third-surface effect on hydrate formation, Journal of Physical Chemistry, 92, 6492-6494 (1988).
  • Cha, M., Shin, K., Seo, Y., Shin, J. Y., and Kang, S. P., Catastrophic growth of gas hydrates in the presence of kinetic hydrate inhibitors, The Journal of Physical Chemistry A, 117, 13988-13995 (2013).
  • British Petroleum, BP Statistical Review of World Energy, (2014).
  • Bishnoi, P. R., Natrarjan, V., and Kalogerakis, N., A nuified description of the kinetics of hydrate nucleation, growth, and decomposition, International Conference on Natural Gas Hydrates, New York, 715, 311-322 (1993).
  • Avula, V. R., Gardas, R. L., and Sangwai, J. S., An efficient model for the prediction of CO2 hydrate phase stability conditions in the presence of inhibitors and their mixtures. Journal of Chemical Thermodynamics, 85, 163-170 (2015).
  • Arjang, S., Manteghian, M., and Mohammadi, A., Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa. Chemical Engineering Research and Design, 91, 1050-1054 (2013).
  • Anderson, R., Mozaffar, H., and Tohidi, B., Development of a crystal growth inhibition based method for the evaluation of kinetic hydrate inhibitors, In: Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh: Domestic Organizing Committee ICGH-7, 17-21 (2011).
  • Anderson, J. L., Dixon, J. K., and Brennecke, J. F., Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide: Comparison to other ionic liquids, Accounts of Chemical Research, 40, 1208-1216 (2007).
  • Aki, S. N., Mellein, B. R., Saurer, E. M., and Brennecke, J. F. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids, Journal of Physical Chemistry B, 108, 20355-20365, (2004).
  • Abbott, M. M., Smith, J. M., and Van Ness, H. C., Introduction to Chemical Engineering Thermodynamics, McGraw-Hill (2001).
  • Abbott, M. M., Smith, J. M., and Van Ness, H. C., Introduction to Chemical Engineering Thermodynamics, 6th Ed., McGraw-Hill (2001).
  • Abay, H. K., Hovland, J., and Svartas, T. M., The effect of PVCap on methane hydrate nucleation and growth, Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom (2011).